首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In the Panxi region of the Late Permian (~ 260 Ma) Emeishan large igneous province (ELIP) there is a bimodal assemblage of mafic and felsic plutonic rocks. Most Emeishan granitic rocks were derived by differentiation of basaltic magmas (i.e. mantle-derived) or by mixing between crustal melts and primary basaltic magmas (i.e. hybrid). The Yingpanliangzi granitic pluton within the city of Panzhihua intrudes Sinian (~ 600 Ma) marbles and is unlike the mantle-derived or hybrid granitic rocks. The SHRIMP zircon U–Pb ages of the Yingpanliangzi pluton range from 259 ± 8 Ma to 882 ± 22 Ma. Younger ages are found on the zircon rims whereas older ages are found within the cores. Field relationships and petrography indicate that the Yingpanliangzi pluton must be < 600 Ma, therefore the older zircons are interpreted to represent the protolith age whereas the younger analyses represent zircon re-crystallization during emplacement. The Yingpanliangzi granites are metaluminous and have negative Ta–NbPM anomalies, low εNd(260 Ma) values (? 3.9 to ? 4.4), and high ISr (0.71074 to 0.71507) consistent with a crustal origin. The recognition of a crustally-derived pluton along with mantle-derived and mantle–crust hybrid plutons within the Panxi region of the ELIP is evidence for a complete spectrum of sources. As a consequence, the types of Panxi granitoids can be distinguished according to their ASI, Eu/Eu*, εNd(T), εHf(T), TZr(°C) and Nb–TaPM values. The diverse granitic magmatism during the evolution of the ELIP from ~ 260 Ma to ~ 252 Ma demonstrates the complexity of crustal growth associated with LIPs.  相似文献   

2.
Magma mingling has been identified within the continental margin of southeastern China.This study focuses on the relationship between mafic and felsic igneous rocks in composite dikes and plutons in this area,and uses this relationship to examine the tectonic and geodynamic implications of the mingling of mafic and felsic magmas.Mafic magmatic enclaves(MMEs) show complex relationships with the hosting Xiaocuo granite in Fujian area,including lenticular to rounded porphyritic microgranular enclaves containing abundant felsic/mafic phenocrysts,elongate mafic enclaves,and back-veining of the felsic host granite into mafic enclaves.LA-ICP-MS zircon U-Pb analyses show crystallization of the granite and dioritic mafic magmatic enclave during ca.132 and 116 Ma.The host granite and MMEs both show zircon growth during repeated thermal events at-210 Ma and 160-180 Ma.Samples from the magma mingling zone generally contain felsic-derived zircons with well-developed growth zoning and aspect ratios of 2-3,and maficderived zircons with no obvious oscillatory zoning and with higher aspect ratios of 5-10.However,these two groups of zircons show no obvious trace element or age differences.The Hf-isotope compositions show that the host granite and MMEs have similar ε_(Hf)(t) values from negative to positive which suggest a mixed source from partial melting of the Meso-Neoproterozoic with involvement of enriched mantlederived magmas or juvenile components.The lithologies,mineral associations,and geochemical characteristics of the mafic and felsic rocks in this study area indicate that both were intruded together,suggesting Early Cretaceous mantle—crustal interactions along the southeastern China continental margin.The Early Cretaceous magma mingling is correlated to subduction of Paleo-Pacific plate.  相似文献   

3.
锡矿往往与长英质岩浆岩伴生,然而锡矿形成的热能源区尚不清楚,其可能与地幔物质相关。我国云南锡矿带中出露的中-酸性岩石及碱性岩杂岩体为研究锡矿及其周围岩浆成因提供了良好的物质条件。本文报道了云南个旧地区代表性的花岗岩、辉长-闪长岩和碱性岩类新的全岩地球化学、锆石U-Pb年代学和Hf同位素数据。LA-ICP-MS锆石U-Pb定年表明上述岩石分别形成于81.43±0.46Ma(82.89±0.58M)、81.35±0.22Ma和80.35±0.72Ma,指示它们为晚白垩世近同期岩浆活动的产物。其中闪长岩、碱性岩和花岗岩中锆石的Hf同位素组成不均一,ε_(Hf)(t)分别为-4.2~+0.8、-7.5~-1.9和-8.4~+0.4。尽管这些岩体的侵入时代一致,但它们的地球化学特征和同位素特征存在差异,表明这三类火成岩来自不同的岩浆源区,三者不是同一母岩浆相互演化的关系。个旧杂岩体中花岗岩为弱过铝质岩石,SiO_2与P_2O_5含量呈负相关的关系,排除S型花岗岩的可能。亏损Zr、Nb、Sr、Eu等大离子亲石元素的特征可能为锆石、磷灰石、长石类造岩矿物分离结晶作用的结果;Zr、Nb、Ce和Y总量较低,低的FeOT/MgO比值和低的锆石饱和温度表明,指示出个旧地区的花岗岩应为高分异I型花岗质岩石而非A型花岗岩。个旧地区形成于晚白垩世时期的中基性、碱性岩石可能为不同的幔源岩浆近同时侵入的产物,底侵的幔源熔体带来热量诱发中、下地壳岩石发生部分熔融形成含矿的花岗岩,幔源岩浆对于成矿至少在能量也可能在成矿物质上有重要的贡献。  相似文献   

4.
《Chemical Geology》2007,236(1-2):112-133
The Cida A-type granitic stock (∼ 4 km2) and Ailanghe I-type granite batholith (∼ 100 km2) in the Pan-Xi (Panzhihua-Xichang) area, SW China, are two important examples of granites formed during an episode of magmatism associated with the Permian Emeishan mantle plume activity. This is a classic setting of plume-related, anorogenic magmatism exhibiting the typical association of mantle-derived mafic and alkaline rocks along with silicic units. SHRIMP zircon U–Pb data reveal that the Cida granitic pluton (261 ± 4 Ma) was emplaced shortly before the Ailanghe granites (251 ± 6 Ma). The Cida granitoids display mineralogical and geochemical characteristics of A-type granites including high FeO/MgO ratios, elevated high-field-strength elements (HFSE) contents and high Ga/Al ratios, which are much higher than those of the Ailanghe granites. All the granitic rocks show significant negative Eu anomalies and demonstrate the characteristic negative anomalies in Ba, Sr, and Ti in the spidergrams. It can be concluded that the Cida granitic rocks are highly fractionated A-type granitoids whereas the Ailanghe granitic rocks belong to highly evolved I-type granites.The Cida granitoids and enclaves have Nd and Sr isotopic initial ratios (εNd(t) =  0.25 to + 1.35 and (87Sr/86Sr)i = 0.7023 to 0.7053) close to those of the associated mafic intrusions and Emeishan basalts, indicating the involvement of a major mantle plume component. The Ailanghe granites exhibit prominent negative Nb and Ta anomalies and weakly positive Pb anomalies in the spidergram and have nonradiogenic εNd(t) ratios (− 6.34 to − 6.26) and high (87Sr/86Sr)i values (0.7102 to 0.7111), which indicate a significant contribution from crustal material. These observations combined with geochemical modeling suggest that the Cida A-type granitoids were produced by extensive fractional crystallization from basaltic parental magmas. In contrast, the Ailanghe I-type granites most probably originated by partial melting of the mid-upper crustal, metasedimentary–metavolcanic rocks from the Paleo-Mesoproterozoic Huili group and newly underplated basaltic rocks.In the present study, it is proposed that petrogenetic distinctions between A-type and I-type granites may not be as clear-cut as previously supposed, and that many compositional and genetically different granites of the A- and I-types can be produced in the plume-related setting. Their ultimate nature depends more importantly on the type and proportion of mantle and crustal material involved and melting conditions. Significant melt production and possible underplating and/or intrusion into the lower crust, may play an important role in generating the juvenile mafic lower crust (average 20 km) in the central part of the Emeishan mantle plume.  相似文献   

5.
Major and trace element, zircon U–Pb and Hf-isotope data are reported for mafic intrusions and host granite from the Kachang pluton (North Yingjiang of SW Yunnan) in the Tengchong Terrane, in order to investigate their sources, petrogenesis and tectonic implications. The zircon U–Pb age of the mafic rocks (~55 Ma) is identical to that of the host granite (56.7 ± 0.6 Ma). The mafic rocks have high MgO concentrations (up to 13.43 wt.%) at low SiO2 contents (low to 42.73 wt.%) and slight negative to positive εHf(t) values (?2.26 to +0.59). They are enriched in LILE and LREEs and depleted in HFSEs, which can be explained as melts derived from a enriched mantle, with some crustal contamination. The host granite have high SiO2 contents (69.18–72.65 wt.%), highly negative εHf(t) values (?9.08 to ?5.14), suggesting mainly derived from an ancient crustal source. Field observations, geochronology, geochemistry and zircon Hf isotopic compositions point to a complex petrogenesis, where enriched mantle- and crust-derived magma mixing was coupled with crystal fractionation, thus explaining the genetic link between mafic and felsic magmas, result of mafic magma upwelling triggered by the subduction rollback of the Neotethyan slab. Our new data, along with the data reported (especially zircon U–Pb dating and Lu–Hf isotope data) in the Tengchong Terrane, indicate that the spatial and temporal variations and changing magmatic compositions over time in the Tengchong Terrane closely resemble those of the Lhasa Terrane in southern and central Tibet.  相似文献   

6.
Two Late Neoproterozoic post-collisional igneous suites, calc-alkaline (CA) and alkaline–peralkaline (Alk), widely occur in the northernmost part of the Arabian–Nubian Shield. In Sinai (Egypt) and southern Israel they occupy up to 80% of the exposed basement. Recently published U–Pb zircon geochronology indicates a prolonged and partially overlapping CA and Alk magmatism at 635–590 Ma and 608–580 Ma, respectively. Nevertheless in each particular locality CA granitoids always preceded Alk plutons. CA and Alk igneous rocks have distinct chemical compositions, but felsic and mafic rocks in general and granitoids from the two suites in particular cannot be distinguished by their Nd, Sr and O isotope ratios. Both suites are characterized by positive εNd(T) values, from + 1.5 to + 6.0 (150 samples, 28 of them are new analyses), but predominance of juvenile crust in the region prevents unambiguous petrogenetic interpretation of the isotope data. Comparison of geochemical traits of felsic and mafic rocks in each suite suggests a significant contribution of mantle-derived components to the silicic magmas. Model calculation shows that the alkaline granite magma could have been produced by partial (~ 20%) melting of rocks corresponding to K-rich basalts. Material balance further suggests that granodiorite and quartz monzonite magmas of the CA suite could form by mixing of the granite and gabbro end-members at proportions of 85/15. In the Alk suite, alkali feldspar and peralkaline granites have evolved mainly by fractional crystallization of feldspars and a small amount of mafic minerals from a parental syenogranite melt. Thus the protracted, 20 m.y. long, contemporaneous CA and Alk magmatism in the northern ANS requires concurrent tapping of two distinct mantle sources. Coeval emplacement of CA and Alk intrusive suites was described in a number of regions throughout the world.  相似文献   

7.
http://www.sciencedirect.com/science/article/pii/S1674987113001072   总被引:6,自引:1,他引:5  
The late Permian Emeishan large igneous province(ELIP) covers ~0.3 x 106 km2 of the western margin of the Yangtze Block and Tibetan Plateau with displaced,correlative units in northern Vietnam(Song Da zone).The ELIP is of particular interest because it contains numerous world-class base metal deposits and is contemporaneous with the late Capitanian(~260 Ma) mass extinction.The flood basalts are the signature feature of the ELIP but there are also ultramafic and silicic volcanic rocks and layered maficultramafic and silicic plutonic rocks exposed.The ELIP is divided into three nearly concentric zones(i.e.inner,middle and outer) which correspond to progressively thicker crust from the inner to the outer zone.The eruptive age of the ELIP is constrained by geological,paleomagnetic and geochronological evidence to an interval of 3 Ma.The presence of picritic rocks and thick piles of flood basalts testifies to high temperature thermal regime however there is uncertainty as to whether these magmas were derived from the subcontinental lithospheric mantle or sub-lithospheric mantle(i.e.asthenosphere or mantle plume) sources or both.The range of Sr(I_(Sr) = 0.7040-0.7132),Nd(ε_(Nd)(t) ≈-14 to +8),Pb(~(206)Pb/~(204)Pb_1≈ 17.9-20.6) and Os(γ_(Os) =-5 to +11) isotope values of the ultramafic and mafic rocks does not permit a conclusive answer to ultimate source origin of the primitive rocks but it is clear that some rocks were affected by crustal contamination and the presence of near-depleted isotope compositions suggests that there is a sub-lithospheric mantle component in the system.The silicic rocks are derived by basaltic magmas/rocks through fractional crystallization or partial melting,crustal melting or by interactions between mafic and crustal melts.The formation of the Fe-Ti-V oxide-ore deposits is probably due to a combination of fractional crystallization of Ti-rich basalt and fluxing of C02-rich fluids whereas the Ni-Cu-(PGE) deposits are related to crystallization and crustal contamination of mafic or ultramafic magmas with subsequent segregation of a sulphide-rich portion.The ELIP is considered to be a mantle plume-derived LIP however the primary evidence for such a model is less convincing(e.g.uplift and geochemistry) and is far more complicated than previously suggested but is likely to be derived from a relatively short-lived,plume-like upwelling of mantle-derived magmas.The emplacement of the ELIP may have adversely affected the short-term environmental conditions and contributed to the decline in biota during the late Capitanian.  相似文献   

8.
The Zhongchuan district is an important component of the metallogenic belt in the Western Qinling. The Zhongchuan granite pluton occurring in the centre of the Zhongchuan metallogenic area has been poorly constrained, though the Triassic granite in Western Qinling has been well documented. In‐situ zircon U–Pb ages, Hf isotopic compositions and whole‐rock geochemical data are presented for host granite and mafic microgranular enclaves (MMES) from the Zhongchuan pluton, in order to constrain its sources, petrogenesis and tectonic setting of the pluton. The distribution of major, trace and rare earth elements apparently reflect exchange between the MMES and the host granitic rocks mainly due to interactions between coeval felsic host magma and mafic magma. The zircon U–Pb age of host granite (231.6 ± 1.5 to 235.8 ± 2.3 Ma) has overlapping uncertainty with that of the MMES (236.6 ± 1.3 Ma), establishing that the mafic and felsic magmas were coeval. The Hf isotopic composition of the MMES (εHf(t) = −13.4 to 4.0) is distinct from the host granite (εHf(t) = −15.7 to 0.0), indicating that both enriched subcontinental lithosphere mantle (SCLM) and crustal sources contributed to their origin. The zircons have two‐stage Hf model ages of 1064 to 1798 Ma for the host granite and 858 to 1747 Ma for the MMES. This suggests that the granitic pluton was likely derived from partial melting of a Late Mesoproterozoic crust, with subsequent interaction with the SCLM‐derived mafic magmas in tectonic affinity to the South China Block. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

9.
Whole rock major and trace element geochemistry together with zircon U-Pb ages and Sr-Nd isotope compositions for the Middle Eocene intrusive rocks in the Haji Abad region are presented. The granitoid hosts, including granodiorite and diorite, yielded zircon U-Pb ages with a weighted mean value of 40.0 ± 0.7 Ma for the granodiorite phase. Mafic microgranular enclaves(MMEs) are common in these plutons, and have relatively low SiO_2 contents(53.04-57.08 wt.%) and high Mg#(42.6-60.1), probably reflecting a mantle-derived origin. The host rocks are metaluminous(A/CNK = 0.69-1.03), arc-related calc-alkaline, and I-type in composition, possessing higher SiO_2 contents(59.7-66.77 wt.%) and lower Mg#(38.6-52.2); they are considered a product of partial melting of the mafic lower crust. Chondritenormalized REE patterns of the MMEs and granitoid hosts are characterized by LREE enrichment and show slight negative Eu anomalies(Eu/Eu* = 0.60-0.93). The host granodiorite samples yield(87Sr/86Sr);ratios ranging from 0.70498 to 0.70591,positive eNd(t) values varying from +0.21 to +2.3, and TDM2 ranging from 760 to 909 Ma, which is consistent with that of associated mafic microgranular enclaves(87Sr/86Sr)i = 0.705111-0.705113, εNd(t)= +2.14 to +2.16, TDM2 = 697-785 Ma). Petrographic and geochemical characterization together with bulk rock Nd-Sr isotopic data suggest that host rocks and associated enclaves originated by interaction between basaltic lower crust-derived felsic and mantlederived mafic magmas in an active continental margin arc environment.  相似文献   

10.
We constrain the origin and tectonic setting of the giant Duolong porphyry–epithermal Cu–Au deposit in the South Qiangtang Terrane of northern Tibet, based on new zircon U–Pb ages and Hf isotopic data, as well as whole-rock major and trace element data from poorly studied ore-associated intrusions in the Duolong area. The LA–ICP–MS zircon U–Pb dating indicates that the ore-associated rocks formed between 121 and 126 Ma. These ore-associated rocks are geochemically similar to low-K tholeiitic M-type granitoids and to mid- to high-K, calc-alkaline I-type granitoids. They have variable and predominantly positive zircon εHf(t) values (− 1.4 to + 15.6) and variable crustal model ages (TCDM(Hf); 176–1122 Ma). Taking into account previous data and the regional geology of the study area, we propose that the ore-associated rocks originated from fractional crystallization of mantle-derived mafic melts and magma mixing of mantle-derived mafic and hybrid lower crust-derived felsic melts, and the hybrid lower crust included a mix of juvenile and older continental material. The Duolong porphyry–epithermal Cu–Au deposit formed within an ‘ensialic forearc’ of an active continental margin as a result of the northwards subduction of the Bangong–Nujiang Ocean crust beneath the South Qiangtang Terrane.  相似文献   

11.
The East-Ujimqin complex, located north of the Erenhot–Hegenshan fault, North China, is composed of mafic–ultramafic and granitic rocks including peridotite, gabbro, alkali granite, and syenite. We investigated the tectonic setting, age, and anorogenic characteristics of the Xing’an–Mongolian Orogenic Belt (XMOB) through field investigation and microscopic and geochemical analyses of samples from the East-Ujimqin complex and LA-MC-ICP-MS zircon U–Pb dating of gabbro and alkali granite. Petrographic and geochemical studies of the complex indicate that this multiphase plutonic suite developed through a combination of fractional crystallization, assimilation processes, and magma mixing. The mafic–ultramafic rocks are alkaline and have within-plate geochemical characteristics, indicating anorogenic magmatism in an extensional setting and derivation from a mantle source. The mafic–ultramafic magmas triggered partial melting of the crust and generated the granitic rocks. The granitic rocks are alkali and metaluminous and have high Fe/(Fe + Mg) characteristics, all of which are common features of within-plate plutons. Zircon U–Pb geochronological dating of two samples of gabbro and alkali granite yielded ages of 280.8 ± 1.5 and 276.4 ± 0.7 Ma, placing them within the Early Permian. The zircon Hf isotopic data give inhomogeneous εHf(t) values of 8.2–14.7 for gabbroic zircons and extraordinary high εHf(t) values (8.9–12.5) for the alkali granite in magmatic zircons. Thus, we consider the East-Ujimqin mafic–ultramafic and granitic rocks to have been formed in an extensional tectonic setting caused by asthenospheric upwelling and lithospheric thinning. The sources of mafic–ultramafic and granitic rocks could be depleted garnet lherzolite mantle and juvenile continental lower crust, respectively. All the above indicate that an anorogenic magma event may have occurred in part of the XMOB during 280–276 Ma.  相似文献   

12.
The Kuh-e Dom Pluton is located along the central northeastern margin of the Urumieh–Dokhtar Magmatic Arc, spanning a wide range of compositions from felsic rocks, including granite, granodiorite, and quartz monzonite, through to intermediate-mafic rocks comprising monzonite, monzodiorite, diorite, monzogabbro, and gabbro. The Urumieh–Dokhtar Magmatic Arc forms a distinct linear magmatic complex that is aligned parallel with the orogenic suture of the Zagros fold-thrust belt. Most samples display characteristics of metaluminous, high-K calc-alkaline, I-type granitoids. The initial isotopic signatures range from εNd (47 Ma) = −4.77 to −5.89 and 87Sr/86Sr(i) = 0.7069 to 0.7074 for felsic rocks and εNd (47 Ma) = −3.04 to −4.06 and 87Sr/86Sr(i) = 0.7063 to 0.7067 for intermediate to mafic rocks. This geochemical and isotopic evidence support a mixed origin for the Kuh-e Dom hybrid granitoid with a range of contributions of both the crust and mantle, most probably by the interaction between lower crust- and mantle-derived magmas. It is seem, the felsic rocks incorporate about 56–74% lower crust-derived magma and about 26–44% of the enriched mantle-derived mafic magma. In contrast, 66–84% of the enriched mantle-derived mafic magma incorporates 16–34% of lower crust-derived magma to generate the intermediate-mafic rocks. According to the differences in chemical composition, the felsic rocks contain a higher proportion of crustal material than the intermediate to mafic ones. Enrichment in LILEs and depletion in HFSEs with marked negative Nb, Ba, and Ti anomalies are consistent with subduction-related magmatism in an active continental margin arc environment. This suggestion is consistent with the interpretation of the Urumieh–Dokhtar Magmatic Arc as an active continental margin during subduction of the Neotethys oceanic crust beneath the Central Iranian microcontinent.  相似文献   

13.
Mafic and intermediate intrusions occur in the Slavkovsky les as dykes, sills and minor tabular bodies emplaced in metamorphic rocks or enclosed in late Variscan granites near the SW contact of the Western Krušné hory/Erzgebirge granite pluton. They are similar in composition and textures to the redwitzites defined in NE Bavaria. Single zircon Pb-evaporation analyses constrain the age of a quartz monzodiorite at 323.4 ± 4.4 Ma and of a granodiorite at 326.1 ± 5.6 Ma. The PT range of magma crystallization is estimated at ~1.4–2.2 kbar and ~730–870°C and it accords with a shallow intrusion level of late Variscan granites but provides lower crystallization temperatures compared to the Bavarian redwitzites. We explain the heterogeneous composition of dioritic intrusions in the Slavkovsky les by mixing between mafic and felsic magmas with a minor effect of fractional crystallization. Increased K, Ba, Rb, Sr and REE contents compared to tholeiitic basalts suggest that the parental mafic magma was probably produced by melting of a metasomatised mantle, the melts being close to lamprophyre or alkali basalt composition. Diorites and granodiorites originated from mixed magmas derived by addition of about 25–35 and 50 vol.%, respectively, of the acid end-member (granite) to lamprophyre or alkali-basalt magma. Our data stress an important role of mafic magmas in the origin of late Variscan granitoids in NW Bohemian Massif and emphasize the effect of mantle metasomatism on the origin of K-rich mafic igneous rocks.  相似文献   

14.
This work presents an integrated study of zircon U–Pb ages and Hf isotope along with whole-rock geochemistry on Silurian Fengdingshan I-type granites and Taoyuan mafic–felsic intrusive Complex located at the southeastern margin of the Yangtze Block, filling in a gap in understanding of Paleozoic I-type granites and mafic-intermediate igneous rocks in the eastern South China Craton (SCC). The Fengdingshan granite and Taoyuan hornblende gabbro are dated at 436 ± 5 Ma and 409 ± 2 Ma, respectively. The Fengdingshan granites display characteristics of calc-alkaline I-type granite with high initial 87Sr/86Sr ratios of 0.7093–0.7127, low εNd(t) values ranging from −5.6 to −5.4 and corresponding Nd model ages (T2DM) of 1.6 Ga. Their zircon grains have εHf(t) values ranging from −2.7 to 2.6 and model ages of 951–1164 Ma. The Taoyuan mafic rocks exhibit typical arc-like geochemistry, with enrichment in Rb, Th, U and Pb and depletion in Nb, Ta. They have initial 87Sr/86Sr ratios of 0.7053–0.7058, εNd(t) values of 0.2–1.6 and corresponding T2DM of 1.0–1.1 Ga. Their zircon grains have εHf(t) values ranging from 3.2 to 6.1 and model ages of 774–911 Ma. Diorite and granodiorite from the Taoyuan Complex have initial 87Sr/86Sr ratios of 0.7065–0.7117, εNd(t) values from −5.7 to −1.9 and Nd model ages of 1.3–1.6 Ga. The petrographic and geochemical characteristics indicate that the Fengdingshan granites probably formed by reworking of Neoproterozoic basalts with very little of juvenile mantle-derived magma. The Taoyuan Complex formed by magma mixing and mingling, in which the mafic member originated from a metasomatized lithospheric mantle. Both the Fengdingshan and Taoyuan Plutons formed in a post-orogenic collapse stage in an intracontinental tectonic regime. Besides the Paleozoic Fengdingshan granites and Taoyuan hornblende gabbro, other Neoproterozoic and Indosinian igneous rocks located along the southeastern and western margin of the Yangtze Block also exhibit decoupled Nd–Hf isotopic systemics, which may be a fingerprint of a previous late Mesoproterozoic to early Neoproterozoic oceanic subduction.  相似文献   

15.
SHRIMP zircon U-Pb dates, combined with in-situ Hf isotopic data, provide new constraints on the petrogenesis and protolith of peralkaline, metaluminous and peraluminous intrusions and rhyolitic tuffs in the Emeishan large igneous province, with significant bearing on crustal melting associated with mantle plumes. Syenite and A-type granitic intrusions from Huili, Miyi and Taihe in the center of this large igneous province yield U-Pb dates at ∼260 Ma, consistent with the ages obtained for mafic layered intrusions in the same province. Zircon from these rocks exhibits a wide range of initial Hf isotope ratios (εHf(t) = −1.4 to +13.4), with corresponding TDM1 of 400-900 Ma. The highest εHf(t) value is only marginally lower than that of depleted mantle reservoir at 260 Ma, suggesting that their source is primarily juvenile crust added during Emeishan volcanism, with incorporation of variable amounts of Neoproterozoic crust. The trigger of crustal melting is most likely related to advective heating associated with magmatic underplating. In contrast, the 255-251 Ma peraluminous granites from Ailanghe and 238 Ma rhyolitic tuff from Binchuan, have negative initial εHf values of −1.3 to −4.4, and of −7.7 to −14, respectively. Hf isotopic model ages and presence of inherited zircons indicate their derivation from Mesoproterozoic and Paleoproterozoic crust, respectively. Given the time lag relative to the plume impact (∼260 Ma) and insignificant mantle contribution to 255-238 Ma magmatism, conductive heating is suggested as the trigger of crustal melting that resulted in formation of delayed felsic magmas. The involvement of older crust in younger felsic magmas is consistent with upward heat transfer to the lithosphere during plume impregnation, if the age of crust is inversely stratified, i.e., changes from Paleoproterozoic to Mesoproterozoic to Neoproterozoic to Permian with increasing depth. Such crust may have resulted from episodic, downward crustal growth during the evolution of the western Yangtze Craton.  相似文献   

16.
Several I- and A-type granite, syenite plutons and spatially associated, giant Fe-Ti-V deposit-bearing mafic-ultramafic layered intrusions occur in the Pan-Xi (Panzhihua-Xichang) area within the inner zone of the Emeishan large igneous province (ELIP). These complexes are interpreted to be related to the Emeishan mantle plume. We present LA-ICP-MS and SIMS zircon U-Pb ages and Hf-Nd isotopic compositions for the gabbros, syenites and granites from these complexes. The dating shows that the age of the felsic intrusive magmatism (256.2 ± 3.0-259.8 ± 1.6 Ma) is indistinguishable from that of the mafic intrusive magmatism (255.4 ± 3.1-259.5 ± 2.7 Ma) and represents the final phase of a continuous magmatic episode that lasted no more than 10 Myr. The upper gabbros in the mafic-ultramafic intrusions are generally more isotopically enriched (lower εNd and εHf) than the middle and lower gabbros, suggesting that the upper gabbros have experienced a higher level of crustal contamination than the lower gabbros. The significantly positive εHf(t) values of the A-type granites and syenites (+4.9 to +10.8) are higher than those of the upper gabbros of the associated mafic intrusion, which shows that they cannot be derived by fractional crystallization of these bodies. They are however identical to those of the mafic enclaves (+7.0 to +11.4) and middle and lower gabbros, implying that they are cogenetic. We suggest that they were generated by fractionation of large-volume, plume-related basaltic magmas that ponded deep in the crust. The deep-seated magma chamber erupted in two stages: the first near a density minimum in the basaltic fractionation trend and the second during the final stage of fractionation when the magma was a low density Fe-poor, Si-rich felsic magma. The basaltic magmas emplaced in the shallow-level magma chambers differentiated to form mafic-ultramafic layered intrusions accompanied by a small amount of crustal assimilation through roof melting. Evolved A-type granites (synenites and syenodiorites) were produced dominantly by crystallization in the deep crustal magma chamber. In contrast, the I-type granites have negative εNd(t) [−6.3 to −7.5] and εHf(t) [−1.3 to −6.7] values, with the Nd model ages () of 1.63−1.67 Ga and Hf model ages () of 1.56−1.58 Ga, suggesting that they were mainly derived from partial melting of Mesoproterozoic crust. In combination with previous studies, this study also shows that plume activity not only gave rise to reworking of ancient crust, but also significant growth of juvenile crust in the center of the ELIP.  相似文献   

17.
Radiogenic isotopic dating and Lu–Hf isotopic composition using laser ablation-inductively coupled plasma-mass spectrometry(LA-ICP-MS)of the Wude basalt in Yunnan province from the Emeishan large igneous province(ELIP)yielded timing of formation and post-eruption tectonothermal event.Holistic lithogeochemistry and elements mapping of basaltic rocks were further reevaluated to provide insights into crustal contamination and formation of the ELIP.A zircon U–Pb age of 251.3±2.0 Ma of the Wude basalt recorded the youngest volcanic eruption event and was consistent with the age span of 251-263 Ma for the emplacement of the ELIP.Such zircons hadεHf(t)values ranging from7.3 to+2.2,identical to those of magmatic zircons from the intrusive rocks of the ELIP,suggesting that crust-mantle interaction occurred during magmatic emplacement,or crust-mantle mixing existed in the deep source region prior to deep melting.The apatite U–Pb age at 53.6±3.4 Ma recorded an early Eocene magmatic superimposition of a regional tectonothermal event,corresponding to the Indian–Eurasian plate collision.Negative Nb,Ta,Ti and P anomalies of the Emeishan basalt may reflect crustal contamination.The uneven Nb/La and Th/Ta values distribution throughout the ELIP supported a mantle plume model origin.Therefore,the ELIP was formed as a result of a mantle plume which was later superimposed by a regional tectonothermal event attributed to the Indian–Eurasian plate collision during early Eocene.  相似文献   

18.
《International Geology Review》2012,54(11):1370-1390
ABSTRACT

To better understand the Neoproterozoic tectonic evolution along the northern margin of Yangtze Block, we have determined the geochronological and geochemical compositions of newly recognized bimodal volcanic suite and coeval granites from the western Dabie terrain. LA-ICP-MS zircon U-Pb dating reveals that the felsic and mafic volcanics from the Hong’an unit have crystallization ages of 730 ± 4Ma and 735 ± 5Ma, respectively, indicating that the bimodal suite was erupted during the Neoproterozoic. The Xuantan, Xiaoluoshan, and Wuchenhe granites yield U-Pb ages of 742 ± 4 Ma, 738 ± 4 Ma, and 736 ± 4 Ma, respectively. The felsic volcanic rocks show peraluminous characteristics, and have a close affinity to S-type granite. The mafic volcanic rocks are basalt in compositions, and are likely generated from a depleted mantle source. The granites belong to high-K calc-alkaline and calc-alkaline series, display metaluminous to peraluminous, and are mainly highly fractionated I-type and A-type granite. The granites and felsic volcanics have zircon εHf(t) values of ?16.4 to + 5.6 and two-stage Hf model ages (TDM2) of 1.28 to 2.40 Ga, suggesting that they were partial melting of varying Mesoproterozoic–early-Neoproterozoic crust. The granites have εNd(t) of -14.7 to -1.5, and the two-stage Nd model ages (TDM2) values of 1.54 to 2.61 Ga, also implying the Yangtze crustal contribution. These Neoproterozoic bimodal suite and coeval granites were most likely generated in a rifting extensional setting, triggered by the mantle upwelling, associated with crust–mantle interaction. Intensive magmatic rocks are widespread throughout the South Qingling, Suizhao, western Dabie and eastern Dabie areas during 810–720 Ma, and show peak ages at ~ 740 Ma. Combining regional geology, we support a continental rifting extensional setting for the north margin of the Yangtze Block during the break-up of the supercontinent Rodinia.  相似文献   

19.
骆文娟  张招崇  侯通  王萌 《岩石学报》2011,27(10):2947-2962
茨达复式岩体位于中国西南扬子地台西缘的攀西裂谷内,其岩性从基性到酸性连续变化,SiO2含量为40.06% ~68.54%,但以基性和酸性岩石为主,中性岩石较少,而且非常不均匀,通常具有斑杂构造特征.从基性岩到酸性岩,各岩石样品由轻稀土弱富集型变为较强富集型.微量元素表现为酸性岩中Rb、Th、K、La、Ce、Pb、Nd、Zr、Hf、Sm呈正异常和Ba、Nb、Ta、Sr、P、Ti的负异常;基性岩除Ti负异常和Pb正异常外,其它异常不明显;中性岩具有Ti、Sr负异常和Pb正异常,其它特征介于基性岩和酸性岩石之间.野外和岩相学特征明显指示出中性岩石具有混合特征.酸性端元岩浆准铝质的特征以及相对低的SiO2含量指示其起源于玄武质下地壳的部分熔融,而基性端元岩浆的地球化学特征以及高温特征暗示着其起源于地幔柱源区.锆石U-Pb年龄数据表明,该复式岩体中基性端元LA-MC-ICP-MS U-Pb锆石年龄为243.76±0.77Ma,酸性端元年龄为240.5±0.76Ma,可能代表了峨眉山大火成岩省岩浆活动的尾声阶段.  相似文献   

20.
扬子克拉通西缘在~260Ma发生短期内大规模峨眉山玄武岩溢流喷发。攀西地区发育的镁铁-超镁铁质岩被广泛认为是峨眉山大火成岩省的产物,但在北端松潘-甘孜岩区一直缺乏该类岩石的报道。本文首次报道扬子西缘丹巴水子乡单斜辉石岩的准确年龄,其锆石LA-ICP-MS U-Pb加权平均年龄为260.7±3.3Ma,表明其为峨眉山大火成岩省北端松潘-甘孜岩区镁铁-超镁铁质岩的组成部分。通过与攀枝花钒钛磁铁矿含矿岩体边缘相带苦橄岩和上部相带浅色辉长岩进行锆石微量元素对比显示,水子乡单斜辉石岩具有相近的高氧逸度,其ΔQFM为0~3,Ce_(N)/Ce_(N)平均为~30,该性质可能同样源自扬子西缘洋壳板片俯冲交代形成的较高氧逸度地幔源区。尽管如此,水子乡辉石岩体并未因高氧逸度而有明显的含钛磁铁矿饱和结晶,可能由其较低结晶分异程度造成。相比之下,攀枝花岩体经历了更高程度的含钛磁铁矿和斜长石分离结晶作用,伴随大规模的钒钛磁铁矿成矿。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号