首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 593 毫秒
1.
By using monthly historical sea surface temperature (SST) data for the years from 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied in this paper. The analysis of WPWP centroid (WPWPC) movement anomalies and the Nino-3 region SST anomalies( SSTA) seems to reveal a close, linear relation between the zonal WPWPC and Nino-3 region SSTA, which suggests that a 9' anomaly of the zonal displacement from the climatological position of the WPWPC corresponds to about a 1 ℃ anomaly in the Nino-3 region area-mean SST. This study connects the WPWPC zonal displacement with the Nino-3 SSTA, and it may be helpful in better understanding the fact that the WPWP eastward extension is conducive to the Nino-3 region SST increase during an El Nino-Southern Oscillation (ENSO) event.  相似文献   

2.
By analyzing the variability of global SST(sea surface temperature) anomalies,we propose a unified Ni o index using the surface thermal centroid anomaly of the region along the Pacific equator embraced by the 0.7°C contour line of the standard deviation of the SST anomalies and try to unify the traditional Ni o regions into a single entity.The unified Ni o region covers almost all of the traditional Ni o regions.The anomaly time series of the averaged SST over this region are closely correlated to historical Ni o indices.The anomaly time series of the zonal and meridional thermal centroid have close correlation with historical TNI(Trans-Ni o index) indices,showing differences among El Ni o(La Ni a) events.The meridional centroid anomaly suggests that areas of maximum temperature anomaly are moving meridionally(although slightly) with synchronous zonal movement.The zonal centroid anomalies of the unified Ni o region are found helpful in the classification of the Eastern Pacific(EP)/Central Pacific(CP) types of El Ni o events.More importantly,the zonal centroid anomaly shows that warm areas might move during a single warming/cooling phase.All the current Ni o indices can be well represented by a simple linear combination of unified Ni o indices,which suggests that the thermal anomaly(SSTA) and thermal centroid location anomaly of the unified Ni o region would yield a more complete image of each El Ni o/ La Ni a event.  相似文献   

3.
The standard deviation of the central Pacific sea surface temperature anomaly (SSTA) during the period from October to February shows that the central Pacific SSTA variation is primarily due to the occurrence of the Central Pacific El Nio (CP-El Nio) and has a connection with the subtropical air-sea interaction in the northeastern Pacific. After removing the influence of the Eastern Pacific El Nio, an S-EOF analysis is conducted and the leading mode shows a clear seasonal SSTA evolving from the subtropical northeastern Pacific to the tropical central Pacific with a quasi-biennial period. The initial subtropical SSTA is generated by the wind speed decrease and surface heat flux increase due to a north Pacific anomalous cyclone. Such subtropical SSTA can further influence the establishment of the SSTA in the tropical central Pacific via the wind-evaporation-SST (WES) feedback. After established, the central equatorial Pacific SSTA can be strengthened by the zonal advective feedback and thermocline feedback, and develop into CP-El Nio. However, as the thermocline feedback increases the SSTA cooling after the mature phase, the heat flux loss and the re-versed zonal advective feedback can cause the phase transition of CP-El Nio. Along with the wind stress variability, the recharge (discharge) process occurs in the central (eastern) equatorial Pacific and such a process causes the phase consistency between the thermocline depth and SST anomalies, which presents a contrast to the original recharge/discharge theory.  相似文献   

4.
El Nio events with an eastern Pacific pattern(EP) and central Pacific pattern(CP) were first separated using rotated empirical orthogonal functions(REOF).Lead/lag regression and rotated singular value decomposition(RSVD) analyses were then carried out to study the relation between the surface zonal wind(SZW) anomalies and sea surface temperature(SST) anomalies in the tropical Pacific.A possible physical process for the CP El Ni o was proposed.For the EP El Ni o,strong westerly anomalies that spread eastward continuously produce an anomalous ocean zonal convergence zone(ZCZ) centered on about 165°W.This SZW anomaly pattern favors poleward and eastward Sverdrup transport at the equator.For the CP El Nio,westerly anomalies and the ZCZ are mainly confined to the western Pacific,and easterly anomalies blow in the eastern Pacific.This SZW anomaly pattern restrains poleward and eastward Sverdrup transport at the equator;however,there is an eastward Sverdrup transport at about 5°N,which favors the warming of the north-eastern tropical Pacific.It is found that the slowness of eastward propagation of subsurface warm water(partly from the downwelling caused by Ekman convergence and the ZCZ) is due to the slowdown of the undercurrent in the central basin,and vertical advection in the central Pacific may be important in the formation and disappearance of the CP El Nio.  相似文献   

5.
The eastern edge of the western Pacific warm pool (WPWP) in the upper layer (shallower than 50m) exhibits significant zonal displacements on interannual scale. Employing an intermediate ocean model, the dynamic mechanism for the interannual zonal displacement of the WPWP eastern edge in the upper layer is investigated by diagnosing the dynamic impacts of zonal current anomalies induced by wind, waves (Kelvin and Rossby waves), and their boundary reflections. The interannual zonal displacements of the WPWP eastern edge in the upper layer and the zonal current anomaly in the equatorial Pacific west of 110°W for more than 30 years can be well simulated. The modeling results show that zonal current anomalies in the central and eastern equatorial Pacific are the dominant dynamic mechanism for the zonal displacements of the eastern edge of the upper WPWP warm water. Composite analyses suggest that the zonal current anomalies induced by waves dominate the zonal displacement of the WPWP eastern edge, whereas the role played by zonal wind-driven current anomalies is very small. A sensitivity test proves that the zonal current anomalies associated with reflected waves on the western and eastern Pacific boundaries can act as a restoring force that results in the interannual reciprocating zonal motion of the WPWP eastern edge.  相似文献   

6.
The generalized linear model (GLM) and generalized additive model (GAM) were applied to the standardization of catch per unit effort (CPUE) for Chilean jack mackerel from Chinese factory trawl fishing fleets in the Southeast Pacific Ocean from 2001 to 2010 by removing the operational, environmental, spatial and temporal impacts. A total of 9 factors were selected to build the GLM and GAM, i.e., Year, Month, Vessel, La Niña and El Niño events (ELE), Latitude, Longitude, Sea surface temperature (SST), SST anomaly (SSTA), Nino3.4 index and an interaction term between Longitude and Latitude. The first 5 factors were significant components in the GLM, which in combination explained 27.34% of the total variance in nominal CPUE. In the stepwise GAM, all factors explained 30.78% of the total variance, with Month, Year and Vessel as the main factors influencing CPUE. The higher CPUE occurred during the period April to July at a SST range of 12–15°C and a SSTA range of 0.2–1.0°C. The CPUE was significantly higher in normal years compared with that in La Niña and El Niño years. The abundance of Chilean jack mackerel declined during 2001 and 2010, with an increase in 2007. This work provided the relative abundance index of Chilean jack mackerel for stock assessment by standardizing catch and effort data of Chinese trawl fisheries and examined the influence of temporal, spatial, environmental and fisheries operational factors on Chilean jack mackerel CPUE.  相似文献   

7.
Based on the 18-year(1993–2010) National Centers for Environmental Prediction optimum interpolation sea surface temperature(SST) and simple ocean data assimilation datasets,this study investigated the patterns of the SST anomalies(SSTAs) that occurred in the South China Sea(SCS) during the mature phase of the El Ni?o/Southern Oscillation.The most dominant characteristic was that of the outof-phase variation between southwestern and northeastern parts of the SCS,which was influenced primarily by the net surface heat flux and by horizontal thermal advection.The negative SSTA in the northeastern SCS was caused mainly by the loss of heat to the atmosphere and because of the cold-water advection from the western Pacific through the Luzon Strait during El Ni?o episodes.Conversely,it was found that the anomalous large-scale atmospheric circulation and weakened western boundary current during El Ni?o episodes led to the development of the positive SSTA in the southwestern SCS.  相似文献   

8.
Numerous published results have showr the importance of the Wcstern Pacific Warm Pool (WPWP)surface centroid movement in ENSO-(EI Nino/Southcrn Oscillation)rclated studies .Howcver,some rccent research conclusions make it necessary to clarify the differenccs of the currently exicing two types of WPWP surface centroid:the geometric centroid and the thermal (heat)centrold.This study analyzes the physical backgrounds of the two typcs of centroid and points out their differenccs.which suggest that different types of ccntroid may scrve different study purposes.This study also shows that the ‘geometric center’of WPWP.actually a close approximation to the mass ccntroid,is more related to the Nino-3 region sca surfacc temperaturc(SST)ancmaly and can also be regarded as an important indicator of ENSO events.  相似文献   

9.
This paper attempts to analyze in detail the remote influence of the Indian Ocean Basin warming on the Northwest Pacific (NWP) during the year of decaying El Niño. Observation data and the Fast Ocean-Atmosphere coupled Model 1.5 were used to investigate the triggering conditions under which the remote influence is formed between the positive sea surface temperature (SST) anomaly in the North Indian Ocean and the Anomalous Northwest Pacific anticyclone (ANWPA). Our research show that it is only when there is a contributory background wind field over the Indian Ocean, i.e., when the Indian Summer Monsoon (ISM) reaches its peak, that the warmer SST anomaly in the North Indian Ocean incites significant easterly wind anomalies in the lower atmosphere of the Indo-West tropical Pacific. This then produces the remote influence on the ANWPA. Therefore, the SST anomaly in the North Indian Ocean might interfere with the prediction of the East Asia Summer Monsoon in the year of decaying El Niño. Both the sustaining effect of local negative SST anomalies in the NWP, and the remote effect of positive SST anomalies in the North Indian Ocean on the ANWPA, should be considered in further research.  相似文献   

10.
SST variations of the Kuroshio from AVHRR observation   总被引:1,自引:0,他引:1  
1 INTRODUCTION The Kuroshio Current (KC), being the western boundary current in the North Pacific subtropical gyre, is the second strongest current in the world af- ter the Gulf Stream and is famous as a strong and fast flow. KC plays an important role in…  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号