首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure and Petrology of the Alpine-type Peridotite at Burro Mountain, California, U.S.A.
Authors:LONEY  R A; HIMMELBERG  G R; COLEMAN  R G
Institution:U.S. Geological Survey Menlo Park, California, U.S.A.
Abstract:The alpine-type peridotite at Burro Mountain is a partiallyserpentinized harzburgite-dunite body approximately 2 km indiameter. It lies in a chaotic mélange derived from theFranciscan Formation (Upper Jurassic to Upper Cretaceous) ofthe southern Coast Ranges of California. The peridotite is boundedon the east by a vertical fault in the Nacimiento fault zonethat brings sedimentary rocks of Taliaferro's (1943b) AsuncionGroup (Upper Cretaceous) into contact with the peridotite. Theperidotite appears to be one of a number of tectonic lenses,having a wide range in size, that make up the mélange.These lenses include metagraywacke, metachert, greenstone, amphibolite,and blueschist, as well as ultramafic rocks, and represent awide range of pressure-temperature environments. The outer shell of the peridotite is a sheared serpentinitezone 10–15 m thick. The peridotite was tectonically emplacedat its present level as a cold solid mass and had little effecton the mineral assemblages of the Franciscan Formation. Localdevelopment of lawsonite and aragonite in shear zones may berelated to the peridotite emplacement. Foliated harzburgite forms approximately 60 per cent of theperidotite. It is a lithologically uniform rock that has anolivine: orthopyroxene ratio of approximately 75:25. Accessoryclinopyroxene and chromian spinel generally make up less than5 per cent of the harzburgite. Dunite, composed of olivine,accessory chromian spinel (< 5 per cent), and trace amountsof pyroxene, makes up approximately 40 per cent of the peridotiteand occurs as dikes, sills, and irregular bodies in the harzburgite. Olivine and pyroxene show small but significant compositionalvariations and chromian spinel shows a large range in the cationratio Cr/(Cr+Al+ Fe3+). The compositional variations in theseminerals are related to original differences in bulk chemicalcomposition. The following compositional ranges were determinedfor minerals in the harzburgite: olivine, Fo91.1–Fo91.4;orthopyroxene, En89.8–En91.1; clinopyroxene, Ca47.0Mg50.0Fe3.0–Ca48.7Mg48.2Fe3.1;chromian spinel, Cr/(Cr+Al+Fe3+) 0.37–0.55. The pyroxeneshave a range in A12O3 content of 1.3–3.0 wt per cent.Olivine from dunite ranges from Fo91 to Fo92 7 and the chromianspinel has a range in the Cr/(Cr+Al+Fe3+) ratio of 0.30–0.75.Although all the dunites are lithologically similar, three distincttypes are recognized on the basis of composition of coexistingolivine and chromian spinel. Structural relations between thethree types of dunite suggest three periods of emplacement (possiblyoverlapping) of dunite into harzburgite. The evidence indicatesthat the dunite, and probably also the harzburgite crystallizedfrom an ultramafic magma, probably in the upper mantle. After the magmatic episode and crystallization, the peridotitewas subjected to a deep-seated plastic deformation and recrystallization.The first phase of the deformation produced a pervasive, planarstructural element (S1) that crosscuts many harzburgite-dunitecontacts. It is probable that some of the dunite sills wereemplaced during this deformation. The foliation, S1, is definedby layers of different orthopyroxene content in harzburgite,and by discontinuous layers of chromian spinel in dunite. Flowor slip along S1 produced slip folds in harzburgite—dunitecontacts with axial planes parallel to S1. At a later stage,isoclinal folds developed in S1, and the present olivine microfabricwas probably formed by recrystallization in the stress fieldthat produced the isoclinal folding. In the olivine microfabric,X tends to be perpendicular to the axial planes (S2) of theisoclinal folds and Y and Z tend to form double maxima in S2approximately 90° apart. Mg–Fe2+ distribution betweencoexisting mineral pairs yields a calculated temperature offormation of approximately 1200 °C. Although this temperatureis only a nominal value, it indicates that the mineral pairsequilibrated at a significantly high temperature. In view ofthe deformation and recrystallization, the calculated temperaturepossibly represents subsolidus re-equilibration of the mineralsduring this event. The deformation and recrystallization probablyoccurred shortly after crystallization while the peridotitewas still at a high temperature. A later deep-seated deformation produced small scattered kinkfolds in S1 that tend to disrupt the major olivine microfabric.The kink folding was accompanied or followed by the developmentof kink bands in olivine that reflect intragranular glidingon the system T = Okl], t = 100]. The kink bands probablyformed at a minimum temperature of 1000 °C. Following the deep-seated deformation, which probably took placein the mantle, the peridotite mass was tectonically detachedand moved upward to its present level in the crust. Cleavages,joints, and faults provided channels for water to pervade theperidotite and allow alteration of the primary minerals.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号