首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tabular steeply dipping cassiterite‐bearing lodes in the Mount Wells region are hosted by lower greenschist fades metasediment of the Pine Creek Geosyncline within the contact aureole of late orogenic granitoids. The latter are predominantly I‐type, but S‐type phases are developed near the sediment‐granitoid contact.

Quartz, cassiterite, pyrite, arsenopyrite, chalcopyrite and pyrrhotite are the main minerals. Two types of lodes are present: (i) Sn‐quartz lodes containing 5–10 vol% sulphide minerals; and (ii) Sn‐sulphide lodes containing ~ 70 vol% sulphide minerals. At the surface, the former appear as normal quartz veins and the latter as hematite‐quartz breccia resulting from the collapse of original sulphide‐rich lodes as a consequence of volume reduction due to oxidation and leaching.

Two stages of quartz veining are recognized in both types of lodes. Cassiterite is present in stage I while stage II is composed of barren quartz with minor pyrite. Late stage III carbonate veinlets are present in Sn‐sulphide lodes. The lode‐wallrock contact is sharp with weak alteration effects confined to the fringe of the lodes. The alteration minerals include sericite, quartz, tourmaline, chlorite, pyrite and minor K‐feldspar.

Four types of fluid inclusions are present in vein quartz and cassiterite: Type A (CO2 ± H2O ± CH4); Type B (H2O+~ 20% vapour); Type C (H2O+ < 15% vapour) and Type D (H2O+ < 15% vapour + NaCl). Early ‘primary’ inclusions represented by Types A and B are present in stage I only and have a well‐defined temperature mode at ~300°C and a salinity range of 1–20 wt% eq NaCl. Types C and D inclusions are ‘secondary’ in stage I and primary in stage II and have a temperature mode at 120–160°C and salinities from about 1 to more than 26 wt% eq NaCl. Variable H2O‐CO2 ratios of Type A inclusions and homogenization in CO2 or H2O phase at near identical temperature indicate entrapment at the H2O‐CO2 solvus and define a pressure of ~ 100 MPa. The melting sequence of frozen inclusions suggests that the ore fluids were mainly H2O‐CO2‐CH4‐Na‐Ca‐Cl brines. This is also confirmed by Raman Laser Spectrometry.

Oxygen and sulphur isotope data are consistent with a magmatic origin of the ore fluids. The δD values are up to 20%0 higher than those expected for magmatic fluids and probably resulted from interaction of the latter with the carbonaceous strata. This interpretation is supported by δ13C data on the fluid inclusion CO2.

Fluid inclusions, stable isotope and mineralogical data are used to approximate the physico‐chemical parameters of the ore fluids which are as follows: T 300°C, m Cl~2, fO2 ~ 10‐35, mSS ~ 0.01, Sn ~ 1 ppm, Cu ~ 1 ppm and pH ~ 5.5.

It is suggested that fluids of granitic parentage interacted with the enclosing sediment and picked up CO2, CH4 and possibly Ca. The granitic phases became reduced due to this interaction and developed S‐type characteristics. Tin was probably partitioned into the CH4‐bearing reduced fluids. At some stage the fluid overpressure exceeded the lithostatic lode enforcing failure of the carapace and the intruded rocks by hydraulic fracturing causing CH4 and CO2 loss resulting in the precipitation of the ore minerals.  相似文献   

2.
川西甲基卡二云母花岗岩和伟晶岩内发育大量原生熔体包裹体和富晶体流体包裹体。为了查明甲基卡成矿熔体、流体性质与演化特征,运用激光拉曼光谱和扫描电镜鉴定了甲基卡花岗伟晶岩型锂矿床中二云母花岗岩及伟晶岩脉不同结构带内的原生熔体、流体包裹体的固相物质。分析结果表明,甲基卡二云母花岗岩石英内熔体包裹体的矿物组合为磷灰石+白云母、白云母+钠长石、白云母+石墨;伟晶岩绿柱石内富晶体流体包裹体的矿物组合主要为刚玉、富铝铁硅酸盐+刚玉+锂辉石、锂辉石+石英+锂绿泥石;伟晶岩锂辉石内富晶体流体包裹体的矿物组合主要为磷灰石、锡石、磁铁矿、石英+钠长石+锂绿泥石、萤石、富钙镁硅酸盐+富铁铝硅酸盐+富铁硅酸盐+石英;花岗岩浆熔体与伟晶岩浆熔体(流体)具有一定的差异,成矿熔体、流体成分总体呈现出碱质元素(Na、Si、Al)、挥发分(F、P、CO_2)含量增高及基性元素(Fe、Mg、Ca)降低的特征;包裹体中子矿物与主矿物的化学成分具有一定的差别,揭示出伟晶岩熔体(流体)存在局部岩浆分异作用,具不混溶性及非均匀性。因此认为,伟晶岩熔浆(流体)为岩浆分异与岩浆不混溶共同作用的产物,挥发分含量的增高(F、P、CO_2)使伟晶岩能够与稀有金属组成各类络合物或化合物,这对于稀有金属成矿起到了至关重要的作用。  相似文献   

3.
《Resource Geology》2018,68(1):37-50
The large, newly discovered Lijiagou pegmatite spodumene deposit, is located southeast of the Ke'eryin pegmatite ore field, in the central Songpan–Garze Fold Belt (SGFB), Eastern Tibet. The Lijiagou albite spodumene pegmatites are unzoned, granite‐pegmatites of the subtype LCT (Lithium, Cesium, and Tantalum) and consist of medium‐ to coarse‐grained spodumene, lepidolite, microcline, albite, quartz, muscovite, and accessory amounts of beryl, cassiterite, columbite–tantalite and zircon. Secondary fluid inclusions in quartz and spodumene include two‐phase aqueous inclusions (V + L), mono‐phase vapor inclusions (V); three‐phase CO2‐rich CO2–H2O inclusions (CO2 + V + L) and less abundant liquid inclusions (L). The homogenization temperature of the fluid inclusions are low (257.3 to 204.3°C in early stage, 250.3 to 199.6°C in middle stage, 218.7 to 200.6°C in late stage). Fluid inclusions were formed during the long cooling period from the temperature of the pegmatite emplacement. Liquid–vapor–gas boiling was extensive during the middle and late stages. The salinity of the corresponding stages are 15.4 to 13.0 wt.% NaCl equiv., 12.5 to 9.1 wt.% NaCl equiv. and 9.8 to 7.8 wt.% NaCl equiv., respectively. δ18O values of fluid are 7.2 to 5.2‰, 5.6 to 3.9‰ and 2.7 to −0.2‰ from early to late stages; and δD range from −75.1 to −76.8‰, −59.0 to −73.5‰ and −61.6 to −85.5‰ respectively. The δ13C of CO2 values are −5.6 to −6.6‰, −8.5 to −19.9‰, −11.8 to −18.7‰ from early to late stages, suggesting that CO2 in the fluids were probably sourced from a magmatic system, possibly with some mixing of CO2 dissolved in groundwater. δD and δ18O values of fluid indicate that the fluids were originally magmatic water and mixed with some meteoric water in late stage. The magma evolution sequence in the Ke'eryin orefield, from the central two‐mica granite through the Lijiagou deposit out to the distal pegmatites, with the ages gradually decreasing, indicates that the Ke'eryin complex rocks are the product of multistage magmatic activity. The large Lijiagou spodumene deposit is a typical magmatic, fractional crystallization related pegmatite deposit.  相似文献   

4.
Two distinct series of Variscan granitic rocks have been distinguished in the Gravanho-Gouveia area of Portugal, based on field work, variation diagrams for major and trace elements, rare earth patterns and δ18O versus total FeO diagram of rocks, anorthite content of plagioclase, BaO and P2O5 contents of feldspars and AlVI versus Fe2+ diagram for magmatic muscovite. One series consists of a late-orogenic porphyritic biotite > muscovite granite (G1), less evolved beryl-columbite pegmatites and more evolved beryl-columbite pegmatites showing gradational contacts. The other series consists of post-orogenic porphyritic muscovite > biotite granodiorite to granite (G2), slightly porphyritic muscovite > biotite granite (G3) and lepidolite pegmatites. In each series, pegmatites are derived from the parent granite magma by fractional crystallization of quartz, plagioclase, K-feldspar, biotite and ilmenite. Some metasomatic effects occur like muscovite replacing feldspars, chlorite in pegmatites of the first series and a late muscovite in pegmatites of the second series, probably due to hydrothermal fluids. The lepidolite pegmatites contain cassiterite and two generations of rutile. The first magmatic generation consists of homogeneous crystals and the second generation occurs as heterogeneous zoned crystals derived from hydrothermal fluids. The beryl-columbite pegmatites and lepidolite pegmatites also contain the first magmatic generation and the late hydrothermal generation of zoned columbite-group minerals. More evolved beryl-columbite pegmatites were converted into episyenite by intense hydrothermal alteration and regional circulation of fluids in the granitic rocks.  相似文献   

5.
Scheelite-mineralized microtonalite sheets occur on the SE margin of the end-Caledonian Leinster Granite in SE Ireland. Scheelite, polymetallic sulphides and minor cassiterite occur in veins in the microtonalites, disseminated throughout the greisened microtonalite sheets and in the adjacent wallrocks. Two major mineralized vein types occur in the microtonalite sheets: (1) Scheelite ± arsenopyrite ± pyrrhotite occur in quartz-fluorite veins, generally without a muscovite selvage; (2) Sphalerite ± chalcopyrite ± pyrite ± galena ± cassiterite ± stannite occur in quartz + fluorite veins with a coarse muscovite selvage and are often intergrown with the muscovite. Quartz-hosted fluid inclusions were examined from representative samples of both vein types using petrographic, microthermometric and laser Raman spectroscopic techniques. Three distinct types of fluid inclusions have been recognized. Primary, vapour rich Type 1 inclusions in quartz from the scheelite-mineralized veins are of H2O-CO2-CH4-N2 ± H2S ± NaCl composition and formed between 360–530 °C. Primary and secondary, liquid-rich Type 2 fluid inclusions in the base metal sulphide-mineralized veins are of H2O-CH4-N2 ± H2S-NaCl composition and formed between 340–480 °C. They also occur as pseudosecondary and secondary inclusions in scheelite-mineralized veins. Late dilute, low temperature H2O-NaCl + KCl fluid inclusions may be related to late-Caledonian convection of meteoric waters around the cooling Leinster Granite batholith. Received: 4 September 1996 / Accepted: 23 May 1997  相似文献   

6.
The pegmatite province of the Southeastern Desert (SED) is part of a pegmatite district that extends from Egypt (extends to 1200 km2). Rare metal pegmatites are divided into (1) unzoned, Sn-mineralized; (2) zoned Li, Nb, Ta and Be-bearing; and (3) pegmatites and pegmatites containing colored, gem-quality tourmaline. The Rb/Sr data reflect a crustal origin for the rare metal pegmatites and indicate that the original SED magma was generated during the peak of regional metamorphism and predates the intrusion of post-tectonic leucogranites. These bodies developed an early border zone consisting of coarse to very coarse muscovite quartz alkali feldspar, followed by an intermediate zone of dominant quartz feldspar muscovite rock. Garnet, tourmaline, beryl, galena, pyrite, amblygonite, apatite and monazite are rare accessories in both zones. Cassiterite tends to concentrate in replacement zones and along fractures in albite quartz muscovite-rich portions. The highest concentrations of cassiterite occur in irregular greisenized zones which consist dominantly of micaceous aggregates of green Li-rich muscovite, quartz, albite and coarse-grained cassiterite. The different metasomatic post-solidification alterations include sodic and potassic metasomatism, greisenization and tourmalinization. Geochemically, the pegmatite-generating granites have a metaluminous composition, showing a differentiation trend from coarse-grained, unfractionated plagioclase-rich granite towards highly fractionated fine- to medium-grained, local albite-rich rock. Economically important ore minerals introduced by volatile-rich, rare metal-bearing fluids, either primarily or during the breakdown of the primary mineral assemblages, are niobium-tantalum oxides, Sn-oxides (cassiterite), Li-silicates (petalite, spodumene, euctyptite, and pollucite), Li-phosphates (amblygonite, montebrasite and lithopilite) and minor REE-minerals (Hf-zircon, monazite, xenotime, thorian, loparite and yttrio-fluorite). The pollucite is typically associated with spodumene, petalite, amblygonite, quartz and feldspar. The primary pollucite has Si/Al (at) ratios of 2.53-2.65 and CRK of 79.5- 82.2. Thorian loparite is essentially a member of the loparite (NaLREETi2O6)-lueshite (NaNbO3)-ThTi2O6-ThNb4O12 quaternary system with low or negligible contents of other end-member compositions. The mineral compositionally evolved from niobian loparite to niobian thorian and thorian loparite gave rise to ceriobetafite and belyankinite with high ThO2 contents. Thorian loparite is metamict or partly metamict and upon heating regains a structure close to that of synthetic loparite NaLaTi2O6.  相似文献   

7.
In the Sanandaj-Sirjan zone of metamorphic belt of Iran, the area south of Hamadan city comprises of metamorphic rocks, granitic batholith with pegmatites and quartz veins. Alvand batholith is emplaced into metasediments of early Mesozoic age. Fluid inclusions have been studied using microthermometry to evaluate the source of fluids from which quartz veins and pegmatites formed to investigate the possible relation between host rocks of pegmatites and the fluid inclusion types. Host minerals of fluid inclusions in pegmatites are quartz, andalusite and tourmaline. Fluid inclusions can be classified into four types. Type 1 inclusions are high salinity aqueous fluids (NaCleq >12 wt%). Type 2 inclusions are low to moderate salinity (NaCleq <12 wt%) aqueous fluids. Type 3 and 4 inclusions are carbonic and mixed CO2-H2O fluid inclusions. The distribution of fluid inclusions indicate that type 1 and type 2 inclusions are present in the pegmatites and quartz veins respectively in the Alvand batholith. This would imply that aqueous magmatic fluids with no detectable CO2 were present during the crystallization of these pegmatites and quartz veins. Types 3 and 4 inclusions are common in quartz veins and pegmatites in metamorphic rocks and are more abundant in the hornfelses. The distribution of the different types of fluid inclusions suggests that CO2 fluids generated during metamorphism and metamorphic fluids might also contribute to the formation of quartz veins and pegmatites in metamorphic terrains.  相似文献   

8.
The Xuebaoding crystal deposit, located in northern Longmenshan, Sichuan Province, China, is well known for producing coarse‐grained crystals of scheelite, beryl, cassiterite, fluorite and other minerals. The orebody occurs between the Pankou and Pukouling granites, and a typical ore vein is divided into three parts: muscovite and beryl within granite (Part I); beryl, cassiterite and muscovite in the host transition from granite to marble (Part II); and the main mineralization part, an assemblage of beryl, cassiterite, scheelite, fluorite, apatite and needle‐like tourmaline within marble (Part III). No evidence of crosscutting or overlapping of these ore veins by others suggests that the orebody was formed by single fluid activity. The contents of Be, W, Sn, Li, Cs, Rb, B, and F in the Pankou and Pukouling granites are similar to those of the granites that host Nanling W–Sn deposits. The calculated isotopic compositions of beryl, scheelite and cassiterite (δD, ?69.3‰ to ?107.2‰ and δ18OH2O, 8.2‰ to 15.0‰) indicate that the ore‐forming fluids were mainly composed of magmatic water with minor meteoric water and CO2 derived from decarbonation of marble. Primary fluid inclusions are CO2? CH4+ H2O ± CO2 (vapor), with or without clathrates and halites. We estimate the fluid trapping condition at T = 220 to 360°C and P > 0.9 kbar. Fluid inclusions are rich in H2O, F and Cl. Evidence for fluid‐phase immiscibility during mineralization includes variable L/V ratios in the inclusions and inclusions containing different phase proportions. Fluid immiscibility may have been induced by the pressure released by extension joints, thereby facilitating the mineralization found in Part III. Based on the geochemical data, geological occurrence, and fluid inclusion studies, we hypothesize that the coarse‐grained crystals were formed by: (i) the high content of ore elements and volatile elements such as F in ore‐forming fluids; (ii) occurrence of fluid immiscibility and Ca‐bearing minerals after wall rock transition from granite to marble making the ore elements deposit completely; (iii) pure host marble as host rock without impure elements such as Fe; and (iv) sufficient space in ore veins to allow growth.  相似文献   

9.
The Xiaojiashan tungsten deposit is located about 200 km northwest of Hami City, the Eastern Tianshan orogenic belt, Xinjiang, northwestern China, and is a quartz vein‐type tungsten deposit. Combined fluid inclusion microthermometry, host rock geochemistry, and H–O isotopic compositions are used to constrain the ore genesis and tectonic setting of the Xiaojiashan tungsten deposit. The orebodies occur in granite intrusions adjacent to the metamorphic crystal tuff, which consists of the second lithological section of the first Sub‐Formation of the Dananhu Formation (D2d 12). Biotite granite is the most widely distributed intrusive bodies in the Xiaojiashan tungsten deposit. Altered diorite and metamorphic crystal tuff are the main surrounding rocks. The granite belongs to peraluminous A‐type granite with high potassic calc‐alkaline series, and all rocks show light Rare Earth Element (REE)‐enriched patterns. The trace element characters suggest that crystallization differentiation might even occur in the diagenetic process. The granite belongs to postcollisional extension granite, and the rocks formed in an extensional tectonic environment, which might result from magma activity in such an extensional tectonic environment. Tungsten‐bearing quartz veins are divided into gray quartz vein and white quartz veins. Based on petrography observation, fluid inclusions in both kinds of vein quartz are mainly aqueous inclusions. Microthermometry shows that gray quartz veins have 143–354°C of Th, and white quartz veins have 154–312°C of Th. The laser‐Raman test shows that CO2 is found in fluid inclusions of the tungsten‐bearing quartz veins. Quadrupole mass spectrometry reveals that fluid inclusions contain major vapor‐phase contents of CO2, H2O. Meanwhile, fluid inclusions contain major liquid‐phase contents of Cl?, Na+. It can be speculated that the ore‐forming fluid of the Xiaojiashan tungsten deposit is characterized by an H2O–CO2, low salinity, and H2O–CO2–NaCl system. The range of hydrogen and oxygen isotope compositions indicated that the ore‐forming fluids of the tungsten deposit were mainly magmatic water. The ore‐forming age of the Xiaojiashan deposit should to be ~227 Ma. During the ore‐forming process, the magmatic water had separated from magmatic intrusions, and the ore‐bearing complex was taken to a portion where tungsten‐bearing ores could be mineralized. The magmatic fluid was mixed by meteoric water in the late stage.  相似文献   

10.
The Pemali tin deposit is located in a Triassic granite pluton the magmatic evolution of which is characterized by a decrease of compatible Ca, Mg, Ti, P and Zr in the sequence: medium- to coarse-grained biotite granite, megacrystic medium-grained biotite granite, two-mica granite/muscovite granite. The tin mineralization is confined to the two-mica granite and consists of disseminated cassiterite as well as greisen-bordered veins. The highly evolved muscovite granite is tin-barren and is distinguished from the two-mica granite by its low mica content and low loss-on-ignition values. The fluid inclusions in quartz and fluorite of the two-mica granite and of the greisen homogenize in the 115–410 °C temperature range; the salinities are in the range of 0.4–23 equiv wt% NaCl and the CO2 concentrations are < 2 mole%.  相似文献   

11.
Our study of fluid and melt inclusions in quartz and feldspar from granite pegmatite from the Precambrian Rønne granite, Bornholm Island, Denmark revealed extremely alkali bicarbonate- and carbonate-rich inclusions. The solid phases (daughter crystals) are mainly nahcolite [NaHCO3], zabuyelite [Li2CO3], and in rare cases potash [K2CO3] in addition to the volatile phases CO2 and aqueous carbonate/bicarbonate solution. Rare melt inclusions contain nahcolite, dawsonite [NaAl(CO3)(OH)2], and muscovite. In addition to fluid and melt inclusions, there are primary CO2-rich vapor inclusions, which mostly contain small nahcolite crystals. The identification of potash as a naturally occurring mineral would appear to be the first recorded instance. From the appearance of high concentrations of these carbonates and bicarbonates, we suggest that the mineral-forming media were water- and alkali carbonate-rich silicate melts or highly concentrated fluids. The coexistence of silicate melt inclusions with carbonate-rich fluid and nahcolite-rich vapor inclusions indicates a melt-melt-vapor equilibrium during the crystallization of the pegmatite. These results are supported by the results of hydrothermal diamond anvil cell experiments in the pseudoternary system H2O–NaHCO3–SiO2. Additionally, we show that boundary layer effects were insignificant in the Bornholm pegmatites and are not required for the origin of primary textures in compositionally simple pegmatites at least.  相似文献   

12.
Dehydration melting of muscovite in metasedimentary sequences is the initially dominant mechanism of granitic melt generation in orogenic hinterlands. In dry (vapour-absent) crust, muscovite reacts with quartz to produce K-feldspar, sillimanite, and monzogranitic melt. When water vapour is present in excess, sillimanite and melt are the primary products of muscovite breakdown, and any K-feldspar produced is due to melt crystallization. Here we document the reaction mechanisms that control nucleation and growth of K-feldspar, sillimanite, and silicate melt in the metamorphic core of the Himalaya, and outline the microstructural criteria used to distinguish peritectic K-feldspar from K-feldspar grains formed during melt crystallization. We have characterized four stages of microstructural evolution in selected psammitic and pelitic samples from the Langtang and Everest regions: (a) K-feldspar nucleates epitaxially on plagioclase while intergrowths of fibrolitic sillimanite and the remaining hydrous melt components replace muscovite. (b) In quartzofeldspathic domains, K-feldspar replaces plagioclase by K+–Na+ cation exchange, while melt and intergrowths of sillimanite+quartz form in the aluminous domains. (c) At 7–8 vol.% melt generation, the system evolves from a closed to open system and all phases coarsen by up to two orders of magnitude, resulting in large K-feldspar porphyroblasts. (d) Preferential crystallization of residual melt on K-feldspar porphyroblasts and coarsened quartz forms an augen gneiss texture with a monzogranitic-tonalitic matrix that contains intergrowths of sillimanite+tourmaline+muscovite+apatite. Initial poikiloblasts of peritectic K-feldspar trap fine-grained inclusions of quartz and biotite by replacement growth of matrix plagioclase. During subsequent coarsening, peritectic K-feldspar grains overgrow and trap fabric-aligned biotite, resulting in a core to rim coarsening of inclusion size. These microstructural criteria enable a mass balance of peritectic K-feldspar and sillimanite to constrain the amount of free H2O present during muscovite dehydration. The resulting modal proportion of K-feldspar in the Himalayan metamorphic core requires vapour-absent conditions during muscovite dehydration melting and leucogranite formation, indicating that the generation of large volumes of granitic melts in orogenic belts is not necessarily contingent on an external source of fluids.  相似文献   

13.
The Darreh‐Zereshk (DZ) and Ali‐Abad (AB) porphyry copper deposits are located in southwest of the Yazd city, central Iran. These deposits occur in granitoid intrusions, ranging in composition from quartz monzodiorite through granodiorite to granite. The ore‐hosting intrusions exhibit intense hydrofracturing that lead to the formation of quartz‐sulfide veinlets. Fluid inclusions in hydrothermal quartz in these deposits are classified as a mono‐phase vapor type (Type I), liquid‐rich two phase (liquid + vapor) type (Type IIA), vapor‐rich two phase (vapor + liquid) type (Type IIB), and multi‐phase (liquid + vapor + halite + sylvite + hematite + chalcopyrite and pyrite) type (Types III). Homogenization temperatures (Th) and salinity data are presented for fluid inclusions from hydrothermal quartz veinlets associated with potassic alteration and other varieties of hypogene mineralization. Ore precipitation occurred between 150° to >600°C from low to very high salinity (1.1–73.9 wt% NaCl equivalent) aqueous fluids. Two stages of hydrothermal activity characterized are recognized; one which shows relatively high Th and lower salinity fluid (Type IIIa; Th(L‐V) > Tm(NaCl)); and one which shows lower Th and higher salinity (Type IIIb; Th(L‐V) < Tm(NaCl)). The high Th(L‐V) and salinities of Type IIIa inclusions are interpreted to represent the initial existence of a dense fluid of magmatic origin. The coexistence of Type IIIb, Type I and Type IIB fluid inclusions suggest that these inclusions resulted either from trapping of boiling fluids and/or represent two immiscible fluids. These processes probably occurred as the result of pressure fluctuations from lithostatic to hydrostatic conditions under a pressure of 200 to 300 bar. Dilution of these early fluids by meteoritic water resulted in lower temperatures and low to moderate salinity (<20 wt% NaCl equiv.) fluids (Type IIA). Fluid inclusion analysis reveals that the hydrothermal fluid, which formed mineralized quartz veinlets in the rocks with potassic alteration, had temperatures of ~500°C and salinity ~50 wt% NaCl equiv. Cryogenic SEM‐EDS analyses of frozen and decrepitated ore‐bearing fluids trapped in the inclusions indicate the fluids were dominated with NaCl, and KCl with minor CaCl2.  相似文献   

14.
The Junction gold deposit, in Western Australia, is an orogenic gold deposit hosted by a differentiated, iron‐rich, tholeiitic dolerite sill. Petrographic, microthermometric and laser Raman microprobe analyses of fluid inclusions from the Junction deposit indicate that three different vein systems formed at three distinct periods of geological time, and host four fluid‐inclusion populations with a wide range of compositions in the H2O–CO2–CH4–NaCl ± CaCl2 system. Pre‐shearing, pre‐gold, molybdenite‐bearing quartz veins host fluid inclusions that are characterised by relatively consistent phase ratios comprising H2O–CO2–CH4 ± halite. Microthermometry suggests that these veins precipitated when a highly saline, >340°C fluid mixed with a less saline ≥150°C fluid. The syn‐gold mineralisation event is hosted within the Junction shear zone and is associated with extensive quartz‐calcite ± albite ± chlorite ± pyrrhotite veining. Fluid‐inclusion analyses indicate that gold deposition occurred during the unmixing of a 400°C, moderately saline, H2O–CO2 ± CH4 fluid at pressures between 70 MPa and 440 MPa. Post‐gold quartz‐calcite‐biotite‐pyrrhotite veins occupy normal fault sets that slightly offset the Junction shear zone. Fluid inclusions in these veins are predominantly vapour rich, with CO2?CH4. Homogenisation temperatures indicate that the post‐gold quartz veins precipitated from a 310 ± 30°C fluid. Finally, late secondary fluid inclusions show that a <200°C, highly saline, H2O–CaCl2–NaCl–bearing fluid percolated along microfractures late in the deposit's history, but did not form any notable vein type. Raman spectroscopy supports the microthermometric data and reveals that CH4–bearing fluid inclusions occur in syn‐gold quartz grains found almost exclusively at the vein margin, whereas CO2–bearing fluid inclusions occur in quartz grains that are found toward the centre of the veins. The zonation of CO2:CH4 ratios, with respect to the location of fluid inclusions within the syn‐gold quartz veins, suggest that the CH4 did not travel as part of the auriferous fluid. Fluid unmixing and post‐entrapment alteration of the syn‐gold fluid inclusions are known to have occurred, but cannot adequately account for the relatively ordered zonation of CO2:CH4 ratios. Instead, the late introduction of a CH4–rich fluid into the Junction shear zone appears more likely. Alternatively, the process of CO2 reduction to CH4 is a viable and plausible explanation that fits the available data. The CH4–bearing fluid inclusions occur almost exclusively at the margin of the syn‐gold quartz veins within the zone of high‐grade gold mineralisation because this is where all the criteria needed to reduce CO2 to CH4 were satisfied in the Junction deposit.  相似文献   

15.
The Sn-rich Qiguling topaz rhyolite dike intrudes the Qitianling biotite granite of the Nanling Range in southern China; the granite hosts the large Furong Sn deposit. The rhyolite dike is typically peraluminous, volatile-enriched, and highly evolved. Whole-rock F and Sn concentrations attain 1.9 wt.% and 2700 ppm, respectively. The rhyolite consists of a fine-grained matrix formed by quartz, feldspar, mica and topaz, enclosing phenocrysts of quartz, feldspar and mica; it is locally crosscut by quartz veinlets. Lithium-bearing micas in both phenocrysts and the groundmass can be classified as primary zinnwaldite, “Mus-Ann” (intermediate member between annite and muscovite), and secondary Fe-rich muscovite. Topaz is present in the groundmass only; common fluorite occurs in the groundmass and also in a specific cassiterite, rutile and fluorite (Sn–Ti–F) assemblage. Cassiterite and rutile are the only Sn and Ti minerals; both cassiterite and Nb-rich rutile are commonly included in the phenocrysts. The Sn–Ti–F assemblage is pervasive, and contains spongy cassiterite in some cases; cassiterite also occurs in quartz veinlets which cut the groundmass. Electron microprobe and LA-ICP-MS compositions were used to study the magmatic and hydrothermal processes and the role of F in Sn mineralization. The presence of zinnwaldite and “Mus-Ann”, which are respectively representative of early and late mica crystallization during magma differentiation, also suggests a significant decrease in f(HF)/f(H2O) of the system. Cassiterite included in the zinnwaldite phenocrysts is suggested to have crystallized from the primary magma at high temperature. Within the Sn–Ti–F aggregates, rutile crystallized as the earliest mineral, followed by fluorite and cassiterite. Spongy cassiterite containing inclusions of the groundmass minerals indicate a low viscosity of the late fluid. The cassiterite in the quartz veinlets crystallized from low-temperature hydrothermal fluids, which possibly mixed with meteoric water. In general, cassiterite precipitated during both magmatic and hydrothermal stages, and over a range of temperatures. The original fluorine and tin enrichments, f(HF)/f(H2O) change in the residual magma, formation of Ca,Sn,F-rich immiscible fluid, decrease of the f(HF) during groundmass crystallization, and mixing of magma-derived fluids with low-saline meteoric water during the late hydrothermal stage, are all factors independently or together responsible for the Sn mineralization in the Qiguling rhyolite.  相似文献   

16.
The Tres Arboles ductile fault zone in the Eastern Sierras Pampeanas, central Argentina, experienced multiple ductile deformation and faulting events that involved a variety of textural and reaction hardening and softening processes. Much of the fault zone is characterized by a (D2) ultramylonite, composed of fine‐grained biotite + plagioclase, that lacks a well‐defined preferred orientation. The D2 fabric consists of a strong network of intergrown and interlocking grains that show little textural evidence for dislocation or dissolution creep. These ultramylonites contain gneissic rock fragments and porphyroclasts of plagioclase, sillimanite and garnet inherited from the gneissic and migmatitic protolith (D1) of the hangingwall. The assemblage of garnet + sillimanite + biotite suggests that D1‐related fabrics developed under upper amphibolite facies conditions, and the persistence of biotite + garnet + sillimanite + plagioclase suggests that the ultramylonite of D2 developed under middle amphibolite facies conditions. Greenschist facies, mylonitic shear bands (D3) locally overprint D2 ultramylonites. Fine‐grained folia of muscovite + chlorite ± biotite truncate earlier biotite + plagioclase textures, and coarser‐grained muscovite partially replaces relic sillimanite grains. Anorthite content of shear band (D3) plagioclase is c. An30, distinct from D1 and D2 plagioclase (c. An35). The anorthite content of D3 plagioclase is consistent with a pervasive grain boundary fluid that facilitated partial replacement of plagioclase by muscovite. Biotite is partially replaced by muscovite and/or chlorite, particularly in areas of inferred high strain. Quartz precipitated in porphyroclast pressure shadows and ribbons that help define the mylonitic fabric. All D3 reactions require the introduction of H+ and/or H2O, indicating an open system, and typically result in a volume decrease. Syntectonic D3 muscovite + quartz + chlorite preferentially grew in an orientation favourable for strain localization, which produced a strong textural softening. Strain localization occurred only where reactions progressed with the infiltration of aqueous fluids, on a scale of hundreds of micrometre. Local fracturing and microseismicity may have induced reactivation of the fault zone and the initial introduction of fluids. However, the predominant greenschist facies deformation (D3) along discrete shear bands was primarily a consequence of the localization of replacement reactions in a partially open system.  相似文献   

17.
Fluid inclusions in the metamorphic aureole of the Eureka Valley‐Joshua Flat‐Beer Creek (EJB) pluton in the White‐Inyo Range, California, reveal the compositions and origin of fluids that were present during variable recrystallization of quartzite with sedimentary grain shapes to metaquartzite with granoblastic texture. Metamorphosed sedimentary formations, including quartzites, marbles, calcsilicates and schists, became ductile and strongly attenuated in the aureole during growth of the magma chamber. The microstructures of quartzites have an unusual distribution in that within ~250 m from the pluton, where temperatures exceeded 650 °C, they exhibit relict sedimentary grain shapes, only small amount of grain boundary migration (GBM), and crystallographic preferred orientations (CPOs) dominated by <a> slip. At distances >250 m, quartzites were completely recrystallized by GBM and CPOs are indicative of prism [c] slip, characteristics that are typically associated with H2O‐assisted, high‐T recrystallization. The lack of extensive GBM in the inner aureole can be attributed to rapid replacement of H2O by CO2 produced by reaction of quartz grains with calcite cement that also produced interstitial wollastonite. Fluid inclusions in the inner aureole generally occur in margins of quartz grains and are either wholly aqueous (Type 1) or also contain H2S, CO2 and CH4 (Type 2). Type 2 inclusions occur only in some stratigraphic layers. In both inclusion types, NaCl and CaCl2, in variable proportions, dominate the solutes in the aqueous phase, whereas FeCl2 and KCl are less abundant solutes. The solutes indicate attainment of a degree of equilibrium with carbonates and schists that are interbedded with the quartzites. Some Types 1 and 2 inclusions in the inner aureole show evidence of decrepitation due to high amounts of strain and/or heating suffered by the host rocks, which suggests that they represent pore fluids that existed in the rocks prior to contact metamorphism. In addition to Type 1 inclusions, outer aureole quartzites also contain inclusions that contain CO2 vapour bubbles in addition to aqueous phase (Type 3). These inclusions only occur in interiors of granoblastic quartz that was produced by large amounts of GBM. The aqueous phase has identical ranges of first melting and final ice melting temperatures as Type 1 inclusions, suggesting that they have the same solute compositions. These inclusions are thought to represent the interstitial pore H2O that promoted recrystallization of quartz and reacted with graphite to produce CO2. Absence of significant amounts of CH4 in Type 3 inclusions is attributed to elevated fO2 that was buffered by mineral assemblages in interbedded schists. As opposed to the large amount of CO2 that was produced by the wollastonite‐forming reaction in the inner aureole to inhibit GBM, the amount of CO2 produced in the outer aureole by reaction between H2O and graphite was apparently insufficient to inhibit recrystallization of quartz.  相似文献   

18.
Abstract. The Ta'ergou tungsten deposit in Gansu province, northwestern China, is located in the western part of the North Qilian Caledonian orogen, and consists of scheelite skarn bodies and wolframite quartz veins. The tungsten‐bearing skarn developed by the replacement of carbonate layers intercalated in the Precambrian schist and amphibolite whereas wolframite‐quartz ore veins developed along a group of fractures that cut through horizontal skarns. The Ta'ergou tungsten deposit is genetically related to the Caledonian Yeniutan granodiorite intrusion and occurs ca. 500 m wide in the exo‐contact zone 300 ~ 500 m apart from the intrusion. The granodiorite displays a lower grade of differentiation, low content of SiO2 and high contents of mafic components. There are three types of fluid inclusions in the wolframite‐quartz vein systems, i. e. aqueous, CO2‐H2O and CO2‐rich. The homogenization temperature of aqueous inclusion ranges from 140 to 380d?C and their salinities from 6.4 to 17.4 equivalent wt% NaCl. Laser Raman spectroscopy shows that the inclusions contain a relatively high content of CO2. The δ34S values of skarn type sulfides range from +8.1 to +12.7 per mil and those of quartz vein sulfides from +9.3 to +14.9 per mil, similar to sulfides of the granodiorite with from +6.0 to +11.7 per mil. The δ18O values of quartz are between +10.5 and +13.3 per mil and those of wolframite between +3.4 and +5.1 per mil. The δ18O water values of ore forming fluids range from +0.6 to +6.4 per mil and suggest the mixture of magmatic fluids with meteoric water formed the ore‐forming fluids. It has been proved that Precambrian strata in the west sector of North Qilian region are enriched in tungsten. We propose the strata were remelted to be tungsten‐granitoid during subduction. The polymetallic tungsten was gradually accumulated into the roof pendants of the granite intrusion by fractional crystallization and then was deposited by hydrothermal fluids during metasomatism and infilling along fractures. On the other hand, the granite intrusion also acted as “heating machine” to make hydrothermal fluids leach out the metals from Precambrian strata and these metals joined the ore‐forming hydrothermal system.  相似文献   

19.
The Mangabeira deposit is the only known Brazilian tin mineralization with indium. It is hosted in the Paleo- to Mesoproterozoic Mangabeira within-plate granitic massif, which has geochemical characteristics of NYF fertile granites. The granitic massif is hosted in Archean to Paleoproterozoic metasedimentary rocks (Ticunzal formation), Paleoproterozoic peraluminous granites (Aurumina suite) and a granite–gneiss complex. The mineralized area comprises evolved Li-siderophyllite granite, topaz–albite granite, Li–F-rich mica greisens and a quartz–topaz rock, similar to topazite. Two types of greisens are recognized in the mineralized area: zinnwaldite greisen and Li-rich muscovite greisen, formed by metasomatism of topaz–albite granite and Li-siderophyllite granite, respectively. Cassiterite occurs in the quartz–topaz rock and in the greisens. Indium minerals, such as roquesite (CuInS2), yanomamite (InAsO4·2H2O) and dzhalindite (In(OH3)), and In-rich cassiterite, sphalerite, stannite group minerals and scorodite are more abundant in the quartz–topaz rock, and are also recognized in albitized biotite granite and in Li-rich muscovite greisen. The host rocks and mineralized zones were subsequently overprinted by the Brasiliano orogenic event.Primary widespread two-phase aqueous and rare coeval aqueous-carbonic fluid inclusions are preserved in quartz from the topaz–albite granite, in quartz and topaz from the quartz–topaz rock and in cassiterite from the Li-rich muscovite greisen. Eutectic temperatures are − 25 °C to − 23 °C, allowing modeling of the aqueous fluids in the system H2O–NaCl(–KCl). Rare three-phase H2O–NaCl fluid inclusions (45–50 wt.% NaCl equiv.) are restricted to the topaz–albite granite. Salinities and homogenization temperatures of the aqueous and aqueous-carbonic fluid inclusions decrease from the topaz–albite granite (15–20 wt.% NaCl equiv.; 400 °C–450 °C), to the quartz–topaz rock (10–15 wt.% NaCl equiv.; 250 °C–350 °C) and to the greisen (0–5 wt.% NaCl equiv.; 200 °C–250 °C). Secondary fluid inclusions have the same range of salinities as the primary fluid inclusions, and homogenize between 150 and 210 °C.The estimated equilibrium temperatures based on δ18O of quartz–mica pairs are 610–680 °C for the topaz–albite granite and 285–370 °C for the Li-rich muscovite greisens. These data are coherent with measured fluid inclusion homogenization temperatures. Temperatures estimated using arsenopyrite geothermometry yield crystallization temperatures of 490–530 °C for the quartz–topaz rock and 415–505 °C for the zinnwaldite greisens. The fluids in equilibrium with the topaz–albite granite have calculated δ18O and δD values of 5.6–7.5‰ and − 67 to − 58‰, respectively. Estimated δ18O and δD values are mainly 4.8–7.9‰ and − 60 to − 30‰, respectively, for the fluids in equilibrium with the quartz–topaz rock and zinnwaldite greisen; and 3.4–3.9‰ and − 25 to − 17‰, respectively, for the Li-rich muscovite greisen fluid. δ34S data on arsenopyrite from the quartz–topaz rock vary from − 1.74 to − 0.74‰, consistent with a magmatic origin for the sulfur. The integration of fluid inclusion with oxygen isotopic data allows for estimation of the minimum crystallization pressure at ca. 770 bar for the host topaz–albite granite, which is consistent with its evolved signature.Based on petrological, fluid inclusion and isotope data it is proposed that the greisens and related Mangabeira Sn–In mineralization had a similar hydrothermal genesis, which involved exsolution of F-rich, Sn–In-bearing magmatic fluids from the topaz–albite granite, early formation of the quartz–topaz rock and zinnwaldite greisen, progressive cooling and Li-rich muscovite greisen formation due to interaction with meteoric water. The quartz–topaz rock is considered to have formed in the magmatic-hydrothermal transition. The mineralizing saline and CO2-bearing fluids are interpreted to be of magmatic origin, based on the isotopic data and paragenesis, which has been documented as characteristic of the tin mineralization genetically related to Proterozoic within-plate granitic magmatism in the Goias Tin Province, Central Brazil.  相似文献   

20.
Granite pegmatite sheets in the continental crust are characterized by very large crystals. There has been a shift in viewing pegmatites as products of very slow cooling of granite melts to viewing them as products of crystal growth in undercooled liquids. With this shift there has been a renewed debate about the role of H2O in the petrogenesis of pegmatites. Based on data on nucleation of minerals and new viscosity models for hydrous granite melts, it is argued that H2O is the essential component in the petrogenesis of granite pegmatites. H2O is key to reducing the viscosity of granite melts, which enhances their transport within the crust. It also dramatically reduces the glass transition temperature, which permits crystallization of melts at hundreds of degrees below the thermodynamic solidus, which has been demonstrated by fluid inclusion studies and other geothermometers. Published experimental data show that because H2O drastically reduces the nucleation rates of silicate minerals, the minerals may not be able to nucleate until melt is substantially undercooled. In a rapidly cooling intrusion, nucleation starts at its highly undercooled margins, followed by inward crystal growth towards its slower-cooling, hotter core. Delay in nucleation may be caused by competition for crystallization by several minerals in the near-eutectic melts and by the very different structures of minerals and the highly hydrated melts. Once a mineral nucleates, however, it may grow rapidly to a size that is determined by the distance between the site of nucleation and the point in the magma at which the temperature is approximately that of the mineral’s liquidus, assuming components necessary for mineral growth are available along the growth path. Granite pegmatites are apparently able to retain H2O during most of their crystallization histories within the confinement of their wall rocks. Pegmatitic texture is a consequence of delayed nucleation and rapid growth at large undercooling, both of which are facilitated by high H2O (±Li, B, F and P) contents in granite pegmatite melts. Without retention of H2O the conditions for pegmatitic textural growth may be difficult to achieve. Loss of H2O due to decompression and venting leads to microcrystalline texture and potentially glass during rapid cooling as seen in rhyolites. In contrast, slow cooling within a large magma chamber promotes continuous exsolution of H2O from crystallizing magma, growth of equant crystals, and final solidification at the thermodynamic solidus. These are the characteristics of normal granites that distinguish them from pegmatites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号