首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
An integrated canopy micrometeorological model is described for calculating CO2, water vapor and sensible heat exchange rates and scalar concentration profiles over and within a crop canopy. The integrated model employs a Lagrangian random walk algorithm to calculate turbulent diffusion. The integrated model extends previous Lagrangian modelling efforts by employing biochemical, physiological and micrometeorological principles to evaluate vegetative sources and sinks. Model simulations of water vapor, CO2 and sensible heat flux densities are tested against measurements made over a soybean canopy, while calculations of scalar profiles are tested against measurements made above and within the canopy. The model simulates energy and mass fluxes and scalar profiles above the canopy successfully. On the other hand, model calculations of scalar profiles inside the canopy do not match measurements.The tested Lagrangian model is also used to evaluate simpler modelling schemes, as needed for regional and global applications. Simple, half-order closure modelling schemes (which assume a constant scalar profile in the canopy) do not yield large errors in the computation of latent heat (LE) and CO2 (F c ) flux densities. Small errors occur because the source-sink formulation of LE andF c are relatively insensitive to changes in scalar concentrations and the scalar gradients are small. On the other hand, complicated modelling frames may be needed to calculate sensible heat flux densities; the source-sink formulation of sensible heat is closely coupled to the within-canopy air temperature profile.  相似文献   

3.
Ultrasonic wind measurements, sonic temperature and air temperature data at two heights in the advection experiment MORE II were used to establish a complete budget of sensible heat including vertical advection, horizontal advection and horizontal turbulent flux divergence. MORE II took place at the long-term Carbo-Europe IP site in Tharandt, Germany. During the growing period of 2003 three additional towers were established to measure all relevant parameters for an estimation of advective fluxes, primarily of CO2. Additionally, in relation to other advection experiments, a calculation of the horizontal turbulent flux divergence is proposed and the relation of this flux to atmospheric stability and friction velocity is discussed. In order to obtain a complete budget, different scaling heights for horizontal advection and horizontal turbulent flux divergence are tested. It is shown that neglecting advective fluxes may lead to incorrect results. If advective fluxes are taken into account, the sensible heat budget based upon vertical turbulent flux and storage change only, is reduced by approximately 30%. Additional consideration of horizontal turbulent flux divergence would in turn add 5–10% to this sum (i.e., the sum of vertical turbulent flux plus storage change plus horizontal and vertical advection). In comparison with available energy horizontal advection is important at night whilst horizontal turbulent flux divergence is rather insignificant. Obviously, advective fluxes typically improve poor nighttime energy budget closure and might change ecosystem respiration fluxes considerably.  相似文献   

4.
The Regional Atmospheric Modeling System (RAMS)-based Forest Large-Eddy Simulation (RAFLES), developed and evaluated here, is used to explore the effects of three-dimensional canopy heterogeneity, at the individual tree scale, on the statistical properties of turbulence most pertinent to mass and momentum transfer. In RAFLES, the canopy interacts with air by exerting a drag force, by restricting the open volume and apertures available for flow (i.e. finite porosity), and by acting as a heterogeneous source of heat and moisture. The first and second statistical moments of the velocity and flux profiles computed by RAFLES are compared with turbulent velocity and scalar flux measurements collected during spring and winter days. The observations were made at a meteorological tower situated within a southern hardwood canopy at the Duke Forest site, near Durham, North Carolina, U.S.A. Each of the days analyzed is characterized by distinct regimes of atmospheric stability and canopy foliage distribution conditions. RAFLES results agreed with the 30-min averaged flow statistics profiles measured at this single tower. Following this intercomparison, two case studies are numerically considered representing end-members of foliage and midday atmospheric stability conditions: one representing the winter season with strong winds above a sparse canopy and a slightly unstable boundary layer; the other representing the spring season with a dense canopy, calm conditions, and a strongly convective boundary layer. In each case, results from the control canopy, simulating the observed heterogeneous canopy structure at the Duke Forest hardwood stand, are compared with a test case that also includes heterogeneity commensurate in scale to tree-fall gaps. The effects of such tree-scale canopy heterogeneity on the flow are explored at three levels pertinent to biosphere-atmosphere exchange. The first level (zero-dimensional) considers the effects of such heterogeneity on the common representation of the canopy via length scales such as the zero-plane displacement, the aerodynamic roughness length, the surface-layer depth, and the eddy-penetration depth. The second level (one-dimensional) considers the normalized horizontally-averaged profiles of the first and second moments of the flow to assess how tree-scale heterogeneities disturb the entire planar-averaged profiles from their canonical (and well-studied planar-homogeneous) values inside the canopy and in the surface layer. The third level (three-dimensional) considers the effects of such tree-scale heterogeneities on the spatial variability of the ejection-sweep cycle and its propagation to momentum and mass fluxes. From these comparisons, it is shown that such microscale heterogeneity leads to increased spatial correlations between attributes of the ejection-sweep cycle and measures of canopy heterogeneity, resulting in correlated spatial heterogeneity in fluxes. This heterogeneity persisted up to four times the mean height of the canopy (h c ) for some variables. Interestingly, this estimate is in agreement with the working definition of the thickness of the canopy roughness sublayer (2h c –5h c ).  相似文献   

5.
Modelling the transfer of heat, water vapour, and CO2 between the biosphere and the atmosphere is made difficult by the complex two-way interaction between leaves and their immediate microclimate. When simulating scalar sources and sinks inside canopies on seasonal, inter-annual, or forest development time scales, the so-called well-mixed assumption (WMA) of mean concentration (i.e. vertically constant inside the canopy but dynamically evolving in time) is often employed. The WMA eliminates the need to model how vegetation alters its immediate microclimate, which necessitates formulations that utilize turbulent transport theories. Here, two inter-related questions pertinent to the WMA for modelling scalar sources, sinks, and fluxes at seasonal to inter-annual time scales are explored: (1) if the WMA is to be replaced so as to resolve this two-way interaction, how detailed must the turbulent transport model be? And (2) what are the added predictive skills gained by resolving the two-way interaction vis-à-vis other uncertainties such as seasonal variations in physiological parameters. These two questions are addressed by simulating multi-year mean scalar concentration and eddy-covariance scalar flux measurements collected in a Loblolly pine (P. taeda L.) plantation near Durham, North Carolina, U.S.A. using turbulent transport models ranging from K-theory (or first-order closure) to third-order closure schemes. The multi-layer model calculations with these closure schemes were contrasted with model calculations employing the WMA. These comparisons suggested that (i) among the three scalars, sensible heat flux predictions are most biased with respect to eddy-covariance measurements when using the WMA, (ii) first-order closure schemes are sufficient to reproduce the seasonal to inter-annual variations in scalar fluxes provided the canonical length scale of turbulence is properly specified, (iii) second-order closure models best agree with measured mean scalar concentration (and temperature) profiles inside the canopy as well as scalar fluxes above the canopy, (iv) there are no clear gains in predictive skills when using third-order closure schemes over their second-order closure counterparts. At inter-annual time scales, biases in modelled scalar fluxes incurred by using the WMA exceed those incurred when correcting for the seasonal amplitude in the maximum carboxylation capacity (V cmax, 25) provided its mean value is unbiased. The role of local thermal stratification inside the canopy and possible computational simplifications in decoupling scalar transfer from the generation of the flow statistics are also discussed.
“The tree, tilting its leaves to capture bullets of light; inhaling, exhaling; its many thousand stomata breathing, creating the air”. Ruth Stone, 2002, In the Next Galaxy
  相似文献   

6.
Turbulent fluxes obtained using the conventional eddy covariance approach result in erratic results with large time fluctuations in extremely stable conditions. This can limit efforts to estimate components of the nocturnal energy budget and respiratory CO2 fluxes. Well-organized fluxes that show a clear dependence on turbulent intensity were obtained when multiresolution decomposition was used to estimate turbulent exchanges. CO2, heat and water vapour fluxes were observed at a site in the eastern Amazon basin that had been cleared for agricultural purposes. Temporal scales of the carbon transfer were determined and shown to be similar to those of latent heat, but as much as three times larger than those of sensible heat. CO2 eddy diffusivities at the temporal scales on which most of the vertical CO2 exchange occurs are shown to be 50 times larger than the eddy diffusivity for heat. A process associated with the vertical scale of the scalar accumulation layer is suggested to explain these different scales and turbulent diffusivities of carbon and sensible heat transfer. For an appreciable range of turbulence intensities, the observed vertical turbulent carbon exchange is insufficient to account for the locally respired CO2 estimated independently. Evidence that shallow drainage currents may account for this is given.  相似文献   

7.
Two almost identical eddy covariance measurement setups were used to measure the fogwater fluxes to a forest ecosystem in the “Fichtelgebirge” mountains (Waldstein research site, 786 m a.s.l.) in Germany. During the first experiment, an intercomparison was carried out with both setups running simultaneously at the same measuring height on a meteorological tower, 12.5 m above the forest canopy. The results confirmed a close agreement of the turbulent fluxes between the two setups, and allowed to intercalibrate liquid water content (LWC) and gravitational fluxes. During the second experiment, the setups were mounted at a height of 12.5 and 3 m above the canopy, respectively. For the 22 fog events, a persistent negative flux divergence was observed with a greater downward flux at the upper level. To extrapolate the turbulent liquid water fluxes measured at height z to the canopy of height hc, a conversion factor 1/[1+0.116(zhc)] was determined. For the fluxes of nonvolatile ions, no such correction is necessary since the net evaporation of the fog droplets appears to be the primary cause of the vertical flux divergence. Although the net evaporation reduces the liquid water flux reaching the canopy, it is not expected to change the absolute amount of ions dissolved in fogwater.  相似文献   

8.
For measurements of eddy fluxes in the atmospheric boundary layer of gases (such as CO2) whose average concentration is very large compared to the fluctuations, corrections for air density fluctuations are required. With the boundary condition of no flux of dry air at the surface, the evaporation correction to eddy fluxes is 2.6 times larger than has been estimated with the boundary condition of no mass flux at all at the surface. The heat flux correction is also increased by a few per cent.  相似文献   

9.
Coherent structures in turbulent flow above a midlatitude deciduous forest are identified using a wavelet analysis technique. Coupling between motions above the canopy (z/h=1.5, whereh is canopy height) and within the canopy (z/h=0.6) are studied using composite velocity and temperature fields constructed from 85 hours of data. Data are classified into winter and summer cases, for both convective and stable conditions. Vertical velocity fluctuations are in phase at both observation levels. Horizontal motions associated with the structures within the canopy lead those above the canopy, and linear analysis indicates that the horizontal motions deep in the canopy should lead the vertical motions by 90°. On average, coherent structures are responsible for only about 40% of overall turbulent heat and momentum fluxes, much less than previously reported. However, our large data set reveals that this flux fraction comes from a wide distribution that includes much higher fractions in its upper extremes. The separation distanceL s between adjacent coherent structures, 6–10h, is comparable to that obtained in previous observations over short canopies and in the laboratory. Changes in separation between the summer and winter (leafless) conditions are consistent withL s being determined by a local horizontal wind shear scale.  相似文献   

10.
Eddy-covariance observations above the densely built-up Centre of Nanjing were made from December 2011 to August 2012. Separate eddy-covariance systems installed at two levels on a 36-m tower located on a rooftop were operated simultaneously, and observations grouped into two sectors (A, B) according to the prevalent wind directions. For sector A, where the nearby buildings are all below the lower measurement level, the sensible heat and momentum fluxes are generally greater at the upper level. For sector B, where several high-rise buildings are located upwind, the sensible heat and momentum fluxes at the upper level are close to those at the lower level. The analysis shows that the turbulent eddy characteristics differ between the two wind sectors, leading to a different behaviour of turbulent exchange between the two levels. A hypothesis is proposed that addresses the vertical variation of turbulent fluxes in the urban roughness sublayer (RSL). For sector A, the buildings block the flow, change the trajectory of scalars, and distort the footprint of scalar fluxes; this ‘blocking effect’ is believed to lead to a smaller sensible heat flux above the canopy layer. Such an effect should decrease with height in the RSL, explaining the increase of the observed turbulent heat flux with height. In addition, the presence of non-uniform building heights adversely affects turbulence organization around the canopy top, and likely elevates the inflection point of the mean flow to a higher elevation close to the upper measurement level, where larger shear results in a larger momentum flux. For sector B, wake effects from the nearby high-rise buildings strongly reduce turbulence organization at higher elevations, leading to similar sensible heat and momentum fluxes at both measurement levels.  相似文献   

11.
The vegetated urban canopy model (VUCM), which includes parametrizations of urban physical processes for artificial surfaces and vegetated areas in an integrated system, has been further developed by including physical processes associated with grass-covered surfaces in urban pervious surfaces and the photosynthesis effects of urban vegetation. Using measurements made from three urban/suburban sites during the BUBBLE field campaign in 2002, the model’s performance in modelling surface fluxes (momentum flux, net radiation, sensible and latent heat fluxes and storage heat flux) and canopy air conditions (canopy air temperature and specific humidity) was critically evaluated for the non-precipitation and the precipitation days. The observed surface fluxes at the urban/suburban sites were significantly altered by precipitation as well as urban vegetation. Especially, the storage heat at urban surfaces and underlying substrates varied drastically depending on weather conditions while having an important role in the formation of a nocturnal urban surface layer. Unlike the nighttime canopy air temperature that was largely affected by the storage-heat release, the daytime canopy air conditions were highly influenced by the vertical turbulent exchange with the overlying atmosphere. The VUCM well reproduced these observed features in surface fluxes and canopy air conditions at all sites while performing well for both the non-precipitation and the precipitation days. The newly implemented parametrizations clearly improved the model’s performance in the simulation of sensible and latent heat fluxes at the sites, more noticeably at the suburban site where the vegetated area fraction is the largest among the sites. Sensitivity analyses for model input parameters in VUCM elucidated the relative importance of the morphological, aerodynamic, hydrological and radiative/thermal properties in modelling urban surface fluxes and canopy air conditions for daytime and nighttime periods. These results suggest that the VUCM has great potential for urban atmospheric numerical modelling for a range of cities and weather conditions in addition to having a better physical basis in the representation of urban vegetated areas and associated physical processes.  相似文献   

12.
珠海凤凰山地处北回归线以南,森林植被覆盖率达90%,植被类型为南亚热带常绿阔叶林群落,是岭南地区典型的城市或村庄周边的再生森林,我们选择在凤凰山麓森林冠层较为平缓的低矮坡地建立了陆-气相互作用和碳通量的观测铁塔塔站。本文详细介绍了观测塔的地理环境、初步的仪器布设和基本观测,并利用已获得的资料分析了旱季典型晴天主要观测量的日变化特征。太阳总辐射及其分光辐射和反射辐射的日变化都是比较常规的中午最高的对称结构;冠层接收到的长波辐射比向上长波辐射低;气温日变化的峰值比太阳辐射滞后,白天达到最高值前的气温是低层高于高层,达到最高值后到落日前气温陡然下降,夜晚的气温是低层低于高层。相对湿度凌晨最大,下午最小,夜晚是低层相对偏湿,白天正好相反;11月份,珠海地区盛行旱季的偏北季风,有明显的海陆风的作用,白天的海风较强,夜晚的陆风较弱;森林冠层向大气释放的感热和潜热的量值基本相当,潜热基本为正;感热白天为正,夜晚基本为负;森林冠层吸收的二氧化碳的最高值出现在午后,此时空气中水汽浓度达到最低,向大气释放的二氧化碳在日出后的清晨最大,此时空气中的二氧化碳浓度达到最大,同时空气密度也最大;由于森林冠层高、密度大,土壤湿度基本没有日变化;表层土壤温度日变化的振幅随土壤深度加深而变小,土壤热流的变化是下午高,清晨低。本文还发现了一些值得深入探讨的现象,需要以后根据充沛的资料分析论证。  相似文献   

13.
Eddy fluxes of CO2 estimated using a sonic anemometer and a closed-path analyser were, on average, 16% lower than those obtained with the same anemometer and an adjacent open-path CO2 analyser. Covariances between vertical windspeed and CO2 density from the closed-path analyser were calculated using data points for CO2 that were delayed relative to anemometer data by the time required for a parcel of air to travel from the tube inlet to the CO2 sensor. Air flow in the intake tube was laminar. Densities of CO2 that had been corrected for spurious fluctuations arising from fluctuations in temperature and humidity were used in the flux calculations. Corrections for the cross-sensitivity of CO2 analysers to water vapour were also incorporated. Spectral analysis of the corrected CO2 signal from the closed-path analyser showed that damping of fluctuations in the sampling tube at frequencies f > 0.1 Hz caused the apparent loss in flux. The measured losses can be predicted accurately using theory that describes the damping of oscillations in a sampling tube. High-frequency response of the closed-path system can be improved substantially by ensuring turbulent flow in the tube, using a combination of high volumetric flow rate and small tube diameter. The analysis of attenuation of turbulent fluctuations in flow through tubes is applicable to the measurement of fluxes of other minor atmospheric constituents using the eddy covariance method.  相似文献   

14.
Measurements of atmospheric turbulence made over the Arctic pack ice during the Surface Heat Budget of the Arctic Ocean experiment (SHEBA) are used to determine the limits of applicability of Monin–Obukhov similarity theory (in the local scaling formulation) in the stable atmospheric boundary layer. Based on the spectral analysis of wind velocity and air temperature fluctuations, it is shown that, when both the gradient Richardson number, Ri, and the flux Richardson number, Rf, exceed a ‘critical value’ of about 0.20–0.25, the inertial subrange associated with the Richardson–Kolmogorov cascade dies out and vertical turbulent fluxes become small. Some small-scale turbulence survives even in this supercritical regime, but this is non-Kolmogorov turbulence, and it decays rapidly with further increasing stability. Similarity theory is based on the turbulent fluxes in the high-frequency part of the spectra that are associated with energy-containing/flux-carrying eddies. Spectral densities in this high-frequency band diminish as the Richardson–Kolmogorov energy cascade weakens; therefore, the applicability of local Monin–Obukhov similarity theory in stable conditions is limited by the inequalities RiRi cr and RfRf cr. However, it is found that Rf cr  =  0.20–0.25 is a primary threshold for applicability. Applying this prerequisite shows that the data follow classical Monin–Obukhov local z-less predictions after the irrelevant cases (turbulence without the Richardson–Kolmogorov cascade) have been filtered out.  相似文献   

15.
When density fluctuations of scalars such as CO2 are measured with open-path gas analyzers, the measured vertical turbulent flux must be adjusted to take into account fluctuations induced by ‘external effects’ such as temperature and water vapour. These adjustments are needed to separate the effects of surface fluxes responsible for ‘natural’ fluctuations in CO2 concentration from these external effects. Analogous to vertical fluxes, simplified expressions for separating the ‘external effects’ from higher-order scalar density turbulence statistics are derived. The level of complexity in terms of input to these expressions are analogous to that of the Webb–Pearman–Leuning (WPL), and are shown to be consistent with the conservation of dry air. It is demonstrated that both higher-order turbulent moments such as the scalar variances, the mixed velocity-scalar covariances, and the two-scalar covariance require significant adjustments due to ‘external effects’. The impact of these adjustments on the turbulent CO2 spectra, probability density function, and dimensionless similarity functions derived from flux-variance relationships are also discussed.  相似文献   

16.
In order to provide high quality data for climate change studies, the data quality of turbulent flux measurements at the station of SACOL (Semi-Arid Climate & Environment Observatory of Lanzhou University), which is located on a semi-arid grassland over the Loess Plateau in China, has been analyzed in detail. The effects of different procedures of the flux corrections on CO2, momentum, and latent and sensible heat fluxes were assessed. The result showed that coordinate rotation has a great influence on the momentum flux but little on scalar fluxes. For coordinate rotation using the planar fit method, different regression planes should be determined for different wind direction sectors due to the heterogeneous nature of the ground surface. Sonic temperature correction decreased the sensible heat flux by about 9%, while WPL correction (correction for density fluctuations) increased the latent heat flux by about 10%. WPL correction is also particularly important for CO2 fluxes. Other procedures of flux corrections, such as the time delay correction and frequency response correction, do not significantly influence the turbulent fluxes. Furthermore, quality tests on stationarity and turbulence development conditions were discussed. Parameterizations of integral turbulent characteristics (ITC) were tested and a specific parameterization scheme was provided for SACOL. The ITC test on turbulence development conditions was suggested to be applied only for the vertical velocity. The combined results of the quality tests showed that about 62%–65% of the total data were of high quality for the latent heat flux and CO2 flux, and as much as about 76% for the sensible heat flux. For the momentum flux, however, only about 35% of the data were of high quality.  相似文献   

17.
Observations of low-level jets (LLJs) at the Howland AmeriFlux site in the USA and the jet’s impact on nocturnal turbulent exchange and scalar fluxes over a tall forest canopy are discussed. Low-frequency motions and turbulent bursts characterize moderately strong LLJs, whereas low-frequency motions are suppressed during periods with strong LLJs and enhanced shear. An analysis based on the shear-sheltering hypothesis seeks to elucidate the effect of LLJs on flux measurements. In the absence of shear sheltering, large eddies penetrate the roughness sublayer causing enhanced mixing while during periods with shear sheltering, mixing is reduced. In the absence of the latter, ‘upside-down’ eddies are primarily responsible for the enhanced velocity variances, scalar and momentum fluxes. The integral length scales over the canopy are greater than the canopy height. The variance spectra and cospectra from the wavelet analysis indicate that large eddies (spatial scale greater than the low-level jet height) interact with active canopy-scale turbulence, contributing to counter-gradient scalar fluxes.  相似文献   

18.
A study of the surface energy balance with turbulent fluxes obtained by the Monin-Obukhov similarity theory and a comparison with results for resistance laws are presented for the strong baroclinic conditions in the vicinity of the Filchner/Ronne Ice Shelf front. The data are taken from a field experiment in the Antarctic summer season 1983/84. For the first time in the coastal Antarctic region, this data set comprises synchronous energy balance measurements over the polynya and the ice shelf together with soundings of the boundary layer, yielding vertical profiles of the wind velocity and temperature over the ice shelf, at the ice shelf front and over the polynya.Over the ice shelf, the radiation balance is the largest component of the energy fluxes and is mainly compensated by the subsurface energy flux and the turbulent heat flux in the daily mean. Over the polynya, turbulent fluxes of sensible and latent heat lead to large energy losses of the water surface in the night-time and in situations of very low air temperatures.Different parameterizations for boundary-layer height are compared using tethered sonde and energy balance measurements. With the height of the inversion base over the polynya and the height of the critical bulk Richardson number over the ice shelf, external parameters for the application of resistance laws were determined. The comparison of turbulent surface fluxes obtained by the energy balance measurements and by the resistance laws shows good agreement for the convective conditions over the polynya. For the stably stratified boundary layer over the ice shelf with small amounts of the turbulent heat flux, the deviation is large for the case of a cold air outflow with a superposed inertial oscillation.  相似文献   

19.
A nocturnal gravity wave was detected over a south-western Amazon forest during the Large-Scale Biosphere–Atmosphere experiment in Amazonia (LBA) in the course of the dry-to-wet season campaign on October 2002. The atmospheric surface layer was stably stratified and had low turbulence activity, based on friction velocity values. However, the passage of the wave, an event with a period of about 180–300 s, caused negative turbulent fluxes of carbon dioxide (CO2) and positive sensible heat fluxes, as measured by the eddy-covariance system at 60 m (≈30 m above the tree tops). The evolution of vertical profiles of air temperature, specific humidity and wind speed during the wave movement revealed that cold and drier air occupied the sub-canopy space while high wind speeds were measured above the vegetation. The analysis of wind speed and scalars high frequency data was performed using the wavelet technique, which enables the decomposition of signals in several frequencies allowed by the data sampling conditions. The results showed that the time series of vertical velocity and air temperature were −90° out of phase during the passage of the wave, implying no direct vertical transport of heat. Similarly, the time series of vertical velocity and CO2 concentration were 90° out of phase. The wave was not directly associated with vertical fluxes of this variable but the mixing induced by its passage resulted in significant exchanges in smaller scales as measured by the eddy-covariance system. The phase differences between horizontal velocity and both air temperature and CO2 concentration were, respectively, zero and 180°, implying phase and anti-phase relationships. As a result, the wave contributed to positive horizontal fluxes of heat and negative horizontal fluxes of carbon dioxide. Such results have to be considered in nocturnal boundary-layer surface-atmosphere exchange schemes for modelling purposes.  相似文献   

20.
This case study introduces measurements of turbulent fluxes in a nocturnal boundary layer in North Germany with the new helicopter-borne turbulence measurement system HELIPOD, a detailed data analysis and examination in regard of systematic errors of the instrument, and some comparison with local similarity theory and experiments of the past, in order to confirm the occurrence of small vertical turbulent fluxes. The examined nocturnal boundary layer offered excellent conditions to analyse the quality of the measurement system. In this connection, a detailed look at a strong ground-based inversion disclosed small turbulent fluxes with a spectral maximum at ten metres wavelength or less, embedded in intermittent turbulence. For verification of these fluxes, the measurements were compared with well established results from past experiments. Local similarity theory was applied to calculate dimensionless variances of the turbulent quantities, which were found in good agreement with other observations. Since shear and stratification varied significantly on the horizontal flight legs due to global intermittency, a method was developed to determine vertical gradients on a horizontal flight pattern, by use of small fluctuations of the measurement height. With these locally determined gradients, gradient transport theory became applicable and the turbulent diffusivities for heat and momentum, the Richardson number, and the flux Richardson number were estimated within isolated strong turbulent outbursts. Within these outbursts the flux Richardson number was found between 0.1 and 0.2. The functional relationship between the gradient Richardson number and the turbulent Prandtl number agreed well with observations in past experiments and large eddy simulation. The impact of the stratification on the vertical turbulent exchange, as already described for the surface layer using Monin–Obukhov similarity, was analogously observed in the very stably stratified bulk flow when local scaling was applied.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号