首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 307 毫秒
1.
植被内部及其上方湍流场的数值模拟   总被引:3,自引:0,他引:3       下载免费PDF全文
尹协远  J.D.Lin 《气象学报》1988,46(2):194-201
植被内部及其上方的湍流流场对于了解植被与大气之间的动量、热量和质量交换过程极其重要。本文把高阶湍流封闭模型的Reynolds应力方程模型(RSM)应用于植被湍流的计算,得到了风速、湍流动能、Reynolds应力及能量耗散率的垂直分布,与现场观测数据比较,甚为满意。  相似文献   

2.
The turbulent flow in and above plant canopies is of fundamental importance to the understanding oftransport processes of momentum,heat and mass between plant canopies and atmosphere,and to microme-teorology.The Reynolds stress equation model(RSM)has been applied to calculate the turbulence in cano-pies in this paper.The calculated mean wind velocity profiles,Reynolds stress,turbulent kinetic energy andviscous dissipation rate in a corn canopy and a spruce forest are compared with field observed data and withWilson's and Shaw's model.The velocity profiles and Rynolds stress calculated by both models are in goodagreement,and the length scale of turbulence appears to be similar.  相似文献   

3.
An urban canopy model is incorporated into the Nanjing University Regional Boundary Layer Model. Temperature simulated by the urban canopy model is in better agreement with the observation, especially in the night time, than that simulated by the traditional slab model. The coupled model is used to study the effects of building morphology on urban boundary layer and meteorological environment by changing urban area, building height, and building density.It is found that when the urban area is expanded, the urban boundary layer heat flux, thermal turbulence, and the turbulent momentum flux and kinetic energy all increase or enhance, causing the surface air temperature to rise up. The stability of urban atmospheric stratification is affected to different extent at different times of the day.When the building height goes up, the aerodynamic roughness height, zero plane displacement height of urban area, and ratio of building height to street width all increase. Therefore, the increase in building height results in the decrease of the surface heat flux, urban surface temperature, mean wind speed, and turbulent kinetic energy in daytime. While at night, as more heat storage is released by higher buildings, thermal turbulence is more active and surface heat flux increases, leading to a higher urban temperature.As the building density increases, the aerodynamic roughness height of urban area decreases, and the effect of urban canopy on radiation strengthens. The increase of building density results in the decrease in urban surface heat flux, momentum flux, and air temperature, the increase in mean wind speed, and the weakening of turbulence in the daytime. While at night, the urban temperature increases due to the release of more heat storage.  相似文献   

4.
The structure of turbulence in an inversion layer and in an homogeneous convective field of the planetary boundary layer is described. In the first part of the paper, we validate the sodar estimates of turbulent dissipation, by using measurements with an hot-wire anemometric system in situ. Limitations of an ε measurement technique using structure function calculations are given, taking account of atmospheric properties and acoustic Doppler instrumental effects. By comparison between isopleths of backscattering intensity and of turbulent dissipation rates, we observe that in the early morning, turbulence is advected by mechanical turbulence generated by wind shear. The same mechanism seems to be operating in the case of an inversion layer capping thermal instability, when the convective activity is not too greatly developed. A turbulent kinetic energy budget is examined using aircraft, sodar, and tower measurements. This indicates a constant turbulent dissipation profile through a deep convective layer.  相似文献   

5.
应用城市冠层模式研究建筑物形态对城市边界层的影响   总被引:5,自引:1,他引:4  
文中将城市冠层模式耦合到南京大学城市尺度边界层模式中,通过模拟对比发现,耦合模式对城市地区气温模拟结果更接近于观测值,尤其是对城市地区夜间气温模拟的改进.运用改进耦合模式通过多个敏感性试验的模拟,从城市面积扩张、建筑物高度增加、建筑物分布密度变化等角度研究城市建筑物三维几何形态变化对城市边界层及城市气象环境的影响,试验结果表明:(1)城市面积扩张使得城市下垫面的热通量增大,热力湍流活动增强,动量通量输送增强,城市湍能增大,湍流扩散系数变大,城市气温升高,且对不同时刻城市区域大气层结稳定度均有不同程度的影响.(2)建筑物高度增加增大了城市下垫面的粗糙度和零平面位移.同时也增大了城市街渠高宽比.城市建筑物越高,白天城市地区地表热通量越小,城市上空大气温度越低,平均风速减小,湍能减小;夜间由于高大建筑物释放储热比低矮建筑物要多,其热力湍流相对活跃,地表热通量增大,使得城市区域气温较高.(3)建筑物密度增大,会减小城市下垫面的粗糙度同时增强街渠对辐射的影响.建筑物密度增大在白天会减小地表热通量和动量通量,使城市气温降低,平均风速增大,城市湍流活动能力减弱;夜间城市释放较多储热使得气温较高.  相似文献   

6.
Particle image velocimetry (PIV) data obtained in a wind-tunnel model of a canopy boundary layer is used to examine the characteristics of mean flow and turbulence. The vector spacing varies between 1.7 and 2.5 times the Kolmogorov scales. Conditional sampling based on quadrants, i.e. based on the signs of velocity fluctuations, reveals fundamental differences in flow structure, especially between sweep and ejection events, which dominate the flow. During sweeps, the downward flow generates a narrow, highly turbulent, shear layer containing multiple small-scale vortices just below canopy height. During ejections, the upward flow expands this shear layer and the associated small-scale flow structures to a broad region located above the canopy. Consequently, during sweeps the turbulent kinetic energy (TKE), Reynolds stresses, as well as production and dissipation rates, have distinct narrow peaks just below canopy height, whereas during ejections these variables have broad maxima well above the canopy. Three methods to estimate the dissipation rate are compared, including spectral fits, measured subgrid-scale (SGS) energy fluxes at different scales, and direct measurements of slightly underresolved instantaneous velocity gradients. The SGS energy flux is 40–60% of the gradient-based (direct) estimates for filter sizes inside the inertial range, while decreasing with scale, as expected, within the dissipation range. The spectral fits are within 5–30% of the direct estimates. The spectral fits exceed the direct estimates near canopy height, but are lower well above and below canopy height. The dissipation rate below canopy height increases with velocity magnitude, i.e. it has the highest values during sweep and quadrant 1 events, and is significantly lower during ejection and quadrant 3 events. Well above the canopy, ejections are the most dissipative. Turbulent transport during sweep events acts as a source below the narrow shear layer within the canopy and as a sink above it. Transport during ejection events is a source only well above the canopy. The residual term in the TKE transport equation, representing mostly the effect of pressure–velocity correlations, is substantial only within the canopy, and is dominated by sweeps.  相似文献   

7.
An extended Lagrangian stochastic dispersion model that includes time variations of the turbulent kinetic energy dissipation rate is proposed. The instantaneous dissipation rate is described by a log-normal distribution to account for rare and intense bursts of dissipation occurring over short durations. This behaviour of the instantaneous dissipation rate is consistent with field measurements inside a pine forest and with published dissipation rate measurements in the atmospheric surface layer. The extended model is also shown to satisfy the well-mixed condition even for the highly inhomogeneous case of canopy flow. Application of this model to atmospheric boundary-layer and canopy flows reveals two types of motion that cannot be predicted by conventional dispersion models: a strong sweeping motion of particles towards the ground, and strong intermittent ejections of particles from the surface or canopy layer, which allows these particles to escape low-velocity regions to a high-velocity zone in the free air above. This ejective phenomenon increases the probability of marked fluid particles to reach far regions, creating a heavy tail in the mean concentration far from the scalar source.  相似文献   

8.
李敏  蒋维楣 《气象科技》2013,41(1):153-159
介绍一种新的建立在经验模态分解(EMD)方法基础上的非线性、非平稳数据分析技术一Hilbert分析技术,并首次将其应用于大气边界层(PBL)湍流数据的分析,初步探讨了其在PBL湍流研究中的有效性.通过对城市与森林冠层上湍流资料的能量分布特征和统计平稳度进行分析、比较,结果表明:Hilbert谱分析能有效地对PBL湍流信号进行分析.它的边缘谱分析能够有效地探测PBL湍流信号的能量分布特征,统计平稳度分析也能有效地给出PBL湍流信号平稳性的定量化测量,这些将有助于建立合适的数据质量控制方法,以及对现有空气质量与扩散模式中扩散参数的计算加以改进.文中个例分析中,城市和森林冠层上空的湍流有一定相似性,湍流混合都比较充分,但森林冠层上湍流信号的能量更多地集中在大尺度湍涡,且扰动风速的高频部分具有更强的间歇性.对于相近高度的湍流信号来说,多数情况下,森林冠层上相同尺度的湍涡表现得比城市冠层上更不稳定,但湍涡的含能量要更低.  相似文献   

9.
Canopy turbulence plays an important role in mass and energy exchanges at the canopy-atmosphere interface. Despite extensive studies on canopy turbulence over a flat terrain, less attention has been given to canopy turbulence in a complex terrain. The purpose of this study is to scrutinize characteristics of canopy turbulence in roughness sublayer over a hilly forest terrain. We investigated basic turbulence statistics, conditionally sampled statistics, and turbulence spectrum in terms of different atmospheric stabilities, wind direction and vertical structures of momentum fluxes. Similarly to canopy turbulence over a homogeneous terrain, turbulence statistics showed coherent structure. Both quadrant and spectrum analysis corroborated the role of intermittent and energetic eddies with length scale of the order of canopy height, regardless of wind direction except for shift of peak in vertical wind spectrum to relatively high frequency in the down-valley wind. However, the magnitude of the momentum correlation coefficient in a neutral condition was smaller than typical value over a flat terrain. Further scrutiny manifested that, in the up-valley flow, temperature skewness was larger and the contribution of ejection to both momentum and heat fluxes was larger compared to the downvalley flow, indicating that thermal instability and weaker wind shear in up-valley flow asymmetrically affect turbulent transport within the canopy.  相似文献   

10.
We investigate the spatial characteristics of urban-like canopy flow by applying particle image velocimetry (PIV) to atmospheric turbulence. The study site was a Comprehensive Outdoor Scale MOdel (COSMO) experiment for urban climate in Japan. The PIV system captured the two-dimensional flow field within the canopy layer continuously for an hour with a sampling frequency of 30 Hz, thereby providing reliable outdoor turbulence statistics. PIV measurements in a wind-tunnel facility using similar roughness geometry, but with a lower sampling frequency of 4 Hz, were also done for comparison. The turbulent momentum flux from COSMO, and the wind tunnel showed similar values and distributions when scaled using friction velocity. Some different characteristics between outdoor and indoor flow fields were mainly caused by the larger fluctuations in wind direction for the atmospheric turbulence. The focus of the analysis is on a variety of instantaneous turbulent flow structures. One remarkable flow structure is termed ‘flushing’, that is, a large-scale upward motion prevailing across the whole vertical cross-section of a building gap. This is observed intermittently, whereby tracer particles are flushed vertically out from the canopy layer. Flushing phenomena are also observed in the wind tunnel where there is neither thermal stratification nor outer-layer turbulence. It is suggested that flushing phenomena are correlated with the passing of large-scale low-momentum regions above the canopy.  相似文献   

11.
An analytical one-dimensional second-order closure model is developed to describe the within canopy velocity variances, turbulent intensities, dissipation rates, Lagrangian time scale and Lagrangian far field diffusivities for vegetation canopies of arbitrary structure and density. The model incorporates and extends the model of momentum transfer developed by Massman (1997) and the model of within canopy velocity variances developed by Weil (unpublished) from the second-order closure model of Wilson and Shaw (1977). Model predictions of within and above canopy velocity variances, turbulent intensities, dissipation rates and the Lagrangian time scale are in reasonable agreement with previously measured or estimated values for these parameters. The present model suggests that the Lagrangian time scale and the far field diffusivity could be strongly dependent upon foliage structure and density through the foliage effects on the velocity variances. A simple formulation for the Lagrangian time scale at canopy height is derived from model results. Taken as a whole, the present model may provide a relatively simple way to incorporate turbulence parameters into models of soil/canopy/atmosphere mass transfer.  相似文献   

12.
A modified three-parameter model of turbulence for a thermally stratified atmospheric boundary layer (ABL) is presented. The model is based on tensor-invariant parameterizations for the pressure–strain and pressure–temperature correlations that are more complete than the parameterizations used in the Mellor–Yamada model of level 3.0. The turbulent momentum and heat fluxes are calculated with explicit algebraic models obtained with the aid of symbol algebra from the transport equations for momentum and heat fluxes in the approximation of weakly equilibrium turbulence. The turbulent transport of heat and momentum fluxes is assumed to be negligibly small in this approximation. The three-parameter $E - \varepsilon - {\left\langle {\theta ^{2} } \right\rangle }$ model of thermally stratified turbulence is employed to obtain closed-form algebraic expressions for the fluxes. A computational test of a 24-h ABL evolution is implemented for an idealized two-dimensional region. Comparison of the computed results with the available observational data and other numerical models shows that the proposed model is able to reproduce both the most important structural features of the turbulence in an urban canopy layer near the urbanized ABL surface and the effect of urban roughness on a global structure of the fields of wind and temperature over a city. The results of the computational test for the new model indicate that the motion of air in the urban canopy layer is strongly influenced by mechanical factors (buildings) and thermal stratification.  相似文献   

13.
A 1-year set of measurements of CO2 and energy turbulent fluxes above and within a 25-m pine forest in southern Brazil is analyzed. The study focuses on the coupling state between two levels and its impact on flux determination by the eddy-covariance method. The turbulent series are split in their typical temporal scales using the multiresolution decomposition, a method that allows proper identification of the time scales of the turbulent events. Initially, four case studies are presented: a continually turbulent, a continually calm, a calm then turbulent, and an intermittent night. During transitions from calm to turbulent, large scalar fluxes of opposing signs occur at both levels, suggesting the transference of air accumulated in the canopy during the stagnant period both upwards and downwards. Average fluxes are shown for the entire period as a function of turbulence intensity and a canopy Richardson number, used as an indicator of the canopy coupling state. Above the canopy, CO2 and sensible heat fluxes decrease in magnitude both at the neutral and at the very stable limit, while below the canopy they increase monotonically with the canopy Richardson number. Latent heat fluxes decrease at both levels as the canopy air becomes more stable. The average temporal scales of the turbulent fluxes at both levels approach each other in neutral conditions, indicating that the levels are coupled in that case. Average CO2 fluxes during turbulent periods that succeed very calm ones are appreciably larger than the overall average above the canopy and smaller than the average or negative within the canopy, indicating that the transfer of air accumulated during calm portions at later turbulent intervals affects the flux average. The implications of this process for mean flux determination are discussed.  相似文献   

14.
A coupling scheme is proposed for the simulation of microscale flow and dispersion in which both the mesoscale field and small-scale turbulence are specified at the boundary of a microscale model. The small-scale turbulence is obtained individually in the inner and outer layers by the transformation of pre-computed databases, and then combined in a weighted sum. Validation of the results of a flow over a cluster of model buildings shows that the inner- and outer-layer transition height should be located in the roughness sublayer. Both the new scheme and the previous scheme are applied in the simulation of the flow over the central business district of Oklahoma City (a point source during intensive observation period 3 of the Joint Urban 2003 experimental campaign), with results showing that the wind speed is well predicted in the canopy layer. Compared with the previous scheme, the new scheme improves the prediction of the wind direction and turbulent kinetic energy (TKE) in the canopy layer. The flow field influences the scalar plume in two ways, i.e. the averaged flow field determines the advective flux and the TKE field determines the turbulent flux. Thus, the mean, root-mean-square and maximum of the concentration agree better with the observations with the new scheme. These results indicate that the new scheme is an effective means of simulating the complex flow and dispersion in urban canopies.  相似文献   

15.
We investigated the turbulent intensities and Reynolds shear stress at high Reynolds number $({Re_\tau = 5 \times 10^{6}})$ in the atmosphere surface layer (ASL) through analyzing observations in near-neutral stratified conditions. The results show that with increasing Reynolds number the streamwise turbulent intensity increases linearly, and the peak of the Reynolds shear stress extends to a higher non-dimensional height, which means that the thickness of the logarithmic region increases. Furthermore, our results provide evidence for treating the ASL as a canonical turbulent boundary layer, the results of which can be extended and applied to higher Reynolds number wall turbulence in the ASL.  相似文献   

16.
Observations of wind velocity and air temperature fluctuations were made in the nocturnal surface inversion layer over a sorghum field. Wave-like fluctuations of temperature and wind velocity with a period of 15–20 min were observed for about 2 hours, 3 to 5 hours before sunrise. Wave-like fluctuations of temperature were observed in the air layer above and within a plant canopy and were most noticeable at the top of the plant canopy. Spectral analysis of temperature and wind velocity fluctuations reveals a separation of energy into wave-like and turbulent fluctuations. Cospectral analysis shows that for both momentum and heat, vertical transports are partitioned almost equally in the frequency ranges characteristic of wave-like and turbulent fluctuations. This suggests wave- turbulence interactions at low frequencies in the air layer near a plant canopy.  相似文献   

17.
Characteristics of intermittent turbulence events in the stably stratified nocturnal boundary layer are investigated with data collected in the CASES-99 tower array of 300-m radius. The array consists of a central 60-m tower with eddy covariance measurements at eight levels and six satellite towers with eddy covariance measurements at 5 m. A significant increase in the magnitude of vertical wind velocity () and spectral information are used to define the onset of an intermittent turbulence event. Normally, only a subset of 5 m-levels in the tower network experience an intermittent turbulence event concurrent with one at the 5 m-level on the main tower. This behaviour reveals the small horizontal extent of most events. Intermittent turbulence events at the main tower 5-m level are normally confined to a layer much thinner than the 60-m tower height. The turbulent kinetic energy budget is evaluated for intermittent turbulence events observed at the 5-m level on the main tower. Generally, the onset of an intermittent turbulence event is not closely related to the reduction of the gradient Richardson number below 0.25, the critical Richardson number of turbulence generation for linear instability. Possible explanations including the influence of advected turbulence patches are discussed.  相似文献   

18.
This is the first of a series of three papers describing experiments on the dispersion of trace heat from elevated line and plane sources within a model plant canopy in a wind tunnel. Here we consider the wind field and turbulence structure. The model canopy consisted of bluff elements 60 mm high and 10 mm wide in a diamond array with frontal area index 0.23; streamwise and vertical velocity components were measured with a special three-hot-wire anemometer designed for optimum performance in flows of high turbulence intensity. We found that:
  1. The momentum flux due to spatial correlations between time-averaged streamwise and vertical velocity components (the dispersive flux) was negligible, at heights near and above the top of the canopy.
  2. In the turbulent energy budget, turbulent transport was a major loss (of about one-third of local production) near the top of the canopy, and was the principal gain mechanism lower down. Wake production was greater than shear production throughout the canopy. Pressure transport just above the canopy, inferred by difference, appeared to be a gain in approximate balance with the turbulent transport loss.
  3. In the shear stress budget, wake production was negligible. The role of turbulent transport was equivalent to that in the turbulent energy budget, though smaller.
  4. Velocity spectra above and within the canopy showed the dominance of large eddies occupying much of the boundary layer and moving downstream with a height-independent convection velocity. Within the canopy, much of the vertical but relatively little of the streamwise variance occurred at frequencies characteristic of wake turbulence.
  5. Quadrant analysis of the shear stress showed only a slight excess of sweeps over ejections near the top of the canopy, in contrast with previous studies. This is a result of improved measurement techniques; it suggests some reappraisal of inferences previously drawn from quadrant analysis.
  相似文献   

19.
Spectral characteristics of surface layer turbulence in an urban atmosphere are investigated. The observations used for this purpose represent low wind conditions in the tropics. The normalized power spectral shapes exhibit the usual characteristics in the inertial subrange and obey Monin-Obukhov scaling. However, the low-frequency behaviours do not conform to the previous observed relations. For horizontal components, large energy is contained in the low frequencies in contrast to the vertical component where roll-off to zero frequency is faster.The turbulent kinetic energy dissipation rate estimated from the spectra using Kolmogorov's inertial subrange law is found to be isotropic unlike the velocity variances. The expressions for the dimensionless dissipation rate do not seem to work well in low winds in an urban atmosphere. For the data considered, the dissipation rate exhibits a power law relationship with the mean windspeed and the friction velocity.  相似文献   

20.
We show the relationship between the intermittency of turbulence and the type of stratification for different atmospheric situations during the SABLES98 field campaign. With this objective, we first demonstrate the scaling behaviour of the velocity structure functions corresponding to these situations; next, we analyze the curvature of the scaling exponents of the velocity structure functions versus the order of these functions (ζ p vs. p), where ζ p are the exponents of the power relation for the velocity structure function with respect to the scale. It can be proved that this curve must be concave, under the assumption that the incompressible approximation does not break down at high Reynolds numbers. The physical significance of this kind of curvature is that the energy dissipation rate increases as the scale of the turbulent eddies diminishes (intermittency in the usual sense). However, the constraints imposed by stability, preventing full development of the turbulence, allow the function ζ p versus p to show any type of curvature. In this case, waves of high frequency trapped by the stability, or bursts of turbulence caused by the breaking up of internal waves, may produce a redistribution of energy throughout the scaling range. Due to this redistribution, the variation with the scale of the energy dissipation rate may be smaller (decreasing the intermittency) and, even in more stable situations, this rate may diminish (instead of increasing) as the scale diminishes (convex form of the curve ζ p vs. p).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号