首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
赵子福  代富强  陈启 《地球科学》2019,44(12):4119-4127
俯冲到地幔深度的地壳物质不可避免地在板片-地幔界面与地幔楔发生相互作用,由此形成的超镁铁质交代岩就是造山带镁铁质火成岩的地幔源区.因此,造山带镁铁质火成岩为研究俯冲地壳物质再循环和壳-幔相互作用提供了重要研究对象.为了揭示俯冲陆壳物质再循环的机制和过程,对大别造山带碰撞后安山质火山岩开展了元素和同位素地球化学研究.这些安山质火山岩的SIMS锆石U-Pb年龄为124±3~130±2 Ma,表明其形成于早白垩世.此外,残留锆石的U-Pb年龄为中新元古代和三叠纪,分别对应于大别-苏鲁造山带超高压变火成岩的原岩年龄和变质年龄.它们具有岛弧型微量元素特征、富集的Sr-Nd-Hf同位素组成,以及变化的且大多不同于正常地幔的锆石δ18O值.这些元素和同位素特征指示,这些安山质火山岩是交代富集的造山带岩石圈地幔部分熔融的产物.在三叠纪华南陆块俯冲于华北陆块之下的过程中,俯冲华南陆壳来源的长英质熔体交代了上覆华北岩石圈地幔楔橄榄岩,大陆俯冲隧道内的熔体-橄榄岩反应产生了富沃、富集的镁铁质地幔交代岩.这种地幔交代岩在早白垩世发生部分熔融,就形成了所观察到的安山质火山岩.因此,碰撞造山带镁铁质岩浆岩的地幔源区是通过大陆俯冲隧道内板片-地幔相互作用形成的,而加入地幔楔中长英质熔体的比例决定了这些镁铁质岩浆岩的岩石化学和地球化学成分.   相似文献   

2.
This paper presents results of U–Pb dating (SHRIMP-II) and Lu–Hf (LA–ICP MS) isotope study of zircon from Paleoarchean plagiogneisses and plagiogranitoids of the Onot and Bulun blocks of the Sharyzhalgai uplift. Magmatic zircons from the Onot plagiogneiss and Bulun gneissic trondhjemite are dated at 3388±11 and 3311±16 Ma, respectively. Magmatic zircons from plagiogneisses and plagiogranitoids of the studied tonalite–trondhjemite–granodiorite (TTG) complexes are characterized mainly by positive values of εHf indicating that felsic melts were generated mainly from juvenile (mafic) sources, which are derived from a depleted mantle reservoir. The variable Hf isotope composition in magmatic zircons and the lower average εHf values in comparison with the depleted mantle values suggest the contributions of both mafic and more ancient crustal sources to magma formation. Metamorphic zircons from the gneissic plagiogranite and migmatized plagiogneiss either inherited the Hf isotope composition from magmatic zircon or are enriched in radiogenic Hf. The more radiogenic Hf isotope composition of metamorphic zircons from the migmatized plagiogneisses is due to their interaction with melt during partial melting. Variations in the Lu–Hf isotope composition of zircon from the Bulun rocks in the period 3.33–3.20 Ga are due to the successive melting of mafic crust or the growing contribution of crustal material to their genesis. Correlation between the Lu–Hf isotope characteristics of zircon and the Sm–Nd parameters of the Onot plagiogneisses points to the contribution of ancient crustal material to their formation. The bimodal distribution of the model Hf ages of zircons reflects two stages of crustal growth in the Paleoarchean: 3.45–3.60 and ~ 3.35 Ga. The isotope characteristics of zircon and rocks of the TTG complexes, pointing to recycling of crustal material, argue for the formation of plagiogneisses and plagiogranitoids as a result of melting of heterogeneous (mafic and more ancient crustal) sources in the thickened crust.  相似文献   

3.
Geochemical, isotopic-geochemical, and geochronological information was obtained on magmatic rocks from the Saltychan anticlinorium in the Azov domain of the Ukrainian Shield. The rocks affiliate with the calc-alkaline series and a high-Mg series. The rocks of these series notably differ in concentrations of trace elements and REE and range from gabbro to granodiorite-quartz diorite in composition. The NORDSIM ionprobe U-Pb zircons ages of rocks belonging to the Obitochnen Complex and having both elevated and normal mg# correspond to 2908–2940 Ma. The Osipenkovskaya intrusion has an age of 2855 ± 19 Ma. The most alkaline North Obitochnen intrusion was emplaced in the Proterozoic, at 2074 ± 11 Ma. The age of the amphibolite metamorphism of the host gneisses is reliably dated at 3120–3000 Ma. The model Sm-Nd ages of the intrusive rocks do not exceed 3150 Ma. According to geochemical evidence, the parental melts of the magmatic rocks were derived from mantle domains variably enriched in lithophile elements. The results obtained by studying the Sm-Nd isotopic system corroborate the conclusion drawn from geochemical evidence that most of the melts were derived from the mildly enriched mantle, practically without involvement of ancient crustal material. The mantle became enriched in LREE at approximately 3000 Ma, which corresponds to the age of metamorphism of the supracrustal rocks. This process was separated from the derivation of the melts by a time span of 70–80 Ma. The relative age of the intrusive rocks and their variable composition can be most adequately explained by a contribution of heat and material from a plume to the derivation of the parental melts of these rocks.  相似文献   

4.
Data on the composition, age, and source of material of Aptian rocks composing a bimodal volcanic complex and related granitoids in the northern margin of the Amur microcontinent indicate that the granodiorites of the Talalinskii Massif and subalkaline granites of the Dzhiktandiunskii Massif crystallized at 117 ± 2 and 119 ± 2 Ma, respectively (40Ar/39Ar method), and their crystallization ages coincide with the age of volcanic rocks of the Gal’kinskii bimodal complex. These data make it possible to combine the rocks within a single volcano-plutonic association. Geochemical and isotopic-geochemical features of trachybasaltic andesites of the Gal’kinskii bimodal complex suggest that the parental melts were derived from such sources as PREMA (or DM) and an enriched source of the EMII type at a subordinate contribution of a crustal source. The parental melts of rhyolites of the Gal’kinskii Complex and granitoids of the Talalinskii and Dzhiktandinskii massifs were derived from crustal material with minor amounts of juvenile material. The bimodal volcanic association and related granitoids dated at 119–115 Ma were most likely formed in geodynamic environments implying the ascent of the asthenospheric mantle.  相似文献   

5.
Geological observations in combination with previously published and new isotopic data allowed us to reconstruct the history of geological events that eventually gave rise to the formation of the Berdyaush pluton situated on the western slope of the South Urals: (1) emplacement of gabbro into Lower Riphean sedimentary rocks (1410–1390 Ma); an enriched mantle source of gabbro arising in the Archean or Paleoproterozoic; (2) formation of granitic melt in the lower crust; Archean TTG association subsequently enriched in K and correlative elements as a result of interaction with enriched mantle-derived magmas and related fluids was a magma source; mixing of mantle and crustal magmas in the course of their synchronous ascent with formation of hybrid intrusive rocks; injections of mafic and hybrid melts into incompletely solidified granite; fragmentation of such injections with the formation of melanocratic nodules; emplacement of basic dikes into the cooled granite—all these events took place 1410–1360 Ma ago; (3) discrete episodes of partial melting of enriched mantle source with waning intensity; formation of minor volumes of melt, which solidified under auto- and paraautochthonous conditions as local domains highly enriched in incompatible elements (1360–1270 Ma); (4) partial melting of those domains resulting in the formation of minor nepheline syenite intrusions (915–800 Ma), containing relict zircon grains dated at >1270 Ma; (5) injections of mantle-derived alkaline melt contaminated with crustal granitic material as microsyenite and syenite porphyry dikes (700–500 Ma ?). Thus, the Berdyaush pluton is a projection of a local domain of mantle and crustal magma generation, which periodically resumed its activity over almost a billion years.  相似文献   

6.
华北燕山带:构造、埃达克质岩浆活动与地壳演化(英文)   总被引:19,自引:6,他引:19  
埃达克质火成岩在中国东部,包括燕山带是很常见的,一般认为它们是下地壳不均匀的镁铁质岩石及/或富集的上地幔岩石在高压(≥1.5 GPa)下部分熔融的结果。在燕山带内埃达克岩浆的形成有一个很长的时间(约190~80 Ma),然而岩浆活动的峰期却与约170~130 Ma间有基底岩石卷入的陆壳收缩期相一致。尽管埃达克质岩浆活动的历史很长,但那种把岩浆活动与岩石圈的拆沉效应相联系的模式似乎是不适当的。在该带内,埃达克质与非埃达克质岩浆活动有一部分是同时的,而且在地理分布上也是相间的,这说明了在下地壳和上地幔岩石的部分熔融中成分是相当不均匀的。侏罗纪及白垩纪熔融作用的热源应当是与古太平洋板块俯冲相关的中生代板底垫托的玄武岩浆。除了局部例外,在燕山带,埃达克质岩浆活动的终结和碱性岩浆活动的开始约在130~120 Ma,在此时期收缩作用使东亚大达200万km~2以上的地区发生了NW—SE向的区域性伸展作用。强烈的地壳伸展仅局限于华北克拉通北缘分布的少数几个变质核杂岩中。陆壳的伸展减薄合理地解释了130~120 Ma间发生高压埃达克质熔融条件的终结,尽管还有局部年轻的埃达克火山活动(约120~80Ma)可以在伸展规模有限而厚的地壳依然存在的地区继续出现。燕山区早白垩世的碱性侵入体中的锆石不存在前寒武纪?  相似文献   

7.
报道了滇东南个旧超大型锡多金属矿区西区北部白云山碱性岩新的锆石U-Pb年龄、全岩地球化学和Sr-Nd同位素数据。LA-ICP-MS锆石U-Pb定年结果表明,白云山碱性正长岩形成于晚白垩世(80.0±0.6 Ma),与个旧地区的中基性岩及花岗岩均为同一次构造岩浆事件的产物;碱性正长岩与霞石正长岩具有相似的主微量元素地球化学特征及Sr-Nd同位素组成,暗示二者很可能是源于同一富集地幔源区并经历了不同程度演化的产物。结合已有的元素和同位素组成结果,认为碱性岩、中基性岩和成矿花岗岩很可能分别源自富集的岩石圈地幔、正常的岩石圈地幔和地壳源区。在晚白垩世伸展构造背景控制下,源于不均一岩石圈地幔的碱性和中基性的岩浆底侵,促使中下地壳岩石部分熔融形成花岗质熔体,在上升至近地表过程中引起构造活动带成矿物质的富集,从而形成个旧超大型锡多金属矿床的矿化格局。可以说,源于富集地幔的碱性岩浆在含矿花岗质岩浆的成岩成矿过程中,应不只是提供热量的贡献。  相似文献   

8.
The paper reports the results of petrogeochemical and isotope (Sr-Nd-Pb-Hf) study of the Late Paleozoic granitoids of the Anyui–Chukotka fold system by the example of the Kibera and Kuekvun massifs. The age of the granitoids from these massifs and granite pebble from conglomerates at the base of the overlying Lower Carboniferous rocks is within 351–363 Ma (U-Pb, TIMS, SIMS, LA-MC-ICP-MS, zircon) (Katkov et al., 2013; Luchitskaya et al., 2015; Lane et al., 2015) and corresponds to the time of tectonic events of the Ellesmere orogeny in the Arctic region. It is shown that the granitoids of both the massifs and granite pebble are ascribed to the I-type granite, including their highly differentiated varieties. Sr-Nd-Pb-Hf isotope compositions of the granitoids indicate a contribution of both mantle and crustal sources in the formation of their parental melts. The granitic rocks of the Kibera and Kuekvun massifs were likely formed in an Andean-type continental margin setting, which is consistent with the inferred presence of the Late Devonian–Early Carboniferous marginal-continental magmatic arc on the southern Arctida margin (Natal’in et al., 1999). Isotope data on these rocks also support the idea that the granitoid magmatism was formed in a continental margin setting, when melts derived by a suprasubduction wedge melting interacted with continental crust.  相似文献   

9.
Part II of this paper reports geochemical and Nd isotope characteristics of the volcanogenic and siliceous-terrigenous complexes of the Lake zone of the Central Asian Caledonides and associating granitoids of various ages. Geological, geochronological, geochemical, and isotopic data were synthesized with application to the problems of the sources and main mechanisms of continental crust formation and evolution for the Caledonides of the Central Asian orogenic belt. It was found that the juvenile sialic crust of the Lake zone was formed during the Vendian-Cambrian (approximately 570–490 Ma) in an environment of intraoceanic island arcs and oceanic islands from depleted mantle sources with the entrainment of sedimentary crustal materials into subduction zones and owing to the accretion processes of the amalgamation of paleoceanic and island arc complexes and Precambrian microcontinents, which terminated by ∼490 Ma. The source of primary melts for the low-Ti basalts, andesites, and dacites of the Lake zone ophiolites and island arc complexes was mainly the depleted mantle wedge above a subduction zone. In addition, an enriched plume source contributed to the genesis of the high-Ti basalts and gabbroids of oceanic plateaus. The source of terrigenous rocks associating with the volcanics was composed of materials similar in composition to the country rocks at a minor and varying role of ancient crustal materials introduced into the ocean basin owing to the erosion of Precambrian microcontinents. The sedimentary rocks of the accretionary prism were derived by the erosion of mainly juvenile island arc sources with a minor contribution of rocks of the mature continental crust. The island arc and accretion stages of the development of the Lake zone (∼540–590 Ma) were accompanied by the development of high- and low-alumina sodic granitoids through the melting at various depths of depleted mantle reservoirs (metabasites of a subducted oceanic slab and a mantle wedge) and at the base of the island arc at the subordinate role of ancient crustal rocks. The melts of the postaccretion granitoids of the Central Asian Caledonides were derived mainly from the rocks of the juvenile Caledonian crust at an increasing input of an ancient crustal component owing to the tectonic mixing of the rocks of ophiolitic and island arc complexes and microcontinents. The obtained results indicate that the Vendian-Early Paleozoic stage of the evolution of the Central Asian orogenic belt was characterized by the extensive growth of juvenile continental crust and allow us to distinguish a corresponding stage of juvenile crust formation.  相似文献   

10.
ABSTRACT

Abundant evidence points to the Cretaceous crust–mantle interaction and plate subduction in the Gan-Hang Tectonic Belt (GHTB), southeastern China, but the evolutionary process remains poorly constrained. Here we conduct a comprehensive study on Daqiaowu granitic porphyry and diabase dikes in the eastern GHTB, in conjunction with previous studies on simultaneous felsic and mafic rocks along the GHTB, to demonstrate their petrogenesis and geodynamic evolutionary process. The Daqiaowu granitic porphyry (125 Ma), as well as the coeval granitic rocks, exhibits high zircon saturation temperatures, alkalis, 104*Ga/Al ratios, and Zr + Nb + Ce + Y contents, concluding a distinctive belt of the Early Cretaceous (~137–125 Ma) A-type volcanic–intrusive rocks in the GHTB. Their εNd(t) and zircon εHf(t) values gradually increased through time from approximately ?9.0 to ?1.0 and ?10.0 to +4.0, respectively, implying increasing contribution of mantle-derived components to their formation, and hence progressively intensified crust–mantle interaction in an intra-arc rift environment (a geodynamic transition stage from continental arc to back-arc) during the Early Cretaceous. This plausibility is further supported by the Early Cretaceous Daqiaowu diabase dikes and coeval mafic rocks which exhibit arc-like magmatic signatures and were derived from mantle wedge. In contrast, the Late Cretaceous mafic rocks show ocean island basalt-like geochemical characteristics, reflecting a depleted asthenosphere mantle source. This discrepancy of mantle sources concludes that the geodynamic setting in the GHTB may have basically transferred to back-arc regime in the Late Cretaceous. Thus, the Cretaceous geodynamic evolutionary process in the GHTB can be defined as the Early Cretaceous gradually intensified crust–mantle interaction in a geodynamic transition stage (from continental arc to back-arc extension) and the Late Cretaceous back-arc extensional setting.  相似文献   

11.
The paper presents newly obtained data on the geological structure, age, and composition of the Gremyakha-Vyrmes Massif, which consists of rocks of the ultrabasic, granitoid, and foidolite series. According to the results of the Rb-Sr and Sm-Nd geochronologic research and the U-Pb dating of single zircon grains, the three rock series composing the massif were emplaced within a fairly narrow age interval of 1885 ± 20 Ma, a fact testifying to the spatiotemporal closeness of the normal ultrabasic and alkaline melts. The interaction of these magmas within the crust resulted in the complicated series of derivatives of the Gremyakha-Vyrmes Massif, whose rocks show evidence of the mixing of compositionally diverse mantle melts. Model simulations based on precise geochemical data indicate that the probable parental magmas of the ultrabasic series of this massif were ferropicritic melts, which were formed by endogenic activity in the Pechenga-Varzuga rift zone. According to the simulation data, the granitoids of the massif were produced by the fractional crystallization of melts genetically related to the gabbro-peridotites and by the accompanying assimilation of Archean crustal material with the addition of small portions of alkaline-ultrabasic melts. The isotopic geochemical characteristics of the foidolites notably differ from those of the other rocks of the massif: together with carbonatites, these rocks define a trend implying the predominance of a more depleted mantle source in their genesis. The similarities between the Sm-Nd isotopic characteristics of foidolites from the Gremyakha-Vyrmes Massif and the rocks of the Tiksheozero Massif suggest that the parental alkaline-ultrabasic melts of these rocks were derived from an autonomous mantle source and were only very weakly affected by the crust. The occurrence of ultrabasic foidolites and carbonatites in the Gremyakha-Vyrmes Massif indicates that domains of metasomatized mantle material were produced in the sublithospheric mantle beneath the northeastern part of the Fennoscandian Shield already at 1.88 Ga, and these domains were enriched in incompatible elements and able to produce alkaline and carbonatite melts. The involvement of these domains in plume-lithospheric processes at 0.4–0.36 Ga gave rise to the peralkaline melts that formed the Paleozoic Kola alkaline province.  相似文献   

12.
The REE distribution patterns and Nd whole-rock and mineral isotope ratios of the Kingash ultramafic-mafic massif enabled us to propose a multistage history for its evolution at 1410 and 875 Ma. These stages reflect the magmatic evolution of the Siberian paleocontinent margin during the Late Precambrian. The age of metamorphism of the massif during collision and accretion in the Early Paleozoic (∼500 Ma) was obtained based on a Sm-Nd mineral isochron from rheomorphic veined albitite. The Nd and Sr isotopic compositions of rocks from the Kingash massif suggest mantle sources for picritic and basic magmas, which are thought to have originated by mixing of different proportions of depleted (PREMA or DM) and enriched (EM) melts. The initial isotope ratios of the parental melts transformed during interaction with Sr-rich material from the host metasedimentary complexes.  相似文献   

13.
The Khangai batholith is one of the largest groups of granitoid plutons produced in Central Asia in the Late Permian–Early Triassic, at 270–240 Ma. The batholith occurs in the Khangai collage of Precambrian terranes, which include Early Precambrian crustal blocks (Dzabkhan and Tarbagatai) and Early to Late Neoproterozoic structures of the Songino block in their surroundings. The axial zone of this collage is overprinted by a basin filled with Devonian volcanic–siliceous rocks and Early to Middle Carboniferous terrigenous rocks. The isotopic parameters (Nd and Pb) of granitoids in the Khangai batholith indicate that the melts were derived from compositionally contrasting crustal sources and a single mantle one. The massifs hosted in the Precambrian blocks were produced with the involvement of lower crustal material, with various ages of the origin of the crust and its differentiation into upper and lower ones. The crust of the Tarbagatai and Dzabkhan blocks was produced in the Early Archean and was differentiated at the Archean–Proterozoic boundary. The crust of the Songino block was formed in the Paleoproterozoic and differentiated in the Early Neoproterozoic. According to the Pb and Nd isotopic parameters of granitoids in the Khangai Basin, the regional continental crust was close to the juvenile one, i.e., the continental crust of the Khangai Basin had still not been differentiated by the time when the Khangai batholith was produced. A single mantle source was involved in the origin of the melts of granitoids of the Khangai batholith in various tectonic blocks. The evolution of the Pb isotopic composition of this sources is consistent with the Stacey–Kramers model at µ = 9.5. This source can be identified with the enriched mantle, which has a higher U/Pb ratio than the depleted mantle and lower εNd(T) of 0 to +2.  相似文献   

14.
Based on generalization of available geochronological data, Late Mesozoic magmatic associations in the northeastern part of the Amurian microcontinent are divided into three groups: 142–125, 124–115, and <110 Ma. The age of these associations decreases with approaching the Pacific margin of Asia. In the same direction, they show a change in sources of their parental melts: continental crust (142–125 Ma) → continental crust + PREMA (DM) (124–115 Ma) → continental crust + PREMA (DM) + EMII (<110 Ma). Isotope-geochemical (Sr-Nd) study indicates that intrusive and volcanic rocks of the Late Mesozoic magmatic associations in the northeastern part of the Amurian microcontinent were originated in geodynamic settings that provided access of enriched mantle sources to magma formation. The most probable of these settings are as follows: (1) plate sliding accompanying by the formation of slab window beneath continental margin; (2) passage of the Asian margin over the East Asian mantle hot field in the Late Mesozoic; (3) asthenospheric upwelling due to delamination of the lower crust during closure of the Mongolian-Okhotsk ocean caused by collision between the Amurian microcontinent, Dzhugdzhur-Stanovoy, and Selenga-Stanovoy superterranes in the Central Asian fold belt.  相似文献   

15.
Bulk-rock Lu-Hf and Sm-Nd isotope compositions, as well as major and trace element data are presented for metavolcanic rocks from the Mesoarchaean (ca. 3075 Ma) Ivisaartoq Supracrustal Belt in the Nuuk region of southern West Greenland. The εHft calculated at 3075 Ma range from +0.8 to +3.1 and the corresponding εNdt values range from +0.7 to +3.6, which forms an array that is displaced off the mantle array for these two isotopic systems. Primitive mantle normalized trace element plots of the metabasalts display negative Nb- and Ti-anomalies in combination with the elevated Th abundances, which is consistent with a subduction zone affinity as proposed by previous studies of this metavolcanic belt. No significant correlations are observed between the isotope compositions and proxies of shallow crustal contamination in the Ivisaartoq rocks, despite clear evidence for inherited Eoarchaean zircon [Polat et al. (2009a) Chemical Geology 268, 248-271], which would have dominated the bulk-rock Hf-isotope budget. Furthermore, the measured samples are less radiogenic than the estimate for the depleted mantle composition at 3075 Ma. The lack of isotope and trace element correlation suggests incomplete equilibration between the crustal contaminant and the parental Ivisaartoq melts. We prefer a petrogenetic model with some combination of slab-derived metasomatism of the mantle source region for the Ivisaartoq magmas, which homogenized their trace element contents, in combination with the incorporation of granitoid residue with unradiogenic Hf-isotope composition at higher degrees of partial melting and finally the eruption of mechanically entrained Eoarchaean crust without significant chemical equilibration. The geochemical arc-affinity and lower than depleted mantle (DM) isotope compositions of these metavolcanic rocks support the notion that crustal recycling and plate tectonics has been operating on Earth since at least the Mesoarchaean Eon.  相似文献   

16.
The dike-vein complex of the Moncha Tundra Massif comprises dolerites, gabbro-pegmatites, and aplites. The dolerite dikes are classified into three groups: high-Ti ferrodolerites, ferrodolerites, low-Ti and low-Fe gabbro-dolerites. The U-Pb age of the ferrodolerites is 2505 ± 8 Ma, and the amphibole-plagioclase metagabbroids hosting a ferrodolerite dike are dated at 2516 ± 12 Ma. Data on the U-Pb isotopic system of zircon from the gabbro-pegmatites and titanite from the aplites indicate that the late magmatic evolution of the Moncha Tundra Massif proceeded at 2445 ± 1.7 Ma, and the youngest magmatic events in the massif related to the Svecofennian orogeny occurred at 1900 ± 9 Ma. The data obtained on the Sm-Nd and Rb-Sr isotopic systems and the distribution of trace elements and REE in rocks of the dike-vein complex of the massifs provide insight into the composition of the sources from which the parental magmas were derived. The high-Ti ferrodolerites were melted out of a deep-sitting plume source that contained an asthenospheric component. The ferrodolerites were derived from a mantle MORB-type source that contained a crustal component. The parental melts of the gabbro-dolerites were melted out of the lithospheric mantle depleted in incompatible elements after Archean crust-forming processes above an ascending mantle plume, with the participation of a crustal component. The gabbro-dolerites and the rocks of the layered complex of the Moncha Tundra Massif exhibit similar geochemical characteristics, which suggest that their parental melts could be derived from similar sources but with more clearly pronounced crustal contamination of the parental melts of the rocks of the massif itself. The geochemical traits of the gabbro-pegmatites are thought to be explained not only by the enrichment of the residual magmas in trace elements and a contribution of a crustal component but also by the uneven effect of sublithospheric mantle sources. The aplites were derived from a sialic crustal source.  相似文献   

17.
采用LA-ICP-MS方法对郯庐断裂带巢湖—庐江段的晚中生代火山岩进行了锆石U-Pb年代学研究。由6个样品获得的该处火山喷发时间在距今125~93Ma,为早白垩世晚期至晚白垩世初期,经历了32Ma的喷发历史。与附近的庐枞盆地、北大别造山带及北淮阳地区相比,该地火山喷发具有较晚的结束时间,说明岩石圈减薄具有相对强烈的程度和较长的持续时间。93Ma是已知的华北克拉通残留富集岩石圈地幔最晚的岩浆岩年代学记录。锆石的饱和温度计算、岩浆中较低的MgO含量和Mg#值均不支持岩浆由拆沉的下地壳部分熔融形成,岩浆活动的可能成因是壳幔相互作用,岩浆源区具有由幔源向壳源再过渡到幔源的时间演化顺序。这暗示断裂带下强烈的软流圈上涌引起岩石圈地幔的熔融(距今125Ma),随后岩石圈持续的减薄作用导致其内部热流升高,出现了以流纹岩为代表的地热异常背景下地壳源区的部分熔融(距今120Ma),而最终岩石圈强烈减薄背景下的软流圈物质参与岩浆过程可能是晚期幔源岩浆(距今93Ma)的成因。  相似文献   

18.
徐峥  郑永飞 《地球科学》2019,44(12):4135-4143
大陆玄武岩通常具有与洋岛玄武岩相似的地球化学成分,其中含有显著的壳源组分.对于洋岛玄武岩来说,虽然其中的壳源组分归咎于深俯冲大洋板片的再循环,但是对板片俯冲过程中的壳幔相互作用缺乏研究.对于大陆玄武岩来说,由于其形成与特定大洋板片在大陆边缘之下的俯冲有关,可以用来确定古大洋板片俯冲的地壳物质再循环.本文总结了我们对中国东部新生代玄武岩所进行的一系列地球化学研究,结果记录了古太平洋板片俯冲析出流体对地幔楔的化学交代作用.这些大陆玄武岩普遍具有与洋岛玄武岩类似的地球化学成分,在微量元素组成上表现为富集LILE和LREE、亏损HREE,但是不亏损HFSE的分布特点,在放射成因同位素组成上表现为亏损至弱富集的Sr-Nd同位素组成.在排除地壳混染效应之后,这些玄武岩的地球化学特征可以由其地幔源区中壳源组分的性质来解释.俯冲大洋地壳部分熔融产生的熔体提供了地幔源区中的壳源组分,其中包括洋壳镁铁质火成岩、海底沉积物和大陆下地壳三种组分.华北和华南新生代大陆玄武岩在Pb同位素组成上存在显著差异,反映它们地幔源区中的壳源组分有所区别.中国东部新生代玄武岩的地幔源区是古太平洋板片于中生代俯冲至亚欧大陆东部之下时,在>200 km的俯冲带深度发生壳幔相互作用的产物.在新生代期间,随着俯冲太平洋板片的回卷引起的中国东部大陆岩石圈拉张和软流圈地幔上涌,那些交代成因的地幔源区发生部分熔融,形成了现今所见的新生代玄武岩.   相似文献   

19.
The paper reports results of petrological-geochemical, isotope, and geochronological studies of the Preobrazhenka gabbro–granitoid massif located in the Altai collisional system of Hercynides, Eastern Kazakhstan. The massif shows evidence for the interaction of compositionally contrasting magmas during its emplacement. Mineralogical–petrological and geochemical studies indicate that the gabbroid rocks of the massif were formed through differentiation of primary trachybasaltic magma and its interaction with crustal anatectic melts. Origin of the granitoid rocks is related to melting of crustal protoliths under the thermal effect of mafic melts. The mantle–crust interaction occurred in several stages and at different depths. A model proposed here to explain the intrusion formation suggests subsequent emplacement of basite magmas in lithosphere and their cooling, melting of crustal protolith, emplacement at the upper crustal levels and cooling of the granitoid and basite magmas. It was concluded that the formation of gabbro-granitoid intrusive massifs serves as an indicator of active mantle–crust interaction at the late evolutionary stages of accretionary–collisional belts, when strike-slip pull-apart deformations causes the high permeability of lithosphere.  相似文献   

20.
Early Paleozoic alkaline basic magmatism in the Kuznetsk Alatau is manifested in the Upper Petropavlovka pluton of gabbro, feldspathoid rocks (theralites, mafic foidolites, and nepheline syenites), and Ca-carbonatites. According to Sm–Nd and Rb–Sr isotope data, the pluton formed in the Middle Cambrian (509 ± 10 Ma). The silicate igneous rocks correspond in the contents of silica, alumina, and alkalies to derivates of a K–Na alkaline basic association. The Ca-carbonatites are characterized by a high-temperature (600–900 °C) paragenesis of apatite, clinopyroxene, ferromonticellite, phlogopite, and magnetite. They are enriched in P2O5 (up to 6.4 wt.%), Sr (up to 3000–4500 ppm; Sr/Ba ~ 5–7), and REE + Y (up to 800 ppm) and show evidence for liquation genesis. The predominant magmatic source (εNd(T) = 5–7) was moderately depleted PREMA, possibly combined with E-MORB and EM. According to the isotopic data ((87Sr/86Sr)T ~ 0.7024–0.7065; δ18O ~ 6.3–15.5‰; δ18C ~ –3.5 to –2.0‰), the fractionation of the melts was accompanied by their crustal contamination. The trace-element composition of the mafic rocks testifies to the participation of a substance similar to the substrata of the parental magmas of MORB, IAB, and OIB in the magma generation. This suggests intrusion in the geodynamic setting of interaction between the active continental margin and an ascending mantle diapir. Most likely, the intrusion led to the mixing of material from different sources, including the components of PREMA, enriched suprasubduction lithospheric mantle (EM), and continental crust. The assumption is made that the complexes of highly alkaline rocks and carbonatites in the western Central Asian Fold Belt are of plume origin and belong to an Early Paleozoic large igneous province.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号