首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
测绘学   3篇
大气科学   2篇
地球物理   2篇
地质学   4篇
  2018年   1篇
  2017年   1篇
  2014年   1篇
  2013年   2篇
  2012年   2篇
  2010年   1篇
  2009年   1篇
  2000年   1篇
  1989年   1篇
排序方式: 共有11条查询结果,搜索用时 734 毫秒
1.
Monitoring wetland as one of the important parts of the global ecosystem is necessary for conservational programs. But, usually, collecting in situ data is restricted in these areas because of their remote locations, vast area and dynamic conditions. Remote sensing provides a cost effective tool to investigate hydrological patterns and the seasonal trend of changes in wetlands. In this paper, Land-use/land-cover change during water inundation period of Hamun wetland was investigated in order to determine change trend during this period. Hamun wetland is an unsustainable ecosystem, and monitoring this wetland is essential for conservation goals. This trend is critical for decision makers in order to plan the conservational scheme in all unsustainable ecosystems. To reach this objective, the land-use/land-cover maps during inundation period of Hamun were produced using Landsat 8 time series images. The results of accuracy assessment showed the classification of water and vegetation have the highest accuracy (94% and 93%, respectively). And the accuracy of plants in the water classes was the lowest (water–veg?=?89.9%, veg–water 1?=?88.8%, veg–water 2?=?87.6%). This means the higher misclassification is in determining the vegetation in the water. Then, the changes in the land-cover classes in relation to wetland inundation were investigated. Results of land-use/land-cover change illustrate the regions that were suitable for water birds but lost their suitability when the wetland dried out. These areas are crucial for water bird’s conservation. Satellite data determined these areas with acceptable accuracy.  相似文献   
2.

Background

Accurate estimation of aboveground forest biomass (AGB) and its dynamics is of paramount importance in understanding the role of forest in the carbon cycle and the effective implementation of climate change mitigation policies. LiDAR is currently the most accurate technology for AGB estimation. LiDAR metrics can be derived from the 3D point cloud (echo-based) or from the canopy height model (CHM). Different sensors and survey configurations can affect the metrics derived from the LiDAR data. We evaluate the ability of the metrics derived from the echo-based and CHM data models to estimate AGB in three different biomes, as well as the impact of point density on the metrics derived from them.

Results

Our results show that differences among metrics derived at different point densities were significantly different from zero, with a larger impact on CHM-based than echo-based metrics, particularly when the point density was reduced to 1 point m?2. Both data models-echo-based and CHM-performed similarly well in estimating AGB at the three study sites. For the temperate forest in the Sierra Nevada Mountains, California, USA, R2 ranged from 0.79 to 0.8 and RMSE (relRMSE) from 69.69 (35.59%) to 70.71 (36.12%) Mg ha?1 for the echo-based model and from 0.76 to 0.78 and 73.84 (37.72%) to 128.20 (65.49%) Mg ha?1 for the CHM-based model. For the moist tropical forest on Barro Colorado Island, Panama, the models gave R2 ranging between 0.70 and 0.71 and RMSE between 30.08 (12.36%) and 30.32 (12.46) Mg ha?1 [between 0.69–0.70 and 30.42 (12.50%) and 61.30 (25.19%) Mg ha?1] for the echo-based [CHM-based] models. Finally, for the Atlantic forest in the Sierra do Mar, Brazil, R2 was between 0.58–0.69 and RMSE between 37.73 (8.67%) and 39.77 (9.14%) Mg ha?1 for the echo-based model, whereas for the CHM R2 was between 0.37–0.45 and RMSE between 45.43 (10.44%) and 67.23 (15.45%) Mg ha?1.

Conclusions

Metrics derived from the CHM show a higher dependence on point density than metrics derived from the echo-based data model. Despite the median of the differences between metrics derived at different point densities differing significantly from zero, the mean change was close to zero and smaller than the standard deviation except for very low point densities (1 point m?2). The application of calibrated models to estimate AGB on metrics derived from thinned datasets resulted in less than 5% error when metrics were derived from the echo-based model. For CHM-based metrics, the same level of error was obtained for point densities higher than 5 points m?2. The fact that reducing point density does not introduce significant errors in AGB estimates is important for biomass monitoring and for an effective implementation of climate change mitigation policies such as REDD + due to its implications for the costs of data acquisition. Both data models showed similar capability to estimate AGB when point density was greater than or equal to 5 point m?2.
  相似文献   
3.
The Kuh-e-Surmeh carbonate-hosted zinc-lead deposit, located within the Simply Folded Belt of the Zagros Mountains in southwestern Iran, is an orogen-related Mississippi Valley type deposit originally formed in the foreland Thrust Belt of the Zagros Mountains. Structural and textural observations indicate that ore deposition took place as open-space fillings in brecciated carbonate rock and as internal sediments consisting of fine-grained ore minerals interlayered with carbonates. The preferred genetic model for the concentration of the ore metals is that of dewatering of the Zard-Kuh basin due to regional tectonic compaction tectonism and expulsion of basin-derived fluids into the highly porous and brecciated dolomitized rocks of the Dalan Formation. The metals precipitated from dense basinal brine (15 wt% equiv. NaCl) at low temperatures (less than 200 °C), typically within strata of a Late Paleozoic carbonate platform. Received: 21 July 1998 / Accepted: 20 August 1999  相似文献   
4.
5.
A large agricultural area located in 20 km north of the city of Mashhad in the north-east of Iran is subject to land subsidence. The subsidence rate was achieved in a couple of sparse points by precise leveling between 1995 and 2005, and continuous GPS measurements obtained from 2005 to 2006. In order to study the temporal behavior of the deformation in high spatial resolution, the small baseline subset (SBAS) algorithm was used to generate the interferometric SAR time series analysis. Time series analysis was performed using 19 interferograms calculated from 12 ENVISAT ASAR data spanning between 2003 and 2006. The time series results exhibited that the area is subsiding continuously without a significant seasonal effect. Mean LOS deformation velocity map obtained from time series analysis demonstrated a considerable subsidence rate up to 24 (cm/yr). In order to evaluate the time series analysis results, continuous GPS measurements as a geodetic approach were applied. The comparisons showed a great agreement between interferometry results and geodetic technique. Moreover, the information of various piezometric wells distributed in the area corresponding to 1995 to 2005 showed a significant decline in water table up to 20 meters. The correlation between the piezometric information and the surface deformation at well’s locations showed that the subsidence occurrence in Mashhad is due to the excess groundwater withdrawal.  相似文献   
6.
Tree planting programs are being implemented in many US cities (most notably New York, Los Angeles, and Chicago) on the basis of the multiple environmental and health benefits they may provide. However, the magnitude and even the direction of the impacts of trees on specific urban environments have seldom been directly measured. In addition, there has been little research on the historical, cultural, political or institutional origins of such programs, or on their implementation process. Pending questions include the degree to which these programs are integrated in the existing frameworks of city government and infrastructure management, how they are paid for, and the kinds of collaborations between nonprofit organizations, the public, and public agencies at all levels they may require in order to succeed. This paper reports on an interdisciplinary research project examining the Million Tree Program of the City of Los Angeles.  相似文献   
7.
The Darreh‐Zereshk (DZ) and Ali‐Abad (AB) porphyry copper deposits are located in southwest of the Yazd city, central Iran. These deposits occur in granitoid intrusions, ranging in composition from quartz monzodiorite through granodiorite to granite. The ore‐hosting intrusions exhibit intense hydrofracturing that lead to the formation of quartz‐sulfide veinlets. Fluid inclusions in hydrothermal quartz in these deposits are classified as a mono‐phase vapor type (Type I), liquid‐rich two phase (liquid + vapor) type (Type IIA), vapor‐rich two phase (vapor + liquid) type (Type IIB), and multi‐phase (liquid + vapor + halite + sylvite + hematite + chalcopyrite and pyrite) type (Types III). Homogenization temperatures (Th) and salinity data are presented for fluid inclusions from hydrothermal quartz veinlets associated with potassic alteration and other varieties of hypogene mineralization. Ore precipitation occurred between 150° to >600°C from low to very high salinity (1.1–73.9 wt% NaCl equivalent) aqueous fluids. Two stages of hydrothermal activity characterized are recognized; one which shows relatively high Th and lower salinity fluid (Type IIIa; Th(L‐V) > Tm(NaCl)); and one which shows lower Th and higher salinity (Type IIIb; Th(L‐V) < Tm(NaCl)). The high Th(L‐V) and salinities of Type IIIa inclusions are interpreted to represent the initial existence of a dense fluid of magmatic origin. The coexistence of Type IIIb, Type I and Type IIB fluid inclusions suggest that these inclusions resulted either from trapping of boiling fluids and/or represent two immiscible fluids. These processes probably occurred as the result of pressure fluctuations from lithostatic to hydrostatic conditions under a pressure of 200 to 300 bar. Dilution of these early fluids by meteoritic water resulted in lower temperatures and low to moderate salinity (<20 wt% NaCl equiv.) fluids (Type IIA). Fluid inclusion analysis reveals that the hydrothermal fluid, which formed mineralized quartz veinlets in the rocks with potassic alteration, had temperatures of ~500°C and salinity ~50 wt% NaCl equiv. Cryogenic SEM‐EDS analyses of frozen and decrepitated ore‐bearing fluids trapped in the inclusions indicate the fluids were dominated with NaCl, and KCl with minor CaCl2.  相似文献   
8.
9.
Groundwater is the most important natural resource used for drinking by many people around the world, especially in arid and semi-arid areas. The resource cannot be optimally used and sustained unless the quality of groundwater is assessed. Saveh-Nobaran aquifer in Iran is the most important groundwater aquiferous system in the region which is considered a major source for drinking and irrigation. The main objective of this study is to understand the groundwater quality status of Saveh-Nobaran aquifer, followed by attempts to investigate the spatial distribution of groundwater quality parameters to identify places with the best quality for drinking consume within the study area. For this purpose, a set of original data, as yet unpublished, is presented. This paper provides an important contribution for understanding relationship between land use and groundwater quality, and also groundwater depth and groundwater quality. This goal has been achieved with the combined use of the Water Quality Index (WQI) and a geographical information system (GIS). A total of 58 groundwater samples were collected and analyzed for major cations and anions. Spatial distribution maps of pH, TDS, EC, TH, Cl, HCO, SO4, Ca, Mg, Na and K have been created using the kriging method in a GIS environment. From the WQI assessment, over 65 % of the water samples fall within the ‘‘Poor’’, ‘‘Very poor’’ and “unsuitable for drinking” categories, suggesting that groundwater from the center and north-east of the Saveh-Nobaran aquifer is unsuitable for drinking purposes. This research and its results have shown the great combination use of GIS and WQI in assessing groundwater quality. Having a clear view of the geographic areas of groundwater quality, decision makers can plan better for the operation and maintenance of groundwater resources.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号