首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The standard deviation of the central Pacific sea surface temperature anomaly (SSTA) during the period from October to February shows that the central Pacific SSTA variation is primarily due to the occurrence of the Central Pacific El Nio (CP-El Nio) and has a connection with the subtropical air-sea interaction in the northeastern Pacific. After removing the influence of the Eastern Pacific El Nio, an S-EOF analysis is conducted and the leading mode shows a clear seasonal SSTA evolving from the subtropical northeastern Pacific to the tropical central Pacific with a quasi-biennial period. The initial subtropical SSTA is generated by the wind speed decrease and surface heat flux increase due to a north Pacific anomalous cyclone. Such subtropical SSTA can further influence the establishment of the SSTA in the tropical central Pacific via the wind-evaporation-SST (WES) feedback. After established, the central equatorial Pacific SSTA can be strengthened by the zonal advective feedback and thermocline feedback, and develop into CP-El Nio. However, as the thermocline feedback increases the SSTA cooling after the mature phase, the heat flux loss and the re-versed zonal advective feedback can cause the phase transition of CP-El Nio. Along with the wind stress variability, the recharge (discharge) process occurs in the central (eastern) equatorial Pacific and such a process causes the phase consistency between the thermocline depth and SST anomalies, which presents a contrast to the original recharge/discharge theory.  相似文献   

2.
The South China Sea (SCS) is significantly influenced by El Niño and the Southern Oscillation (ENSO) through ENSO-driven atmospheric and oceanic changes. We analyzed measurements made from 1960 to 2004 to investigate the interannual variability of the latent and sensible heat fluxes over the SCS. Both the interannual variations of latent and sensible heat fluxes are closely related to ENSO events. The low-pass mean heat flux anomalies vary in a coherent manner with the low-pass mean Southern Oscillation Index (SOI). Time lags between the heat flux anomalies and the SST anomalies were also studied. We found that latent heat flux anomalies have a minimum value around January of the year following El Niño events. During and after the mature phase of El Niño, a change of atmospheric circulation alters the local SCS near-surface humidity and the monsoon winds. During the mature phase of El Niño, the wind speed decreases over the entire sea, and the air-sea specific humidity difference anomalies decreases in the northern SCS and increases in the southern SCS. Thus, a combined effect of wind speed anomalies and air-sea specific humidity difference anomalies results in the latent heat flux anomalies attaining minimum levels around January of the year following an El Niño year.  相似文献   

3.
By analyzing the variability of global SST(sea surface temperature) anomalies,we propose a unified Ni o index using the surface thermal centroid anomaly of the region along the Pacific equator embraced by the 0.7°C contour line of the standard deviation of the SST anomalies and try to unify the traditional Ni o regions into a single entity.The unified Ni o region covers almost all of the traditional Ni o regions.The anomaly time series of the averaged SST over this region are closely correlated to historical Ni o indices.The anomaly time series of the zonal and meridional thermal centroid have close correlation with historical TNI(Trans-Ni o index) indices,showing differences among El Ni o(La Ni a) events.The meridional centroid anomaly suggests that areas of maximum temperature anomaly are moving meridionally(although slightly) with synchronous zonal movement.The zonal centroid anomalies of the unified Ni o region are found helpful in the classification of the Eastern Pacific(EP)/Central Pacific(CP) types of El Ni o events.More importantly,the zonal centroid anomaly shows that warm areas might move during a single warming/cooling phase.All the current Ni o indices can be well represented by a simple linear combination of unified Ni o indices,which suggests that the thermal anomaly(SSTA) and thermal centroid location anomaly of the unified Ni o region would yield a more complete image of each El Ni o/ La Ni a event.  相似文献   

4.
By using monthly historical sea surface temperature (SST) data for the years from 1950 to 2000, the Western Pacific Warm Pool (WPWP) climatology and anomalies are studied in this paper. The analysis of WPWP centroid (WPWPC) movement anomalies and the Niño-3 region SST anomalies(SSTA) seems to reveal a close, linear relation between the zonal WPWPC and Niño-3 region SSTA, which suggests that a 9° anomaly of the zonal displacement from the climatological position of the WPWPC corresponds to about a l°C anomaly in the Niño-3 region area-mean SST. This study connects the WPWPC zonal displacement with the Niño-3 SSTA, and it may be helpful in better understanding the fact that the WPWP eastward extension is conducive to the Niño-3 region SST increase during an El Niño-Southern Oscillation (ENSO) event.  相似文献   

5.
Satellite observations of sea level anomalies(SLA) from January 1993 to December 2012 are used to investigate the interannual to decadal changes of the boreal spring high SLA in the western South China Sea(SCS) using the Empirical Orthogonal Function(EOF) method. We find that the SLA variability has two dominant modes. The Sea Level Changing Mode(SLCM) occurs mainly during La Ni?a years, with high SLA extension from west of Luzon to the eastern coast of Vietnam along the central basin of the SCS, and is likely induced by the increment of the ocean heat content. The Anticyclonic Eddy Mode(AEM) occurs mainly during El Ni?o years and appears to be triggered by the negative wind curl anomalies within the central SCS. In addition, the spring high SLA in the western SCS experienced a quasi-decadal change during 1993–2012; in other words, the AEM predominated during 1993–1998 and 2002–2005, while the La Ni?a-related SLCM prevailed during 1999–2001 and 2006–2012. Moreover, we suggest that the accelerated sea level rise in the SCS during 2005–2012 makes the SLCM the leading mode over the past two decades.  相似文献   

6.
Analyses of the Tropical Rainfall Measuring Mission (TRMM) datasets revealed a prominent interannual variation in the convective-stratiform rainfall and latent heating over the southern South China Sea (SCS) during the winter monsoon between 1998 and 2010. Although the height of maximum latent heating remained nearly constant at around 7 km in all of the years, the year-to-year changes in the magnitudes of maximum latent heating over the region were noticeable. The interannual variations of the convective- stratiform rainfall and latent heating over the southern SCS were highly anti-correlated with the Niño-3 index, with more (less) rainfall and latent heating during La Niña (El Niño) years. Analysis of the large-scale environment revealed that years of active rainfall and latent heating corresponded to years of large deep convergence and relative humidity at 600 hPa. The moisture budget diagnosis indicated that the interannual variation of humidity at 600 hPa was largely modulated by the vertical moisture advection. The year-to-year changes in rainfall over the southern SCS were mainly caused by the interannual variations of the dynamic component associated with anomalous upward motions in the middle troposphere, while the interannual variations of the thermodynamic component associated with changes in surface specific humidity played a minor role. Larger latent heating over the southern SCS during La Niña years may possibly further enhance the local Hadley circulation over the SCS in the wintertime.  相似文献   

7.
El Nio events with an eastern Pacific pattern(EP) and central Pacific pattern(CP) were first separated using rotated empirical orthogonal functions(REOF).Lead/lag regression and rotated singular value decomposition(RSVD) analyses were then carried out to study the relation between the surface zonal wind(SZW) anomalies and sea surface temperature(SST) anomalies in the tropical Pacific.A possible physical process for the CP El Ni o was proposed.For the EP El Ni o,strong westerly anomalies that spread eastward continuously produce an anomalous ocean zonal convergence zone(ZCZ) centered on about 165°W.This SZW anomaly pattern favors poleward and eastward Sverdrup transport at the equator.For the CP El Nio,westerly anomalies and the ZCZ are mainly confined to the western Pacific,and easterly anomalies blow in the eastern Pacific.This SZW anomaly pattern restrains poleward and eastward Sverdrup transport at the equator;however,there is an eastward Sverdrup transport at about 5°N,which favors the warming of the north-eastern tropical Pacific.It is found that the slowness of eastward propagation of subsurface warm water(partly from the downwelling caused by Ekman convergence and the ZCZ) is due to the slowdown of the undercurrent in the central basin,and vertical advection in the central Pacific may be important in the formation and disappearance of the CP El Nio.  相似文献   

8.
The generalized linear model (GLM) and generalized additive model (GAM) were applied to the standardization of catch per unit effort (CPUE) for Chilean jack mackerel from Chinese factory trawl fishing fleets in the Southeast Pacific Ocean from 2001 to 2010 by removing the operational, environmental, spatial and temporal impacts. A total of 9 factors were selected to build the GLM and GAM, i.e., Year, Month, Vessel, La Niña and El Niño events (ELE), Latitude, Longitude, Sea surface temperature (SST), SST anomaly (SSTA), Nino3.4 index and an interaction term between Longitude and Latitude. The first 5 factors were significant components in the GLM, which in combination explained 27.34% of the total variance in nominal CPUE. In the stepwise GAM, all factors explained 30.78% of the total variance, with Month, Year and Vessel as the main factors influencing CPUE. The higher CPUE occurred during the period April to July at a SST range of 12–15°C and a SSTA range of 0.2–1.0°C. The CPUE was significantly higher in normal years compared with that in La Niña and El Niño years. The abundance of Chilean jack mackerel declined during 2001 and 2010, with an increase in 2007. This work provided the relative abundance index of Chilean jack mackerel for stock assessment by standardizing catch and effort data of Chinese trawl fisheries and examined the influence of temporal, spatial, environmental and fisheries operational factors on Chilean jack mackerel CPUE.  相似文献   

9.
The study provides one of the first lines of evidence showing linkages between Antarctic phytoplankton abundance and composition in response to ENSO, based on historical reconstruction of sediment biomarkers. In addition to sediment biomarkers, field measured and remote sensing data of phytoplankton abundance were also recorded from Prydz Bay, Eastern Antarctica. Com-munity structure of field measured phytoplankton showed significant El Ni?o/La Ni?a-related succession during 1990 to 2002. In general, the number of algae species decreased during El Ni?o and La Ni?a years compared to normal years. Austral summer monthly variation of remotely sensed chlorophyll-a (Chl-a), particulate organic carbon (POC), and sea surface temperature (SST) indicated that ENSO impacted the timing of phytoplankton blooms during 2007 to 2011. Phytoplankton blooms (indicated by Chl-a and POC) preceded the increases in SST during El Ni?o years, and lagged behind the SST increases during La Ni?a years. Stratigraphic record of marine sedimentary lipid (brassicasterol, dinosterol and alkenones) biomarkers inferred that the proportions of different algae (diatoms, dinoflagellates and haptophytes) changed significantly between El Ni?o and La Ni?a events. The relative proportion of diatoms increased, with that of dinoflagellates being decreased during El Ni?o years, while it was reversed during La Ni?a years.  相似文献   

10.
Based on an empirical orthogonal function (EOF) analysis of the monthly NCEP Optimum Interpolation Sea Surface Temperature (OISST) data in the South China Sea (SCS) after removing the climatological mean and trends of SST, over the period of January 1982 to October 2003, the corresponding TCF correlates best with the Dipole Mode Index (DMI), Niño1+2, Niño3.4, Niño3, and Niño4 indices with time lags of 10, 3, 6, 5, and 6 months, respectively. Thus, a statistical hindcasts in the prediction model are based on a canonical correlation analysis (CCA) model using the above indices as predictors spanning from 1993/1994 to 2003/2004 with a 1–12 month lead time after the canonical variants are calculated, using data from the training periods from January 1982 to December1992. The forecast model is successful and steady when the lead times are 1–12 months. The SCS warm event in 1998 was successfully predicted with lead times from 1–12 months irrespective of the strength or time extent. The prediction ability for SSTA is lower during weak ENSO years, in which other local factors should be also considered as local effects play a relatively important role in these years. We designed the two forecast models: one using both DMI and Niño indices and the other using only Niño indices without DMI, and compared the forecast accuracies of the two cases. The spatial distributions of forecast accuracies show different confidence areas. By turning off the DMI, the forecast accuracy is lower in the coastal areas off the Philippines in the SCS, suggesting some teleconnection may occur with the Indian Ocean in this area. The highest forecast accuracies occur when the forecast interval is five months long without using the DMI, while using both of Niño indices and DMI, the highest accuracies occur when the forecast interval time is eight months, suggesting that the Niño indices dominate the interannual variability of SST anomalies in the SCS. Meanwhile the forecast accuracy is evaluated over an independent test period of more than 11 years (1993/94 to October 2004) by comparing the model performance with a simple prediction strategy involving the persistence of sea surface temperature anomalies over a 1–12 month lead time (the persisted prediction). Predictions based on the CCA model show a significant improvement over the persisted prediction, especially with an increased lead time (longer than 3 months). The forecast model performs steadily and the forecast accuracy, i.e., the correlation coefficients between the observed and predicted SSTA in the SCS are about 0.5 in most middle and southern SCS areas, when the thresholds are greater than the 95% confidence level. For all 1 to 12 month lead time forecasts, the root mean square errors have a standard deviation of about 0.2. The seasonal differences in the prediction performance for the 1–12 month lead time are also examined.  相似文献   

11.
1 Introduction TheMadden JulianOscillation (MJO)isastrongatmosphericconvection phenomenonoccurringovertheEasternIndianOceanandtheTropicalWesternPacific,usuallyinregionswithseasurfacetempera tures (SSTs)over 2 9℃ .Theeastwardmovingofalarge scalecirculat…  相似文献   

12.
The interannual variability of the sea surface temperature (SST) in the South China Sea (SCS) is investigated according to its relationship with El Nio/La Nia (EN/LN) using monthly products from ICOADS. The SCS SST bears two peaks associated with EN/LN and shows the asymmetric features. Coinciding with the mature phase of EN/LN, the first SST warming/cooling peaks in December(0)-February(1) (DJF(1)) and centers in the southern part. The major difference is in the amplitude associated with the strength of EN/LN. However, the SCS SST anomaly shows distinct difference after the mature phase of EN/LN. The EN SST warm-ing develops a mid-summer peak in June-August(1) (JJA(1)) and persists up to September-October(1), with the same amplitude of the first warming peak. Whereas the LN SST cooling peaks in May(1), it decays slowly until the end of the year, with amplitude much weaker. Comparing with SST and atmospheric circulations, the weak response and early termination of the second cooling is due to the failure of the cyclonic wind anomalies to develop in the northwest Pacific during JJA(1).  相似文献   

13.
This study investigated the impact of sea surface temperature(SST)in several important areas of the Indian-Pacific basin on tropical cyclone(TC)activity over the western North Pacific(WNP)during the developing years of three super El Ni?o events(1982,1997,and 2015)based on observations and numerical simulations.During the super El Ni?o years,TC intensity was enhanced considerably,TC days increased,TC tracks mostly recurved along the coasts,and fewer TCs made landfall in China.These characteristics are similar to the strong ENSO-TC relationship but further above the climatological means than in strong El Ni?o years.It indicates that super El Ni?o events play a dominant role in the intensities and tracks of WNP TCs.However,there were clear differences in both numbers and positions of TC genesis among the different super El Ni?o years.These features could be attributed to the collective impact of SST anomalies(SSTAs)in the tropical central-eastern Pacific and East Indian Ocean(EIO)and the SST gradient(SSTG)between the southwestern Pacific and the western Pacific warm pool.During 2015,the EIO SSTA was extremely warm and the anomalous anticyclone in the western WNP was enhanced,resulting in fewer TCs than normal.In 1982,the EIO SSTA and spring SSTG showed negative anomalies,followed by an increased anomalous cyclone in the western WNP and equatorial vertical wind shear.This intensified the conversion of eddy kinetic energy from large-scale flows,favorable for the westward shift of TC genesis.Consequently,anomalous TC activities during the super El Ni?o years resulted mainly from combined SSTA impacts of different key areas over the Indian-Pacific basin.  相似文献   

14.
To reconstruct the productivity changes for the last 10 500 a in the northeastern East China Sea (ECS), biogenic compounds (such as carbonate, organic carbon and opal), marine micropaleontological fossils (planktonic foraminifera, benthic foraminifera, radiolarian and silicoflagellate) and the compositional characters of benthic foraminifera fauna analyses were carried out on a sediment core DOC082 obtained from the western slope of Okinawa Trough (29°13.93′N, 128°08.53′E; 1 128 m water depth). The long-term changes of biogenic and micropaleontological proxies display some similarities through the last 10 500 a, which show three different phases: lower values are recorded during the early and middle Holocene (before about 4 000 a BP), followed by an abrupt and remarkable increase at about 4 000 a BP, the late Holocene (after about 3 000 a BP) is characterized by continuously high values. The multi-proxy data of paleoproductivity and percents of benthic foraminifera genera (Uvigerina and Bulimina) show that during the early and middle Holocene (10 500–4 000 a BP) productivity was relatively low with a sudden and distinct increase at about 4 000 a BP, and the late Holocene (3 400–0 a BP) is marked by significantly higher productivity. Also, the radiolarian-based sea surface temperature (SST) records reveal a distinct decline in SST in the late Holocene after 3 200 a BP, very different from the early and middle Holocene. For the last 3 000 a, the enhanced biological productivity and distinctly lower SST indicate a major change of oceanographic conditions in the northeastern ECS. These marine environmental anomalies are consistent with other paleoclimatic records for the late Holocene in the Chinese continent and its surrounding regions. After analyzing the mechanisms of modern productivity and SST changes in the northeastern ECS, and based on the climatic anomalies in the Chinese continent and variations in the Kuroshio Current during modern El Niño periods, we suggest that the anomalous environmental conditions in the northeastern ECS may imply intensified El Niño activity during the late Holocene.  相似文献   

15.
Interannual variations of Pacific North Equatorial Current (NEC) transport during eastern-Pacific El Niños (EP-El Niños) and central-Pacific El Niños (CP-El Niños) are investigated by composite analysis with European Centre for Medium-Range Weather Forecast Ocean Analysis/Reanalysis System 3. During EP-El Niño, NEC transport shows significant positive anomalies from the developing to decay phases, with the largest anomalies around the mature phase. During CP-El Niño, however, the NEC transport only shows positive anomalies before the mature phase, with much weaker anomalies than those during EP-El Niño. The NEC transport variations are strongly associated with variations of the tropical gyre and wind forcing in the tropical North Pacific. During EP-El Niño, strong westerly wind anomalies and positive wind stress curl anomalies in the tropical North Pacific induce local upward Ekman pumping and westward-propagating upwelling Rossby waves in the ocean, lowering the sea surface height and generating a cyclonic gyre anomaly in the western tropical Pacific. During CP-El Niño, however, strength of the wind and associated Ekman pumping velocity are very weak. Negative sea surface height and cyclonic flow anomalies are slightly north of those during EP El Niño.  相似文献   

16.
This paper focuses on the effects of two types of El Niño events on tropical cyclone activity. We classified El Niño events from 1961 to 2015 according to their sea surface temperature (SST) anomalies into an eastern type and a central type. Then we selected strong tropical cyclones to statistically analyze the tropical cyclone characteristics during different events and their effects, as well as to study the possible mechanisms related to thermodynamic and dynamic factors. The tropical cyclone generation areas were found to be very similar during the two kinds of events. The average number of tropical cyclone in the eastern event is more than that in central event, and the hurricane in northeastern Pacific (HNP) has more energy than the typhoon in northwestern Pacific (TNP) in all cases. The seasonal distribution of the TNP high-incidence centers during central El Niño events is opposite to that of the HNP. The TNP accumulated cyclone energy (ACE) intensity is similar in the fall and summer, and the HNP ACE intensity in the summer is greater than that in the fall. The SSTs are consistent with the TNP and HNP movement trends. The Walker circulation intensity was strongly affected by the eastern events, but it quickly returned to its normal state, while the intensity was slightly reduced in the central events, and it slowly returned to its normal state. The vertical velocity distributions in the Pacific are different at different stages of both events, and the distributions of vertical velocity anomalies for typhoons and hurricanes are consistent.  相似文献   

17.
Based on the temperature data along 34°N, 35°N and 36°N sections in August from 1977 to 2003, the structure and formation of the Southern Yellow Sea Cold Water Mass (SYSCWM) and its responses to El Nino events are analyzed. Results show that: (1) There exist double cold cores under the main thermocline along the 35°N and 36°N sections. Also, double warm cores exist above the main thermocline along the 36°N section. (2) Thermocline dome by upwelling separates the upper warm water into two parts, the eastern and western warm waters. Additionally, the circulation structure caused by upwelling along the cold front and northeastward current along the coast in summer is the main reasons of double warm cores along the 36°N section. The intermediate cold water is formed in early spring and moves eastward slowly, which results in the formation of the western one of double cold cores. (3) Position of the thermocline dome and its intensity vary interannually, which is related to El Nino events. However, the  相似文献   

18.
SST variations of the Kuroshio from AVHRR observation   总被引:1,自引:0,他引:1  
1 INTRODUCTION The Kuroshio Current (KC), being the western boundary current in the North Pacific subtropical gyre, is the second strongest current in the world af- ter the Gulf Stream and is famous as a strong and fast flow. KC plays an important role in…  相似文献   

19.
Yang  Yuxing  Yang  Lei  Wang  Faming 《中国海洋湖沼学报》2017,35(2):452-465

To understand the impacts of large-scale circulation during the evolution of El Niño cycle on tropical cyclones (TC) is important and useful for TC forecast. Based on best-track data from the Joint Typhoon Warning Center and reanalysis data from National Centers for Environmental Prediction for the period 1975–2014, we investigated the influences of two types of El Niño, the eastern Pacific El Niño (EP-El Niño) and central Pacific El Niño (CP-El Niño), on global TC genesis. We also examined how various environmental factors contribute to these influences using a modified genesis potential index (MGPI). The composites reproduced for two types of El Niño, from their developing to decaying phases, were able to qualitatively replicate observed cyclogenesis in several basins except for the Arabian Sea. Certain factors of MGPI with more influence than others in various regions are identified. Over the western North Pacific, five variables were all important in the two El Niño types during developing summer (July–August–September) and fall (October–November–December), and decaying spring (April–May–June) and summer. In the eastern Pacific, vertical shear and relative vorticity are the crucial factors for the two types of El Niño during developing and decaying summers. In the Atlantic, vertical shear, potential intensity and relative humidity are important for the opposite variation of EP- and CP-El Niños during decaying summers. In the Southern Hemisphere, the five variables have varying contributions to TC genesis variation during peak season (January–February–March) for the two types of El Niño. In the Bay of Bengal, relative vorticity, humidity and omega may be responsible for clearly reduced TC genesis during developing fall for the two types and slightly suppressed TC cyclogenesis during EP-El Niño decaying spring. In the Arabian Sea, the EP-El Niño generates a slightly positive anomaly of TC genesis during developing falls and decaying springs, but the MGPI failed to capture this variation.

  相似文献   

20.
The sensitivity of the global atmospheric and oceanic response to sea surface temperature anomaly (SSTA) throughout the South China Sea (SCS) is investigated using the Fast Ocean-Atmosphere Model (FOAM). Forced by a warming SST, the experiment explicitly demonstrates that the responses of surface air temperature (SAT) and SST exhibit positive anomalous center over SCS and negative anomalous center over the Northern Pacific Ocean (NPO). The atmospheric response to the warm SST anomalies is characterized by a barotropical anomaly in middle-latitude, leading to a weak subtropical high in summer and a weak Aleutian low in winter. Accordingly, Indian monsoon and eastern Asian monsoon strengthen in summer but weaken in winter as a result of wind convergence owing to the warm SST. It is worth noting that the abnormal signals propagate poleward and eastward away in the form of Rossby Waves from the forcing region, which induces high pressure anomaly. Owing to action of the wind-driven circulation, an anomalous anti-cyclonic circulation is induced with a primary southward current in the upper ocean. An obvious cooling appears over the North Pacific, which can be explained by anomalous meridional cold advection and mixing as shown in the analysises of heat budget and other factors that affect SST.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号