首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The paper presents newly obtained data on the geological structure, age, and composition of the Gremyakha-Vyrmes Massif, which consists of rocks of the ultrabasic, granitoid, and foidolite series. According to the results of the Rb-Sr and Sm-Nd geochronologic research and the U-Pb dating of single zircon grains, the three rock series composing the massif were emplaced within a fairly narrow age interval of 1885 ± 20 Ma, a fact testifying to the spatiotemporal closeness of the normal ultrabasic and alkaline melts. The interaction of these magmas within the crust resulted in the complicated series of derivatives of the Gremyakha-Vyrmes Massif, whose rocks show evidence of the mixing of compositionally diverse mantle melts. Model simulations based on precise geochemical data indicate that the probable parental magmas of the ultrabasic series of this massif were ferropicritic melts, which were formed by endogenic activity in the Pechenga-Varzuga rift zone. According to the simulation data, the granitoids of the massif were produced by the fractional crystallization of melts genetically related to the gabbro-peridotites and by the accompanying assimilation of Archean crustal material with the addition of small portions of alkaline-ultrabasic melts. The isotopic geochemical characteristics of the foidolites notably differ from those of the other rocks of the massif: together with carbonatites, these rocks define a trend implying the predominance of a more depleted mantle source in their genesis. The similarities between the Sm-Nd isotopic characteristics of foidolites from the Gremyakha-Vyrmes Massif and the rocks of the Tiksheozero Massif suggest that the parental alkaline-ultrabasic melts of these rocks were derived from an autonomous mantle source and were only very weakly affected by the crust. The occurrence of ultrabasic foidolites and carbonatites in the Gremyakha-Vyrmes Massif indicates that domains of metasomatized mantle material were produced in the sublithospheric mantle beneath the northeastern part of the Fennoscandian Shield already at 1.88 Ga, and these domains were enriched in incompatible elements and able to produce alkaline and carbonatite melts. The involvement of these domains in plume-lithospheric processes at 0.4–0.36 Ga gave rise to the peralkaline melts that formed the Paleozoic Kola alkaline province.  相似文献   

2.
Deciphering the contribution of crustal materials to A-type granites is critical to understanding their petrogenesis. Abundant alkaline syenitic and granitic intrusions distributed in Tarim Large Igneous Province, NW China, offer a good opportunity to address relevant issues. This paper presents new zircon Hf-O isotopic data and U-Pb dates on these intrusions, together with whole-rock geochemical compositions, to constrain crustal melting processes associated with a mantle plume. The ∼280 Ma Xiaohaizi quartz syenite porphyry and syenite exhibit identical zircon δ18O values of 4.40 ± 0.34‰ (2σ) and 4.48 ± 0.28‰ (2σ), respectively, corresponding to whole-rock δ18O values of 5.6‰ and 6.0‰, respectively. These values are similar to mantle value and suggest an origin of closed-system fractional crystallization from Tarim plume-derived melts. In contrast, the ∼275 Ma Halajun A-type granites have higher δ18O values (8.82–9.26‰) than the mantle. Together with their whole-rock εNd(t) (−2.0–+0.6) and zircon εHf(t) (−0.6–+1.5) values, they were derived from mixing between crust- and mantle-derived melts. These felsic rocks thus record crustal melting above the Tarim mantle plume. At ∼280–275 Ma, melts derived from decompression melting of Tarim mantle plume were emplaced into the crust, where fractional crystallization of a common parental magma generated mafic-ultramafic complex, syenite, and quartz syenite porphyry as exemplified in the Xiaohaizi region. Meanwhile, partial melting of upper crustal materials would occur in response to basaltic magma underplating. The resultant partial melts mixed with Tarim plume-derived basaltic magmas coupled with fractional crystallization led to formation of the Halajun A-type granites.  相似文献   

3.
Geochemical, isotopic-geochemical, and geochronological information was obtained on magmatic rocks from the Saltychan anticlinorium in the Azov domain of the Ukrainian Shield. The rocks affiliate with the calc-alkaline series and a high-Mg series. The rocks of these series notably differ in concentrations of trace elements and REE and range from gabbro to granodiorite-quartz diorite in composition. The NORDSIM ionprobe U-Pb zircons ages of rocks belonging to the Obitochnen Complex and having both elevated and normal mg# correspond to 2908–2940 Ma. The Osipenkovskaya intrusion has an age of 2855 ± 19 Ma. The most alkaline North Obitochnen intrusion was emplaced in the Proterozoic, at 2074 ± 11 Ma. The age of the amphibolite metamorphism of the host gneisses is reliably dated at 3120–3000 Ma. The model Sm-Nd ages of the intrusive rocks do not exceed 3150 Ma. According to geochemical evidence, the parental melts of the magmatic rocks were derived from mantle domains variably enriched in lithophile elements. The results obtained by studying the Sm-Nd isotopic system corroborate the conclusion drawn from geochemical evidence that most of the melts were derived from the mildly enriched mantle, practically without involvement of ancient crustal material. The mantle became enriched in LREE at approximately 3000 Ma, which corresponds to the age of metamorphism of the supracrustal rocks. This process was separated from the derivation of the melts by a time span of 70–80 Ma. The relative age of the intrusive rocks and their variable composition can be most adequately explained by a contribution of heat and material from a plume to the derivation of the parental melts of these rocks.  相似文献   

4.
Data on the composition, age, and source of material of Aptian rocks composing a bimodal volcanic complex and related granitoids in the northern margin of the Amur microcontinent indicate that the granodiorites of the Talalinskii Massif and subalkaline granites of the Dzhiktandiunskii Massif crystallized at 117 ± 2 and 119 ± 2 Ma, respectively (40Ar/39Ar method), and their crystallization ages coincide with the age of volcanic rocks of the Gal’kinskii bimodal complex. These data make it possible to combine the rocks within a single volcano-plutonic association. Geochemical and isotopic-geochemical features of trachybasaltic andesites of the Gal’kinskii bimodal complex suggest that the parental melts were derived from such sources as PREMA (or DM) and an enriched source of the EMII type at a subordinate contribution of a crustal source. The parental melts of rhyolites of the Gal’kinskii Complex and granitoids of the Talalinskii and Dzhiktandinskii massifs were derived from crustal material with minor amounts of juvenile material. The bimodal volcanic association and related granitoids dated at 119–115 Ma were most likely formed in geodynamic environments implying the ascent of the asthenospheric mantle.  相似文献   

5.
This paper presents the U-Pb zircon age of pulaskite of the main phase (294 ± 1 Ma) and the rare metal syenite (283 ± 8 Ma) of the Burpala alkaline pluton. The geochronological data show that it was formed in the Early Permian. By age, it is comparable with the Synnyr pluton of the Synnyr rift zone, alkaline granitic rocks and bimodal volcanic associations of the Uda-Vitim rift zone, and carbonatites of the Saizhen rift zone of the Central Asian foldbelt. These intraplate igneous complexes were formed almost simultaneously with crustal granitic rocks of the Angara-Vitim batholite. All of this gives ground to suppose that the origination of their parental melts is a result of the influence of the mantle hot spot or mantle plume on the lithosphere that led to extensive crustal anatexis.  相似文献   

6.
The hypabyssal rocks of the Omgon Range, western Kamchatka, that intrude Upper Albian-Lower Campanian deposits of the Eurasian continental margin belong to three coeval (62.5–63.0 Ma) associations: (1) ilmenite gabbro-dolerites, (2) titanomagnetite gabbro-dolerites and quartz microdiorites, and (3) porphyritic biotite granites and granite-aplites. The Early Paleocene age of the ilmenite gabbro-dolerites and biotite granites was confirmed by zircon and apatite fission-track dating. The ilmenite and titanomagnetite gabbro-dolerites were produced by the multilevel fractional crystallization of basaltic melts with, respectively, moderate and high Fe-Ti contents and the contamination of these melts with rhyolitic melts of different compositions. The moderate-and high-Fe-Ti basaltic melts were derived from mantle spinel peridotite variably depleted and metasomatized by slab-derived fluid prior to melting. The melts were generated at variable depths and different degrees of melting. The biotite granites and granite aplites were produced by the combined fractional crystallization of a crustal rhyolitic melt and its contamination with terrigenous rocks of the Omgon Group. The rhyolitic melts were likely derived from metabasaltic rocks of suprasubduction nature. The Early Paleocene hypabyssal rocks of the Omgon Range were demonstrated to have been formed in an extensional environment, which dominated in the margin of the Eurasian continent from the Late Cretaceous throughout the Early Paleocene. Extension in the Western Kamchatka segment preceded the origin of the Western Koryakian-Kamchatka (Kinkil’) continental-margin volcanic belt in Eocene time. This research was conducted based on original geological, mineralogical, geochemical, and isotopic (Rb-Sr) data obtained by the authors for the rocks.  相似文献   

7.
Numerous intrusive bodies of mafic–ultramafic to felsic compositions are exposed in association with volcanic rocks in the Late Permian Emeishan large igneous province (ELIP), southwestern China. Most of the granitic rocks in the ELIP were derived by differentiation of basaltic magmas with a mantle connection, and crustal magmas have rarely been studied. Here we investigate a suite of mafic dykes and I-type granites that yield zircon U-Pb emplacement ages of 259.9 ± 1.2 Ma and 259.3 ± 1.3 Ma, respectively. The εHf(t) values of zircon from the DZ mafic dyke are –0.3 to 9.4, and their corresponding TDM1 values are in the range of 919–523 Ma. The εHf(t) values of zircon from the DSC I-type granite are between –1 and 3, with TDM1 values showing a range of 938–782 Ma. We also present zircon O isotope data on crust-derived felsic intrusions from the ELIP for the first time. The δ18O values of zircon from the DSC I-type granite ranges from 4.87‰ to 7.5‰. The field, petrologic, geochemical and isotopic data from our study lead to the following salient findings. (i) The geochronological study of mafic and felsic intrusive rocks in the ELIP shows that the ages of mafic and felsic magmatism are similar. (ii) The DZ mafic dyke and high-Ti basalts have the same source, i.e., the Emeishan mantle plume. The mafic dyke formed from magmas sourced at the transitional depth between from garnet-lherzolite and spinel-lherzolite, with low degree partial melting (<10%). (iii) The Hf-O isotope data suggest that the DSC I-type granite was formed by partial melting of Neoproterozoic juvenile crust and was contaminated by minor volumes of chemically weathered ancient crustal material. (iv) The heat source leading to the formation of the crust-derived felsic rocks in of the ELIP is considered to be mafic–ultramafic magmas generated by a mantle plume, which partially melted the overlying crust, generating the felsic magma.  相似文献   

8.
Mafic-layered intrusions and sills and spatially associated andesitic basalts are well preserved in the Funing area, SW China. The 258±3 Ma-layered intrusions are composed of fine-grained gabbro, gabbro and diorite. The 260±3 Ma sills consist of undifferentiated diabases. Both the layered intrusions and volcanic rocks belong to a low-Ti group, whereas the diabases belong to a high-Ti group. Rocks of the high-Ti group have FeO, TiO2 and P2O5 higher but MgO and Th/Nb ratios lower than those of the low-Ti group. They have initial 87Sr/86Sr ratios (0.706–0.707) lower and ɛNd (−1.5 to −0.6) higher than the low-Ti equivalents (0.710–0.715 and −9.6 to −4.0, respectively). The high-Ti group was formed from relatively primitive, high-Ti magmas generated by low degrees (7.3 –9.5%) of partial melting of an enriched, OIB-type asthenospheric mantle source. The low-Ti group may have formed from melts derived from an EM2-like, lithospheric mantle source. The mafic rocks at Funing are part of the Emeishan large igneous province formed by a mantle plume at ∼260 Ma.  相似文献   

9.
Geological, mineralogical, petrographic, geochemical, and geochronological data are reported for granitoids of the Aturkol Massif (Gorny Altai). It is shown that it was formed in within-plate setting in the Early Triassic, nearly simultaneously with flood basalts of the Kuznetsk Basin and alkalic basite and lampropyre dike swarms in the western Altai-Sayan Fold Region. At the same time, the mineralogical-petrographic, geochemical, and isotope characteristics of the considered granitoids are close to those of I-type granites. Intraplate signatures (elevated HFSE and REE) are recognized only in the least silicic rocks (granosyenites). Obtained data suggest mantle–crustal nature of the granitoids. They were formed by mixing of lamprophyre magmas with high pressure (>10 kbar) crustal melts derived from a mixed source consisting mainly of N-MORB-type metabasites with insignificant admixture of high-Ti basalts and metasedimentary rocks. The contribution of mantle component in the granitoids was insignificant (<20%). Proposed petrogenetic mechanism can provide the formation of large volumes of granitoid magmas with “crustal” geochemical and isotope signatures in an intraplate setting.  相似文献   

10.

Results of isotope Sr, Ns, and O analyses of volcanic rocks from the Uda sector of the West Transbaikal Rift Zone have allowed estimation of the character of interaction of their parental mantle melts with crustal rocks. The smallest magnitude of this interaction has been found in the compositions of Late Cretaceous (83–70 Ma) volcanics, the geochemical and isotope markers of which suggest their derivation from a moderately enriched mantle compositionally resembling OIB sources. The Early Cretaceous volcanics were derived from mantle sources that included a mantle enriched by subduction. While ascending through the crust, the parental melts of the Uda Complex (130–111 Ma) were contaminated by the lower crust matter. The Zazin Complex magmas (143–135 Ma) have features suggesting their interaction with upper crustal granitoids of the Angara–Vitim Batholith.

  相似文献   

11.
Gabbro and eclogite boudins are preserved within the amphibolites of the composite para- and ortho-gneiss Variscan basement of the Savona Crystalline Massif (Ligurian Briançonnais, Italy). Whole rock trace element patterns, low initial εNd (+5.4 to +8.8) data and trace element analyses on relict igneous clinopyroxene revealed that the mafic rocks were derived from depleted mantle melts, which most likely underwent crustal contamination during emplacement. Gabbros have a cumulus origin controlled by clinopyroxene and plagioclase segregation, whereas the eclogites represent evolved melts. U-Pb and trace element micro-analyses on zircons separated from one amphibolitised gabbro and one eclogite help to constrain coeval ages at ~468 Ma for their igneous protoliths. The occurrence of a few inherited zircons confirms the involvement of a crustal component in the petrogenesis of the mafic rocks. In the eclogite, concordant zircon ages younger than the protolith age testify to metamorphic re-crystallisation (or new growth) from about 420 to 305 Ma. Zircon textures and trace element compositions indicate that eclogite facies metamorphism occurred 392–376 Ma ago. The younger zircon portions yielding a mean Concordia age of 333 ± 7 Ma are related to equilibration or new growth during the post-eclogite, amphibolite-facies equilibration.  相似文献   

12.
报道了滇东南个旧超大型锡多金属矿区西区北部白云山碱性岩新的锆石U-Pb年龄、全岩地球化学和Sr-Nd同位素数据。LA-ICP-MS锆石U-Pb定年结果表明,白云山碱性正长岩形成于晚白垩世(80.0±0.6 Ma),与个旧地区的中基性岩及花岗岩均为同一次构造岩浆事件的产物;碱性正长岩与霞石正长岩具有相似的主微量元素地球化学特征及Sr-Nd同位素组成,暗示二者很可能是源于同一富集地幔源区并经历了不同程度演化的产物。结合已有的元素和同位素组成结果,认为碱性岩、中基性岩和成矿花岗岩很可能分别源自富集的岩石圈地幔、正常的岩石圈地幔和地壳源区。在晚白垩世伸展构造背景控制下,源于不均一岩石圈地幔的碱性和中基性的岩浆底侵,促使中下地壳岩石部分熔融形成花岗质熔体,在上升至近地表过程中引起构造活动带成矿物质的富集,从而形成个旧超大型锡多金属矿床的矿化格局。可以说,源于富集地幔的碱性岩浆在含矿花岗质岩浆的成岩成矿过程中,应不只是提供热量的贡献。  相似文献   

13.
The paper reports data on the geology and tectono-magmatic reactivation of the Norilsk area and on the stratigraphy and geochemistry of its volcanic sequence, with the discussion of the sources and genesis of the ore magmas and the scale of the ore-forming process. According to the geochemistry of the lavas and intrusive rocks (Ti concentration and the La/Sm and Gd/Yb ratios), two types of the parental magmas are recognized: high-Ti magmas of the OIB type (from bottom to top, suites iv, sv, and gd of phase 1) and low-Ti magmas (suites hk, tk, and nd of phase 2 and suites mr-mk of phase 3), which were derived from the lithospheric mantle. The magmatic differentiation of the parental low-Ti magma of the tk type into a magma of the nd type was associated with the derivation of an evolved magma of the nd type, which was depleted in ore elements, and an ore magma, which was a mixture of silicate and sulfide melts, protocrysts of silicate minerals, and chromite. Judging from their geochemical parameters, the intrusions of the lower Norilsk type were comagmatic with the lavas of the upper part of the nd suite, and the ore-bearing intrusions of the upper Norilsk type were comagmatic with the lavas of the mr-mk suites. When the ore-bearing intrusions were emplaced, their magmas entrained droplets of sulfide melt and protocrysts of olivine and chromite and brought them to the modern magmatic chamber. These protocrysts are xenogenic with respect to the magma that formed the intrusions. In certain instances (Talnakh and Kharaelakh intrusions), the moving magma entrained single portions of sulfide magma, which were emplaced as individual subphases. The experimental study of the peridotite-basalt-fluid system shows that mantle reservoirs with protoliths of subducted oceanic crustal material could serve as sources of relatively low-temperature (1250–1350°C) high-Ti magnesian magmas of the rifting stage from an olivine-free source.  相似文献   

14.
The study of melt inclusions in Cr-spinels from melanocratic troctolites provided the first direct information on the physicochemical parameters of enriched magmatic systems that produced high-Fe and high-Ti intrusive complexes in the Sierra-Leone region (Central Atlantic, 6°N). These complexes are made up of predominating hornblende Fe-Ti oxide gabbronorites and gabbrodiorites with subordinate amount of ultramafics, diorites, quartz diorites, and trondhjemites. The study of melt inclusions and rocks showed that the majority of gabbroids of the Central Atlantic (Sierra Leone area and 15°20′ Fracture Zone) were derived from N-MORB-type melts, whereas differentiated Fe-Ti-oxide rocks were crystallized from other melts, which were preserved as inclusions in the Cr-spinels from the melanocratic troctolites of the Sierra Leone region. The ion-microprobe study of these inclusions yield direct evidence on the elevated water content (up to 1.24–1.77 wt %) in the parental melts of Fe-Ti oxide rocks. Data on trace and rare-earth element distribution together with high (La/Sm)N and (Ce/Yb)N ratios in the inclusions indicate the possible influence of deep plume source on the generation of these magmas. Simulation based on melt inclusion data testifies that high-Fe intrusions of the Sierra Leone area were crystallized from the water-saturated magmas at relatively low temperatures (1020–1240°C). It was shown that the geochemically enriched Fe-Ti melts were presumably formed regardless of N-MORB-type magmatism predominant in Central Atlantic, under the influence of new mantle plume that caused melting of hydrated oceanic lithosphere.  相似文献   

15.
We report major and trace element abundances and Sr, Nd andPb isotopic data for Miocene (16·5–11 Ma) calc-alkalinevolcanic rocks from the western segment of the Carpathian arc.This volcanic suite consists mostly of andesites and dacites;basalts and basaltic andesites as well as rhyolites are rareand occur only at a late stage. Amphibole fractionation bothat high and low pressure played a significant role in magmaticdifferentiation, accompanied by high-pressure garnet fractionationduring the early stages. Sr–Nd–Pb isotopic dataindicate a major role for crustal materials in the petrogenesisof the magmas. The parental mafic magmas could have been generatedfrom an enriched mid-ocean ridge basalt (E-MORB)-type mantlesource, previously metasomatized by fluids derived from subductedsediment. Initially, the mafic magmas ponded beneath the thickcontinental crust and initiated melting in the lower crust.Mixing of mafic magmas with silicic melts from metasedimentarylower crust resulted in relatively Al-rich hybrid dacitic magmas,from which almandine could crystallize at high pressure. Theamount of crustal involvement in the petrogenesis of the magmasdecreased with time as the continental crust thinned. A strikingchange of mantle source occurred at about 13 Ma. The basalticmagmas generated during the later stages of the calc-alkalinemagmatism were derived from a more enriched mantle source, akinto FOZO. An upwelling mantle plume is unlikely to be presentin this area; therefore this mantle component probably residesin the heterogeneous upper mantle. Following the calc-alkalinemagmatism, alkaline mafic magmas erupted that were also generatedfrom an enriched asthenospheric source. We propose that bothtypes of magmatism were related in some way to lithosphericextension of the Pannonian Basin and that subduction playedonly an indirect role in generation of the calc-alkaline magmatism.The calc-alkaline magmas were formed during the peak phase ofextension by melting of metasomatized, enriched lithosphericmantle and were contaminated by various crustal materials, whereasthe alkaline mafic magmas were generated during the post-extensionalstage by low-degree melting of the shallow asthenosphere. Thewestern Carpathian volcanic areas provide an example of long-lastingmagmatism in which magma compositions changed continuously inresponse to changing geodynamic setting. KEY WORDS: Carpathian–Pannonian region; calc-alkaline magmatism; Sr, Nd and Pb isotopes; subduction; lithospheric extension  相似文献   

16.
The Ulaan Tolgoi massif of rare-metal (Ta, Nb, and Zr) granites was formed at approximately 300Ma in the Eastern Sayan zone of rare-metal alkaline magmatism. The massif consists of alkaline salic rocks of various composition (listed in chronologic order of their emplacement): alkaline syenite → alkaline syenite pegmatite → pantellerite → alkaline granite, including ore-bearing alkaline granite, whose Ta and Nb concentrations reach significant values. The evolution of the massif ended with the emplacement of trachybasaltic andesite. The rocks of the massif show systematic enrichment in incompatible elements in the final differentiation products of the alkaline salic magmas. The differentiation processes during the early evolution of the massif occurred in an open system, with influx of melts that contained various proportions of incompatible elements. The magma system was closed during the origin of the ore-bearing granites. Rare-metal granitoids in the Eastern Sayan zone were produced by magmas formed by interaction between mantle melts (which formed the mafic dikes) with crustal material. The mantle melts likely affected the lower parts of the crust and either induced its melting, with later mixing the anatectic and mantle magmas, or assimilated crustal material and generated melts with crustal–mantle characteristics. The origin of the Eastern Sayan zone of rare-metal alkaline magmatism was related to rifting, which was triggered by interaction between the Tarim and Barguzin mantle plumes. The Eastern Sayan zone was formed in the marginal part of the Barguzin magmatic province, and rare-metal magmas in it were likely generated in relation with the activity of the Barguzin plume.  相似文献   

17.
The Eocene and Miocene volcanic rocks between the cities of Trabzon and Giresun in the Eastern Pontides (NE Turkey) erupted as mildly and moderately alkaline magmas ranging from silica-saturated to silica-undersaturated types. 40Ar-39Ar dating and petrochemical data reveal that the studied volcanic rocks are discriminated in two: Lutetian (Middle Eocene) mildly alkaline, (basaltic rocks: 45.31 ± 0.18 to 43.86 ± 0.19 Ma; trachytic rocks: 44.87 ± 0.22 to 41.32 ± 0.12 Ma), and Messinian (Late Miocene) moderately alkaline volcanic rocks (tephrytic rocks: 6.05 ± 0.06 and 5.65 ± 0.06 Ma). The trace and the rare earth element systematic, characterised by moderate light earth element (LREE)/heavy rare earth element (HREE) ratios in the Eocene basaltic and trachytic rocks, high LREE/HREE ratios in the Miocene tephrytic rocks, and different degrees of depletion in Nb, Ta, Ti coupled with high Th/Yb ratios, show that the parental magmas of the volcanic rocks were derived from mantle sources previously enriched by slab-derived fluids and subducted sediments. The Sr, Nd and Pb isotopic composition of the Eocene and Miocene volcanic rocks support the presence of subduction-modified subcontinental lithospheric mantle. During the magma ascent in the crust, parental magmas of both the Eocene and Miocene volcanic rocks were mostly affected by fractional crystallisation rather than assimilation coupled with fractional crystallisation and mixing. The silica-undersaturated character of the Miocene tephrytic rocks could be attributed to assimilation of carbonate rocks within shallow-level magma chambers. The parental magmas of the Eocene volcanic rocks resulted from a relatively high melting degree of a net veined mantle and surrounding peridotites in the spinel stability field due to an increase in temperature, resulting from asthenospheric upwelling related to the extension of lithosphere subsequent to delamination. The parental magmas for the Miocene volcanic rocks resulted from a relatively low melting degree of a net veined mantle domain previously modified by metasomatic melts derived from a garnet peridotite source after decompression due to extensional tectonics, combined with strike-slip movement at a regional scale related to ongoing delamination.  相似文献   

18.
Late Neoarchean metavolcanic rocks are widely distributed in the Western Shandong Terrane (WST). They are classified as ~2590–2580 Ma tholeiites (Group MB-1), ~2550–2530 Ma tholeiites (Group MB-2), calc-alkaline basalts (Group MB-3), high-Si adakites (Group MAD) and ~2520–2500 Ma tholeiites (Group MB-4) based on zircon U-Pb chronological and geochemical data. Their parental magmas have complex origins and were derived from a depleted mantle wedge enriched by slab-derived melts or fluids (Group MB-1); an unaltered depleted mantle (Group MB-2); the delaminated lower crustal materials (Group MAD); a strongly melt- and fluid-metasomatized depleted mantle (Group MB-3); and a fluid- and sediment-metasomatized asthenospheric mantle (Group MB-4). The late Neoarchean geodynamic evolution of the WST revealed by these multi-genetic volcanic rocks can be summarized as follows: (1) an ~2.62–2.53 Ga eastward subduction operated along the ancient continental margin, followed by delamination of unstable continental lithosphere in the back-arc region during ~2.60–2.53 Ga; and (2) delamination-derived mantle magmas ascended and caused the regional extension, further inducing the asthenosphere to passively rise and the back-arc basin to open during ~2.52–2.50 Ga. The above intense mantle magmatism and crust-mantle interactions have consumed abundant mantle energy and facilitated the continental stratification and final cratonization of the WST.  相似文献   

19.
Two intrusive complexes are recognized at the Shakhtama deposit: Shakhtama and ore-bearing porphyry. The U–Pb zircon dates (SHRIMP II) are 161.7 ± 1.4 and 161.0 ± 1.7 Ma for the monzonites and granites of the Shakhtama complex and 159.3 ± 0.9 and 155.0 ± 1.7 Ma for the monzonite- and granite-porphyry of the ore-bearing complex. The igneous complexes formed in a complex geodynamic setting in the late Middle Jurassic and early Late Jurassic, respectively. The setting combined the collision of continents during the closure of the Mongol-Okhotsk ocean and the influence of mantle plume on the lithosphere of the Central Asian orogenic belt. The intrusion of the Shakhtama granitoids took place at the end of the collision, and the intrusion of porphyry of the ore-bearing complex, during the change of the geodynamic setting by a postcollisional (rifting) one. The complexes are composed of monzonite–granite series with similar geochemical characteristics of rocks. The performed geological, geochemical, and isotope-geochemical studies suggest that the sources of magmas were juvenile crust and Precambrian metaintrusive bodies. The juvenile mafic crust is considered to be the predominant source of fluid components and metals of the Shakhtama ore-magmatic system. The granitoids of both complexes include calc-alkalic high-K rocks with typical geochemical characteristics and with characteristics of K-adakites. These geochemical features indicate that the parental melts of the former rocks were generated at depths shallower than 55 km, and the melts of the latter, at depths of 55–66 km. K-adakite melts resulted from the melting of crust submerged into the mantle during the lithosphere delamination, which was caused by the crust thickening as a result of the repeated inflow of basic magma into the basement of the crust and tectonic deformations in its upper horizons. The high-Mg monzonitic magma produced under these conditions ascended and was mixed with melts generated in the upper horizons, which accounts for the high Mg contents of the Shakhtama granitoids. The similar compositions and petrogeochemical characteristics of the granitoids of the Shakhtama and porphyry complexes point to the same sources, transport paths, and evolution trend of their parental melts. This indicates that the igneous rocks of both complexes are products of the same long-living magmatic system, which produced Mo mineralization at the final stage. The favorable conditions for the ore production in the magmatic system during the formation of the porphyry complex appeared as early as the preceding stage—during the formation of the Shakhtama complex, which we regard as a preparatory stage in the evolution of the ore-magmatic system.  相似文献   

20.
The picritic dykes occurring within fine-grained gabbro in the marginal zone and in the surrounding Proterozoic wall-rock marbles of the Panzhihua Fe–Ti oxide deposit closely correspond in bulk composition with the nearby Panzhihua intrusion. These dykes offer important constraints on the nature of the mantle source of the Panzhihua ore-bearing intrusion and its possible link to the Emeishan plume. U–Pb zircon dating of the picritic dyke yields a crystallization age of 261.4 ± 4.6 Ma, coeval with the timing of the main Panzhihua gabbroic intrusion and Late Permian Emeishan flood basalts. The Panzhihua picritic dykes contain 37.63–43.41 wt% SiO2, 1.15–1.56 wt% TiO2, 11.43–13.25 wt% TFe2O3, and 20.96–28.87 wt% MgO. Primitive-mantle-normalized patterns of the rocks are comparable to those of ocean island basalt. The rocks define a relatively small range of Os isotopic compositions and a low Os signature of ?0.13 to +2.76 for γOs (261 Ma). In combination with their Sr–Nd–Os isotopic compositions, we interpret that these rocks were derived from the Emeishan plume sources as well as the interactions of plume melts with the overlying lithosphere which had been extensively affected by eclogite-derived melts from the deep-subducted oceanic slab. Partial melting induced by an upwelling mantle plume that involved an eclogite or pyroxenite component in the lithospheric mantle could have produced the parental Fe-rich magma. Our study suggests that plume-lithosphere interaction might have played a key role in generating many world-class Fe–Ti oxide deposits clustered in the Panxi area.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号