首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Al2SiO5 reaction textures in aluminous schist and quartziteof the northern Picuris range, north-central New Mexico, recorda paragenetic sequence of kyanite to sillimanite to andalusite,consistent with a clockwise PT loop, with minor decompressionnear the Al2SiO5 triple-point. Peak metamorphic temperaturesare estimated at 510–525°C, at 4·0–4·2kbar. Kyanite and fibrolite are strongly deformed; some prismaticsillimanite, and all andalusite are relatively undeformed. Monaziteoccurs as inclusions within kyanite, mats of sillimanite andcentimetre-scale porphyroblasts of andalusite, and is typicallyaligned subparallel to the dominant regional foliation (S0/S1or S2) and extension lineation (L1). Back-scatter electron imagesand X-ray maps of monazite reveal distinct core, intermediateand rim compositional domains. Monazite–xenotime thermometryfrom the intermediate and rim domains yields temperatures of405–470°C (±50°C) and 500–520°C(±50°C), respectively, consistent with the progradeto peak metamorphic growth of monazite. In situ, ion microprobeanalyses from five monazites yield an upper intercept age of1417 ± 9 Ma. Near-concordant to concordant analyses yield207Pb–206Pb ages from 1434 ± 12 Ma (core) to 1390± 20 Ma (rim). We find no evidence of older regionalmetamorphism related to the 1650 Ma Mazatzal Orogeny. KEY WORDS: Al2SiO5; metamorphism; monazite; thermochronometry; triple-point  相似文献   

2.
The northern margin of the Inland Branch of the Pan-AfricanDamara Orogen in Namibia shows dramatic along-strike variationin metamorphic character during convergence between the Congoand Kalahari Cratons (M3 metamorphic cycle). Low-P contact metamorphismwith anticlockwise PT paths dominates in the westerndomains (Ugab Zone and western Northern Zone), and high-P Barrovianmetamorphism with a clockwise PT path is documented fromthe easternmost domain (eastern Northern Zone). The sequenceof M3 mineral growth in contact aureoles shows early growthof cordierite porphyroblasts that were pseudomorphed to biotite–chlorite–muscoviteat the same time as an andalusite–biotite–muscovitetransposed foliation was developed in the matrix. The peak-Tmetamorphic assemblages and fabrics were overprinted by crenulationsand retrograde chlorite–muscovite. The KFMASH PTpseudosection for metapelites in the Ugab Zone and western NorthernZone contact aureoles indicates tight anticlockwise PTloops through peak metamorphic conditions of 540–570°Cand 2·5–3·2 kbar. These semi-quantitativePT loops are consistent with average PT calculationsusing THERMOCALC, which give a pooled mean of 556 ± 26°Cand 3·2 ± 0·6 kbar, indicating a high averagethermal gradient of 50°C/km. In contrast, the eastern NorthernZone experienced deep burial, high-P/moderate-T Barrovian M3metamorphism with an average thermal gradient of 21°C/kmand peak metamorphic conditions of c. 635°C and 8·7kbar. The calculated PT pseudosection and garnet compositionalisopleths in KFMASH, appropriate for the metapelite sample fromthis region, document a clockwise PT path. Early plagioclase–kyanite–biotiteparageneses evolved by plagioclase consumption and the growthof garnet to increasing XFe, XMg and XCa and decreasing XMncompositions, indicating steep burial with heating. The developedkyanite–garnet–biotite peak metamorphic parageneseswere followed by the resorption of garnet and formation of plagioclasemoats, indicating decompression, which was followed by retrogressivecooling and chlorite–muscovite growth. The clockwise PTloop is consistent with the foreland vergent fold–thrustbelt geometry in this part of the northern margin. Earlier formed(580–570 Ma) pervasive matrix foliations (M2) were overprintedby contact metamorphic parageneses (M3) in the aureoles of 530± 3 Ma granites in the Ugab Zone and 553–514 Magranites in the western Northern Zone. Available geochronologicaldata suggest that convergence between the Congo and KalahariCratons was essentially coeval in all parts of the northernmargin, with similar ages of 535–530 Ma for the main phaseof deformation in the eastern Northern Zone and Northern Platformand 538–505 Ma high-grade metamorphism of the CentralZone immediately to the south. Consequently, NNE–SSW-directedconvergent deformation and associated M3 metamorphism of contrastingstyles are interpreted to be broadly contemporaneous along thelength of the northern margin of the Inland Branch. In the westheat transfer was dominated by conduction and externally drivenby granites, whereas in the east heat transfer was dominatedby advection and internally driven radiogenic heat production.The ultimate cause was along-orogen variation in crustal architecture,including thickness of the passive margin lithosphere and thicknessof the overlying sedimentary succession. KEY WORDS: Pan-African Orogeny; PT paths; pseudosections; low-P metamorphism; contact metamorphism; Barrovian metamorphism  相似文献   

3.
Different lithologies (impure marble, eclogite and graniticorthogneiss) sampled from a restricted area of the coesite-bearingBrossasco–Isasca Unit (Dora Maira Massif) have been investigatedto examine the behaviour of 40Ar–39Ar and Rb–Srsystems in phengites developed under ultrahigh-pressure (UHP)metamorphism. Mineralogical and petrological data indicate thatzoned phengites record distinct segments of the PT path:prograde, peak to early retrograde in the marble, peak to earlyretrograde in the eclogite, and late retrograde in the orthogneiss.Besides major element zoning, ion microprobe analysis of phengitein the marble also reveals a pronounced zoning of trace elements(including Rb and Sr). 40Ar–39Ar apparent ages (35–62Ma, marble; 89–170 Ma, eclogite; 35–52 Ma, orthogneiss),determined through Ar laserprobe data on phengites (step-heatingand in situ techniques), show wide intra-sample and inter-samplevariations closely linked to within-sample microchemical variations:apparent ages decrease with decreasing celadonite contents.These data confirm previous reports on excess Ar and, more significantly,highlight that phengite acted as a closed system in the differentlithologies and that chemical exchange, not volume diffusion,was the main factor controlling the rate of Ar transport. Conversely,a Rb–Sr internal isochron from the same eclogite yieldsan age of 36 Ma, overlapping with the time of the UHP metamorphicpeak determined through U–Pb data and thereby corroboratingthe previous conclusion that UHP metamorphism and early retrogressionoccurred in close succession. Different phengite fractions ofthe marble yield calcite–phengite isochron ages of 36to 60 Ma. Although this time interval matches Ar ages from thesame sample, Rb–Sr data from phengite are not entirelyconsistent with the whole dataset. According to trace elementvariations in phengite, only Rb–Sr data from two wet-groundphengite separates, yielding ages of 36 and 41 Ma, are internallyconsistent. The oldest age obtained from a millimetre-sizedgrain fraction enriched in prograde–peak phengites mayrepresent a minimum age estimate for the prograde phengite relics.Results highlight the potential of the in situ 40Ar–39Arlaser technique in resolving discrete PT stages experiencedby eclogite-facies rocks (provided that excess Ar is demonstrablya negligible factor), and confirm the potential of Rb–Srinternal mineral isochrons in providing precise crystallizationages for eclogite-facies mineral assemblages. KEY WORDS: 40Ar–39Ar dating; Rb–Sr dating; phengite; SIMS; UHP metamorphism  相似文献   

4.
High-pressure–high-temperature experiments were performedin the range 7–15 GPa and 1300–1600°C to investigatethe stability and phase relations of the K- and Ba-dominantmembers of the crichtonite and magnetoplumbite series of phasesin simplified bulk compositions in the systems TiO2–ZrO2–Cr2O3–Fe2O3–BaO–K2Oand TiO2–Cr2O3–Fe2O3–BaO–K2O. Both seriesof phases occur as inclusions in diamond and/or as constituentsof metasomatized peridotite mantle xenoliths sampled by kimberlitesor alkaline lamprophyres. They can accommodate large ion lithophileelements (LILE) and high field strength elements (HFSE) on awt % level and, hence, can critically influence the LILE andHFSE budget of a metasomatized peridotite even if present onlyin trace amounts. The Ba and K end-members of the crichtoniteseries, lindsleyite and mathiasite, are stable to 11 GPa and1500–1600°C. Between 11 and 12 GPa, lindsleyite breaksdown to form two Ba–Cr-titanates of unknown structurethat persist to at least 13 GPa. The high-pressure breakdownproduct of mathiasite is a K–Cr-titanate with an idealizedformula KM7O12, where M = Ti, Cr, Mg, Fe. This phase possessesspace group P63/m with a = 9·175(2) Å, c = 2·879(1)Å, V = 209·9(1) Å3. Towards high temperatures,lindsleyite persists to 1600°C, whereas mathiasite breaksdown between 1500 and 1600°C to form a number of complexTi–Cr-oxides. Ba and K end-members of the magnetoplumbiteseries, hawthorneite and yimengite, are stable in runs at 7,10 and 15 GPa between 1300 and 1400°C coexisting with anumber of Ti–Cr-oxides. Molar mixtures (1:1) of lindsleyite–mathiasiteand hawthorneite–yimengite were studied at 7–10GPa and 1300–1400°C, and 9–15 GPa and 1150–1400°C,respectively. In the system lindsleyite–mathiasite, onehomogeneous Ba–K phase is stable, which shows a systematicincrease in the K/(K + Ba) ratio with increasing pressure. Inthe system hawthorneite–yimengite, two coexisting Ba–Kphases appear, which are Ba rich and Ba poor, respectively.The data obtained from this study suggest that Ba- and K-dominantmembers of the crichtonite and magnetoplumbite series of phasesare potentially stable not only throughout the entire subcontinentallithosphere but also under conditions of an average present-daymantle adiabat in the underlying asthenosphere to a depth ofup to 450 km. At still higher pressures, both K and Ba may remainstored in alkali titanates that would also be eminently suitablefor the transport of other ions with large ionic radii. KEY WORDS: crichtonite; magnetoplumbite; high-PT experiments; phase relations; upper mantle  相似文献   

5.
Metapelitic rock samples from the NE Shackleton Range, Antarctica,include garnet with contrasting zonation patterns and two agespectra. Garnet porphyroblasts in K-rich kyanite–sillimanite–staurolite–garnet–muscovite–biotite schistsfrom Lord Nunatak show prograde growth zonation, and give Sm–Ndgarnet, U–Pb monazite and Rb–Sr muscovite ages of518 ± 5, 514 ± 1 and 499 ± 12 Ma, respectively.Geothermobarometry and PT pseudo-section calculationsin the model system CaO–Na2O–K2O– TiO2–MnO–FeO–MgO–Al2O3–SiO2–H2Oare consistent with garnet growth during prograde heating from540°C/7 kbar to 650°C/7·5 kbar, and partial resorptionduring a subsequent PT decrease to <650°C at <6kbar. All data indicate that rocks from Lord Nunatak were affectedby a single orogenic cycle. In contrast, garnet porphyroblastsin K-poor kyanite–sillimanite– staurolite–garnet–cordierite–biotite-schistsfrom Meade Nunatak show two growth stages and diffusion-controlledzonation. Two distinct age groups were obtained. Laser ablationplasma ionization multicollector mass spectrometry in situ analysesof monazite, completely enclosed by a first garnet generation,yield ages of c. 1700 Ma, whereas monazite grains in open garnetfractures and in most matrix domains give c. 500 Ma. Both agegroups are also obtained by U–Pb thermal ionization massspectrometry analyses of matrix monazite and zircon, which fallon a discordia with lower and upper intercepts at 502 ±1 and 1686 ± 2 Ma, respectively. Sm–Nd garnet datingyields an age of 1571 ± 40 Ma and Rb–Sr biotiteanalyses give an age of 504 ± 1 Ma. Integrated geochronologicaland petrological data provide evidence that rocks from MeadeNunatak underwent a polymetamorphic Barrovian-type metamorphism:(1) garnet 1 growth and subsequent diffusive garnet annealingbetween 1700 and 1570 Ma; (2) garnet 2 growth during the RossOrogeny at c. 500 Ma. During the final orogenic event the rocksexperienced peak PT conditions of about 650°C/7·0kbar and a retrograde stage at c. 575°C/4·0 kbar. KEY WORDS: garnet microtexture; PT pseudosection; geochronology; polymetamorphism; Shackleton Range; Antarctica  相似文献   

6.
The Neoproterozoic Aries kimberlite was emplaced in the centralKimberley Basin, Western Australia, as a N–NNE-trendingseries of three diatremes infilled by lithic-rich kimberlitebreccias. The breccias are intruded by hypabyssal macrocrysticphlogopite kimberlite dykes that exhibit differentiation toa minor, high-Na–Si, olivine–phlogopite–richteritekimberlite, and late-stage macrocrystic serpentine–diopsideultramafic dykes. Mineralogical and geochemical evidence suggeststhat the high-Na–Si, olivine–phlogopite–richteritekimberlite was derived from the macrocrystic phlogopite kimberliteas a residual liquid following extended phlogopite crystallizationand the assimilation of country rock sandstone, and that themacrocrystic serpentine–diopside ultramafic dykes formedas mafic cumulates from a macrocrystic phlogopite kimberlite.Chemical zonation of phlogopite–biotite phenocrysts indicatesa complex magmatic history for the Aries kimberlite, with theearly inheritance of a range of high-Ti phlogopite–biotitexenocrysts from metasomatized mantle lithologies, followed bythe crystallization of a population of high-Cr phlogopite phenocrystswithin the spinel facies lithospheric mantle. A further oneto two phlogopite–biotite overgrowth rims of distinctcomposition formed on the phlogopite phenocrysts at higher levelsduring ascent to the surface. Ultra-violet laser 40Ar/39Ar datingof mica grain rims yielded a kimberlite eruption age of 815·4± 4·3 Ma (95% confidence). 40Ar/39Ar laser profilingof one high-Ti phlogopite-biotite macrocryst revealed a radiogenic40Ar diffusive loss profile, from which a kimberlite magma ascentduration from the spinel facies lithospheric mantle was estimated(assuming an average kimberlite magma temperature of 1000°C),yielding a value of 0·23–2·32 days for thenorth extension lobe of the Aries kimberlite. KEY WORDS: 40Ar/39Ar; diamond; kimberlite; mantle metasomatism; phlogopite–biotite  相似文献   

7.
A Complex Petrogenesis for an Arc Magmatic Suite, St Kitts, Lesser Antilles   总被引:2,自引:0,他引:2  
St Kitts forms one of the northern group of volcanic islandsin the Lesser Antilles arc. Eruptive products from the Mt Liamuigacentre are predominantly olivine + hypersthene-normative, low-Kbasalts through basaltic andesites to quartz-normative, low-Kandesites. Higher-Al and lower-Al groups can be distinguishedin the suite. Mineral assemblages include olivine, clinopyroxene,orthopyroxene, plagioclase and titanomagnetite with rarer amphibole,ilmenite and apatite. Eruptive temperatures of the andesitesare estimated as 963–950°C at fO2 NNO + 1 (whereNNO is the nickel–nickel oxide buffer). Field and mineralchemical data provide evidence for magma mixing. Glass (melt)inclusions in the phenocrysts range in composition from andesiteto high-silica rhyolite. Compositional variations are broadlyconsistent with the evolution of more evolved magmas by crystalfractionation of basaltic parental magmas. The absence of anycovariation between 87Sr/86Sr or 143Nd/144Nd and SiO2 rulesout assimilation of older silicic crust. However, positive correlationsbetween Ba/La, La/Sm and 208Pb/204Pb and between 208Pb/204Pband SiO2 are consistent with assimilation of small amounts (<10%)of biogenic sediments. Trace element and Sr–Nd–Pbisotope data suggest derivation from a normal mid-ocean ridgebasalt (N-MORB)-type mantle source metasomatized by subductedsediment or sediment melt and fluid. The eruptive rocks arecharacterized by 238U excesses that indicate that fluid additionof U occurred <350 kyr ago; U–Th isotope data for mineralseparates are dominated by melt inclusions but would allow crystallizationages of 13–68 ka. However, plagioclase is consistentlydisplaced above these ‘isochrons’, with apparentages of 39–236 ka, and plagioclase crystal size distributionsare concave-upwards. These observations suggest that mixingprocesses are important. The presence of 226Ra excesses in twosamples indicates some fluid addition <8 kyr ago and thatthe magma residence times must also have been less than 8 kyr. KEY WORDS: Sr–Nd–Pb isotopes; U-series isotopes; crystal size distribution; petrogenesis  相似文献   

8.
The <80 ka basalts–basanites of the Potrillo VolcanicField (PVF) form scattered scoria cones, lava flows and maarsadjacent to the New Mexico–Mexico border. MgO ranges upto 12·5%; lavas with MgO < 10·7% have fractionatedboth olivine and clinopyroxene. Cumulate fragments are commonin the lavas, as are subhedral megacrysts of aluminous clinopyroxene(with pleonaste inclusions) and kaersutitic amphibole. REE modellingindicates that these megacrysts could be in equilibrium withthe PVF melts at 1·6–1·7 GPa pressure. Thelavas fall into two geochemical groups: the Main Series (85%of lavas) have major- and trace-element abundances and ratiosclosely resembling those of worldwide ocean-island alkali basaltsand basanites (OIB); the Low-K Series (15%) differ principallyby having relatively low K2O and Rb contents. Otherwise, theyare chemically indistinguishable from the Main Series lavas.Sr- and Nd-isotopic ratios in the two series are identical andvary by scarcely more than analytical error, averaging 87Sr/86Sr= 0·70308 (SD = 0·00004) and 143Nd/144Nd = 0·512952(SD=0·000025). Such compositions would be expected ifboth series originated from the same mantle source, with Low-Kmelts generated when amphibole remained in the residuum. ThreePVF lavas have very low Os contents (<14 ppt) and appearto have become contaminated by crustal Os. One Main Series picritehas 209 ppt Os and has a Os value of +13·6, typical forOIB. This contrasts with published 187Os/188Os ratios for KilbourneHole peridotite mantle xenoliths, which give mostly negativeOs values and show that Proterozoic lithospheric mantle formsa thick Mechanical Boundary Layer (MBL) that extends to 70 kmdepth beneath the PVF area. The calculated mean primary magma,in equilibrium with Fo89, has Na2O and FeO contents that givea lherzolite decompression melting trajectory from 2·8GPa (95 km depth) to 2·2 GPa (70 km depth). Inverse modellingof REE abundances in Main Series Mg-rich lavas is successfulfor a model invoking decompression melting of convecting sub-lithosphericlherzolite mantle (Nd = 6·4; Tp 1400°C) between90 and 70 km. Nevertheless, such a one-stage model cannot accountfor the genesis of the Low-K Series because amphibole wouldnot be stable within convecting mantle at Tf 1400°C. Thesemagmas can only be accommodated by a three-stage model thatenvisages a Thermal Boundary Layer (TBL) freezing conductivelyonto the 70 km base of the Proterozoic MBL during the 20 Myrtectonomagmatic quiescence before PVF eruptions. As it grew,this was veined by hydrous small-fraction melts from below.The geologically recent arrival of hotter-than-ambient (Tp 1400°C) convecting mantle beneath the Potrillo area re-meltedthe TBL and caused the magmatism. KEY WORDS: western USA; picrites; Sr–Nd–Os isotopes; petrogenetic modelling; thermal boundary layer  相似文献   

9.
Migmatitic granulites and arc-related felsic intrusives of Pan-Africanage form the bedrock in the Rio de Janeiro area, SE Brazil.These rocks preserve a partial record of three parageneses.The earliest assemblage (M1) grew during fabric formation inthe rocks (D1) and is characterized by the mineral assemblagePl + Bt + Sil + Kfs + Qtz. Peak metamorphic conditions (M2)are characterized by the assemblage Bt + Crd + Kfs + Pl + Grt+ liq + Qtz and are inferred to have developed during D2 foldingof the rocks at T = 750–800°C and P = 7 kbar. M3 reactiontextures overprint the M2 assemblage and comprise symplectiticintergrowth of cordierite(II) and quartz that formed after garnet,whereas secondary biotite formed as a result of reactions betweengarnet and K-feldspar. By comparing the observed modal abundanceswith modal contours of garnet, cordierite and quartz on therelevant pseudosection a post M2 PT vector indicatingcontemporaneous cooling and decompression can be deduced. Theinferred equilibrium assemblage and reaction textures are interpretedto reflect a clockwise PT path involving heating followedby post-peak decompression and associated cooling. We inferthat metamorphism occurred in response to advective heatingby the abundant syn-collisional (arc-related) I-type granitoidsin the region, consistent with the unusually high peak T/P ratio. KEY WORDS: advective heating; Ribeira belt; granulite; partial melting; PT pseudosection  相似文献   

10.
In the southern periphery of the Sausar Mobile Belt (SMB), thesouthern component of the Central Indian Tectonic Zone (CITZ),a suite of felsic and aluminous granulites, intruded by gabbro,noritic gabbro, norite and orthopyroxenite, records the polymetamorphicevolution of the CITZ. Using sequences of prograde, peak andretrograde reaction textures, mineral chemistry, geothermobarometricresults and petrogenetic grid considerations from the felsicand the aluminous granulites and applying metamorphosed maficdyke markers and geochronological constraints, two temporallyunrelated granulite-facies tectonothermal events of Pre-Grenvillianage have been established. The first event caused ultrahigh-temperature(UHT) metamorphism (M1) (T 950°C) at relatively deepercrustal levels (P 9 kbar) and a subsequent post-peak near-isobariccooling PT history (M2). M1 caused pervasive biotite-dehydrationmelting, producing garnet–orthopyroxene and garnet–rutileand sapphirine–spinel-bearing incongruent solid assemblagesin felsic and aluminous granulites, respectively. During M2,garnet–corundum and later spinel–sillimanite–biotiteassemblages were produced by reacting sapphirine–spinel–sillimaniteand rehydration of garnet–corundum assemblages, respectively.Applying electron microprobe (EMP) dating techniques to monazitesincluded in M1 garnet or occurring in low-strain domains inthe felsic granulites, the UHT metamorphism is dated at 2040–2090Ma. Based on the deep crustal heating–cooling PTtrajectory, the authors infer an overall counterclockwise PTpath for this UHT event. During the second granulite event,the Palaeoproterozoic granulites experienced crustal attenuationto 6·4 kbar at T 675°C during M3 and subsequentnear-isothermal loading to 8 kbar during M4. In the felsic granulites,the former is marked by decomposition of M1 garnet to orthopyroxene–plagioclasesymplectites. During M4, there was renewed growth of garnet–quartzsymplectites in the felsic granulites, replacing the M3 mineralassemblage and also the appearance of coronal garnet–quartz–clinopyroxeneassemblages in metamorphosed mafic dykes. Using monazites frommetamorphic overgrowths and metamorphic recrystallization domainsfrom the felsic granulite, the M4 metamorphism is dated at 1525–1450Ma. Using geochronological and metamorphic constraints, theauthors interpret the M3–M4 stages to be part of the sameMesoproterozoic tectonothermal event. The result provides thefirst documentation of UHT metamorphism and Palaeo- and Mesoproterozoicmetamorphic processes in the CITZ. On a broader scale, the findingsare also consistent with the current prediction that isobaricallycooled granulites require a separate orogeny for their exhumation. KEY WORDS: Central Indian Tectonic Zone; UHT metamorphism; counterclockwise PT path; monazite chemical dating  相似文献   

11.
The solubility of sulfur as S2– has been experimentallydetermined for 19 silicate melt compositions in the system CaO–MgO–Al2O3–SiO2(CMAS)± TiO2 ± FeO, at 1400°C and 1 bar, using CO–CO2–SO2gas mixtures to vary oxygen fugacity (fO2) and sulfur fugacity(fS2). For all compositions, the S solubility is confirmed tobe proportional to (fS2/fO2)1/2, allowing the definition ofthe sulfide capacity (CS) of a silicate melt as CS = [S](fO2/fS2)1/2.Additional experiments covering over 150 melt compositions,including some with Na and K, were then used to determine CSas a function of melt composition at 1400°C. The resultswere fitted to the equation  相似文献   

12.
The role of clinopyroxene in producing grandite garnet is evaluatedusing data from an ultrahigh-temperature metamorphosed calc-silicategranulite occurrence in the Eastern Ghats Belt, India. ‘Peak’pressure–temperature conditions of metamorphism were previouslyconstrained from associated high Mg–Al granulites as c.0·9 GPa, >950°C, and the rocks were near-isobaricallycooled to c. 750°C. Grandite garnet of variable compositionwas produced by a number of reactions involving phases suchas clinopyroxene, scapolite, plagioclase, wollastonite and calcite,in closely spaced domains. Compositional heterogeneity is preservedeven on a microscale. This precludes pervasive fluid fluxingduring either the peak or the retrograde stage of metamorphism,and is further corroborated by computation of fluid–rockratios. With the help of detailed textural and mineral compositionalstudies leading to formulation of balanced reactions, and usingan internally consistent thermodynamic dataset and relevantactivity–composition relationships, new petrogenetic gridsare developed involving clinopyroxene in the system CaO–Al2O3–FeO–SiO2–CO2–O2in TaCO2fO2 space to demonstrate the importanceof these factors in the formation of grandite garnet. Two singularcompositions in garnet-producing reactions in this system arededuced, which explain apparently anomalous textural relations.The possible role of an esseneite component in clinopyroxenein the production of grandite garnet is evaluated. It is concludedthat temperature and fO2 are the most crucial variables controllinggarnet composition in calc-silicate granulites. fO2, however,behaves as a dependent variable of CO2 in the fluid phase. Externalfluid fluxing of any composition is not necessary to producechemical heterogeneity of garnet solid solution. KEY WORDS: grandite garnet; role of clinopyroxene; internal buffering; oxidation–decarbonation equilibria  相似文献   

13.
A combined set of U–Pb and Lu–Hf in situ laser ablationICP-(MC)-MS zircon analyses were obtained from orthogneissesand granitoids in the Central Zone of the Limpopo Belt, whichcomprises the Beit Bridge and Mahalapye complexes. The resultsindicate that by combining the two isotope systems primary magmaticzircon domains can be distinguished from those formed duringlater metamorphic events, even if the distinct zircon domainsunderwent multiple Pb loss and the texture–age relationships,as obtained by cathodoluminescence images and U–Pb analyses,are ambiguous. Furthermore, the applied technique allows distinctionof zircon grains formed in juvenile magmas from those generatedby melting of older continental crust or affected by substantialcrustal contamination. The combined U–Pb and Lu–Hfdata reveal that the Sand River gneiss suite of the Beit BridgeComplex was emplaced at 3283 ± 8 Ma and formed from meltingof an older Archaean crust, which was derived from a depletedmantle source at around 3·65 Ga. The hafnium model age(TDMHf) is significantly older than those obtained from zirconsfrom numerous Neoarchaean granitoids of the Beit Bridge Complex,comprising the Singelele gneiss (2647 ± 12 Ma), the Bulaigranite (2612 ± 7 Ma), the Regina gneiss (2649 ±9 Ma) and two samples of the Zanzibar gneiss (2613 ±6 Ma). These granitoids show initial Hf(t) values between +0·5 and –7·1, which correspond to initialTDMHf between 3·46 and 3·01 Ga. These variableTDMHfinitial and Hf(t)initial values are interpreted to be theresult of different mixtures of reworked 3·65 Ga Palaeoarchaeancrust with juvenile magmas extracted from the depleted mantleduring the Neoarchaean at 2·65 Ga. This conclusion issupported by results obtained from the Mahalapye Complex, whichwas affected by migmatization and granite intrusions duringthe Palaeoproterozoic at 2·02–2·06 Ga. TheMokgware granite (2019 ± 9 Ma) contains zircon xenocrystswith Pb–Pb ages of 2·52–2·65 Ga and2·93 Ga and hafnium model ages of 3·0–3·4Ga, indicating that this granite is derived from remelting ofArchaean crust. In contrast, uniform TDMHfinitial ages of 2·61–2·67Ga obtained from a diorite gneiss (2061 ± 6 Ma) of theMahalapye Complex indicate that its protolith may have beenformed from remelting of a Neoarchaean juvenile crust. VariableHf(t)initial values from –3·7 to +6·3 ofzircon cores (2711 ± 11 Ma) in an adjacent leucosomealso support a model of mixing of juvenile mantle derived matterwith older crust in the Neoarchaean. KEY WORDS: Archaean; Palaeoproterozoic; Limpopo Belt; zircon, U–Pb dating; Lu–Hf isotopes; LA-ICP-MS  相似文献   

14.
Mineralogical, isotopic, geochemical and geochronological evidencedemonstrates that the Friningen body, a garnet peridotite bodycontaining garnet pyroxenite layers in the Seve Nappe Complex(SNC) of Northern Jämtland, Sweden, represents old, certainlyProterozoic and possibly Archean, lithosphere that became incorporatedinto the Caledonian tectonic edifice during crustal subductioninto the mantle at c. 450 Ma. Both garnet peridotite and pyroxenitecontain two (M1 and M2) generations of garnet-bearing assemblagesseparated by the formation of two-pyroxene, spinel symplectitearound the M1 garnet and the crystallization of low-Cr spinel1Cin the matrix. These textures suggest initial high-pressure(HP) crystallization of garnet peridotite and pyroxenite succeededby decompression into the spinel stability field, followed byrecompression into the garnet peridotite facies. Some pyroxenitelayers appear to be characterized solely by M2 assemblages withstretched garnet as large as several centimeters. Laser ablationmicroprobe–inductively coupled plasma mass spectrometryRe–Os analyses of single sulfide grains generally definemeaningless model ages suggesting more than one episode of Reand/or Os addition and/or loss to the body. Pentlandite grainsfrom a single polished slab of one garnet peridotite, however,define a linear array on an Re–Os isochron diagram that,if interpreted as an errorchron, suggests an Archean melt extractionevent that left behind the depleted dunite and harzburgite bodiesthat characterize the SNC. Refertilization of this mantle bymelts associated with the development of the pyroxenite layersis indicated by enriched clinopyroxene Sr–Nd isotope ratios,and by parallel large ion lithophile-enriched trace elementpatterns in clinopyroxene from pyroxenite and the immediatelyadjacent peridotite. Clinopyroxene and whole-rock model Sm–Ndages (TDM = 1·1–2·2 Ga) indicate that fertilizationtook place in Proterozoic times. Sm–Nd garnet2–clinopyroxene2–wholerock ± orthopyroxene2 mineral isochrons from three pyroxenitelayers define overlapping ages of 452·1 ± 7·5and 448 ± 13 Ma and 451 ± 43 Ma (2  相似文献   

15.
The Diahot terrane of NE New Caledonia contains an interbeddedsequence of Cretaceous to Eocene metasediments, felsic and maficmetavolcanics that experienced c. 40 Ma high-P/T metamorphism.Metabasaltic assemblages define two prograde events (M1 andM2) and a tectonically disrupted crustal profile that extendsfrom lawsonite–blueschist conditions in the SW to paragonite–eclogiteconditions in the NE. Weakly deformed metabasalts from lowest-gradeparts of the Diahot terrane contain M1 omphacite, chlorite,lawsonite and glaucophane-bearing assemblages that partiallypseudomorph igneous plagioclase and augite, and reflect P =0·7–1·0 GPa and T = 350–400°C.M1 assemblages are enveloped by a steeply SW-dipping S2 foliationthat becomes progressively more intense towards the NE overa distance of c. 15 km. S2 assemblages are divided into fourzones: (1) lawsonite–omphacite; (2) lawsonite–clinozoisite–spessartine;(3) clinozoisite–hornblende–almandine; (4) almandine–omphacite.S2 assemblages reflect a PT gradient that spans the exposed15 km of the Diahot terrane from P = 0·8–1·0GPa and T = 350–400°C (Zone 1) to P = 1·6–1·7GPa and T = 550–600°C (Zone 4). The systematic mineralogicalchanges reflect parts of a PT array between 1·0and 1·7 GPa that was extensively disrupted by tectonicthinning during exhumation. KEY WORDS: blueschist; eclogite; New Caledonia; CNFMASH; pseudosection  相似文献   

16.
Many basaltic flood provinces are characterized by the existenceof voluminous amounts of silicic magmas, yet the role of thesilicic component in sulphur emissions associated with trapactivity remains poorly known. We have performed experimentsand theoretical calculations to address this issue. The meltsulphur content and fluid/melt partitioning at saturation witheither sulphide or sulphate or both have been experimentallydetermined in three peralkaline rhyolites, which are a majorcomponent of some flood provinces. Experiments were performedat 150 MPa, 800–900°C, fO2 in the range NNO –2 to NNO + 3 and under water-rich conditions. The sulphur contentis strongly dependent on the peralkalinity of the melt, in additionto fO2, and reaches 1000 ppm at NNO + 1 in the most stronglyperalkaline composition at 800°C. At all values of fO2,peralkaline melts can carry 5–20 times more sulphur thantheir metaluminous equivalents. Mildly peralkaline compositionsshow little variation in fluid/melt sulphur partitioning withchanging fO2 (DS 270). In the most peralkaline melt, DS risessharply at fO2 > NNO + 1 to values of >500. The partitioncoefficient increases steadily for Sbulk between 1 and 6 wt% but remains about constant for Sbulk between 0·5 and1 wt %. At bulk sulphur contents lower than 4 wt %, a temperatureincrease from 800 to 900°C decreases DS by 10%. These results,along with (1) thermodynamic calculations on the behaviour ofsulphur during the crystallization of basalt and partial meltingof the crust and (2) recent experimental constraints on sulphursolubility in metaluminous rhyolites, show that basalt fractionationcan produce rhyolitic magmas having much more sulphur than rhyolitesderived from crustal anatexis. In particular, hot and dry metaluminoussilicic magmas produced by melting of dehydrated lower crustare virtually devoid of sulphur. In contrast, peralkaline rhyolitesformed by crystal fractionation of alkali basalt can concentrateup to 90% of the original sulphur content of the parental magmas,especially when the basalt is CO2-rich. On this basis, we estimatethe amounts of sulphur potentially released to the atmosphereby the silicic component of flood eruptive sequences. The peralkalineEthiopian and Deccan rhyolites could have produced 1017 and1018 g of S, respectively, which are comparable amounts to publishedestimates for the basaltic activity of each province. In contrast,despite similar erupted volumes, the metaluminous Paraná–Etendekasilicic eruptives could have injected only 4·6 x 1015g of S in the atmosphere. Peralkaline flood sequences may thushave greater environmental effects than those of metaluminousaffinity, in agreement with evidence available from mass extinctionsand oceanic anoxic events. KEY WORDS: silicic flood eruptions; sulphur; experiment; Ethiopia; Deccan  相似文献   

17.
New compositional data and petrogenetic models are presentedfor pre-Upper Miocene volcanism in the northern Puna of Argentina(22°S–24°S). Two phases of volcanism producedsmall dome complexes of mainly silicic andesite to low-SiO2rhyolite. The Upper Oligocene–Lower Miocene phase (UOLM,20–17 Ma), produced two distinct groups of rocks. TheUOLM-1 group is metaluminous and mainly andesitic, with isotopiccompositions like those of the recent arc (87Sr/86SrT  相似文献   

18.
A geochemical and petrological study of Miocene to recent alkalibasalts, basanites, hawaiites, mugearites, trachytes, and phonoliteserupted within the Harrat Ash Shamah volcanic field was performedto reconstruct the magmatic evolution of southern Syria. Themajor element composition of the investigated lavas is mainlycontrolled by fractional crystallization of olivine, clinopyroxene,± Fe–Ti oxides and ± apatite; feldspar fractionationis restricted to the most evolved lavas. Na2O and SiO2 variationswithin uncontaminated, primitive lavas as well as variably fractionatedheavy rare earth element ratios suggest a formation by variabledegrees of partial melting of different garnet peridotite sourcestriggered, probably, by changes in mantle temperature. The isotopicrange as well as the variable trace element enrichment observedin the lavas imply derivation from both a volatile- and incompatibleelement-enriched asthenosphere and from a plume component. Inaddition, some lavas have been affected by crustal contamination.This effect is most prominent in evolved lavas older than 3·5Ma, which assimilated 30–40% of crustal material. In general,the periodicity of volcanism in conjunction with temporal changesin lava composition and melting regime suggest that the Syrianvolcanism was triggered by a pulsing mantle plume located underneathnorthwestern Arabia. KEY WORDS: 40Ar/39Ar ages; intraplate volcanism; mantle plume; partial melting; Syria  相似文献   

19.
The Kyffhäuser Crystalline Complex, Central Germany, formspart of the Mid-German Crystalline Rise, which is assumed torepresent the Variscan collision zone between the East Avalonianterrane and the Armorican terrane assemblage. High-precisionU–Pb zircon and monazite dating indicates that sedimentaryrocks of the Kyffhäuser Crystalline Complex are youngerthan c. 470 Ma and were intruded by gabbros and diorites between345 ± 4 and 340 ± 1 Ma. These intrusions had magmatictemperatures between 850 and 900°C, and caused a contactmetamorphic overprint of the sediments at PT conditionsof 690–750°C and 5–7 kbar, corresponding toan intrusion depth of 19–25 km. At 337 ± 1 Ma themagmatic–metamorphic suite was intruded by granites, syenitesand diorites at a shallow crustal level of some 7–11 km.This is inferred from a diorite, and conforms to PT pathsobtained from the metasediments, indicating a nearly isothermaldecompression from 5–7 to 2–4 kbar at 690–750°C.Subsequently, the metamorphic–magmatic sequence underwentaccelerated cooling to below 400°C, as constrained by garnetgeospeedometry and a previously published K–Ar muscoviteage of 333 ± 7 Ma. With respect to PTDtdata from surrounding units, rapid exhumation of the KCC canbe interpreted to result from NW-directed crustal shorteningduring the Viséan. KEY WORDS: contact metamorphism; U–Pb dating; hornblende; garnet; Mid-German Crystalline Rise; PT pseudosection  相似文献   

20.
The alpine-type peridotite at Burro Mountain is a partiallyserpentinized harzburgite-dunite body approximately 2 km indiameter. It lies in a chaotic mélange derived from theFranciscan Formation (Upper Jurassic to Upper Cretaceous) ofthe southern Coast Ranges of California. The peridotite is boundedon the east by a vertical fault in the Nacimiento fault zonethat brings sedimentary rocks of Taliaferro's (1943b) AsuncionGroup (Upper Cretaceous) into contact with the peridotite. Theperidotite appears to be one of a number of tectonic lenses,having a wide range in size, that make up the mélange.These lenses include metagraywacke, metachert, greenstone, amphibolite,and blueschist, as well as ultramafic rocks, and represent awide range of pressure-temperature environments. The outer shell of the peridotite is a sheared serpentinitezone 10–15 m thick. The peridotite was tectonically emplacedat its present level as a cold solid mass and had little effecton the mineral assemblages of the Franciscan Formation. Localdevelopment of lawsonite and aragonite in shear zones may berelated to the peridotite emplacement. Foliated harzburgite forms approximately 60 per cent of theperidotite. It is a lithologically uniform rock that has anolivine: orthopyroxene ratio of approximately 75:25. Accessoryclinopyroxene and chromian spinel generally make up less than5 per cent of the harzburgite. Dunite, composed of olivine,accessory chromian spinel (< 5 per cent), and trace amountsof pyroxene, makes up approximately 40 per cent of the peridotiteand occurs as dikes, sills, and irregular bodies in the harzburgite. Olivine and pyroxene show small but significant compositionalvariations and chromian spinel shows a large range in the cationratio Cr/(Cr+Al+ Fe3+). The compositional variations in theseminerals are related to original differences in bulk chemicalcomposition. The following compositional ranges were determinedfor minerals in the harzburgite: olivine, Fo91.1–Fo91.4;orthopyroxene, En89.8–En91.1; clinopyroxene, Ca47.0Mg50.0Fe3.0–Ca48.7Mg48.2Fe3.1;chromian spinel, Cr/(Cr+Al+Fe3+) 0.37–0.55. The pyroxeneshave a range in A12O3 content of 1.3–3.0 wt per cent.Olivine from dunite ranges from Fo91 to Fo92 7 and the chromianspinel has a range in the Cr/(Cr+Al+Fe3+) ratio of 0.30–0.75.Although all the dunites are lithologically similar, three distincttypes are recognized on the basis of composition of coexistingolivine and chromian spinel. Structural relations between thethree types of dunite suggest three periods of emplacement (possiblyoverlapping) of dunite into harzburgite. The evidence indicatesthat the dunite, and probably also the harzburgite crystallizedfrom an ultramafic magma, probably in the upper mantle. After the magmatic episode and crystallization, the peridotitewas subjected to a deep-seated plastic deformation and recrystallization.The first phase of the deformation produced a pervasive, planarstructural element (S1) that crosscuts many harzburgite-dunitecontacts. It is probable that some of the dunite sills wereemplaced during this deformation. The foliation, S1, is definedby layers of different orthopyroxene content in harzburgite,and by discontinuous layers of chromian spinel in dunite. Flowor slip along S1 produced slip folds in harzburgite—dunitecontacts with axial planes parallel to S1. At a later stage,isoclinal folds developed in S1, and the present olivine microfabricwas probably formed by recrystallization in the stress fieldthat produced the isoclinal folding. In the olivine microfabric,X tends to be perpendicular to the axial planes (S2) of theisoclinal folds and Y and Z tend to form double maxima in S2approximately 90° apart. Mg–Fe2+ distribution betweencoexisting mineral pairs yields a calculated temperature offormation of approximately 1200 °C. Although this temperatureis only a nominal value, it indicates that the mineral pairsequilibrated at a significantly high temperature. In view ofthe deformation and recrystallization, the calculated temperaturepossibly represents subsolidus re-equilibration of the mineralsduring this event. The deformation and recrystallization probablyoccurred shortly after crystallization while the peridotitewas still at a high temperature. A later deep-seated deformation produced small scattered kinkfolds in S1 that tend to disrupt the major olivine microfabric.The kink folding was accompanied or followed by the developmentof kink bands in olivine that reflect intragranular glidingon the system T = [Okl], t = [100]. The kink bands probablyformed at a minimum temperature of 1000 °C. Following the deep-seated deformation, which probably took placein the mantle, the peridotite mass was tectonically detachedand moved upward to its present level in the crust. Cleavages,joints, and faults provided channels for water to pervade theperidotite and allow alteration of the primary minerals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号