首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A granite‐related scheelite deposit has been recently discovered in the Wuyi metallogenic belt of southeast China. The veinlet–disseminated scheelite occurs mainly in the inner and outer contact zones of the porphyritic biotite granite, spatially associated with potassic feldspathization and silicification. Re–Os dating of molybdenite intergrowths with scheelite yield a well‐constrained isochron age of 170.4 ± 1.2 Ma, coeval with the LA–MC–ICP–MS concordant zircon age of porphyritic biotite granite (167.6 ± 2.2 Ma), indicating that the Lunwei W deposit was formed in the Middle Jurassic (~170 Ma). We identify three stages of ore formation (from early to late): (I) the quartz–K‐feldspar–scheelite stage; (II) the quartz–polymetallic sulfide stage; and (III) the quartz–carbonate stage. Based on petrographic observations and microthermometric criteria, the fluid inclusions in the scheelite and quartz are determined to be mainly aqueous two‐phase (liquid‐rich and gas‐rich) fluid inclusions, with minor gas‐pure and CO2‐bearing fluid inclusions. Ore‐forming fluids in the Lunwei W deposit show a successive decrease in temperature and salinity from Stage I to Stage III. The homogenization temperature decreases from an average of 299 °C in Stage I, through 251 °C in Stage II, to 212 °C in Stage III, with a corresponding change in salinity from an average of 5.8 wt.%, through 5.2 wt.%, to 3.4 wt.%. The ore‐forming fluids have intermediate to low temperatures and low salinities, belonging to the H2O–NaCl ± CO2 system. The δ18OH2O values vary from 1.8‰ to 3.3‰, and the δDV‐SMOW values vary from –66‰ to –76‰, suggesting that the ore‐forming fluid was primarily of magmatic water mixed with various amounts of meteoric water. Sulfur isotope compositions of sulfides (δ34S ranging from –1.1‰ to +2.4‰) and Re contents in molybdenite (1.45–19.25 µg/g, mean of 8.97 µg/g) indicate that the ore‐forming materials originated mainly in the crust. The primary mechanism for mineral deposition in the Lunwei W deposit was a decrease in temperature and the mixing of magmatic and meteoric water. The Lunwei deposit can be classified as a porphyry‐type scheelite deposit and is a product of widespread tungsten mineralization in South China. We summarize the geological characteristics of typical W deposits (the Xingluokeng, Shangfang, and Lunwei deposits) in the Wuyi metallogenic belt and suggest that porphyry and skarn scheelite deposits should be considered the principal exploration targets in this area.  相似文献   

2.
The Nuri Cu‐W‐Mo deposit is located in the southern subzone of the Cenozoic Gangdese Cu‐Mo metallogenic belt. The intrusive rocks exposed in the Nuri ore district consist of quartz diorite, granodiorite, monzogranite, granite porphyry, quartz diorite porphyrite and granodiorite porphyry, all of which intrude in the Cretaceous strata of the Bima Group. Owing to the intense metasomatism and hydrothermal alteration, carbonate rocks of the Bima Group form stratiform skarn and hornfels. The mineralization at the Nuri deposit is dominated by skarn, quartz vein and porphyry type. Ore minerals are chalcopyrite, pyrite, molybdenite, scheelite, bornite and tetrahedrite, etc. The oxidized orebodies contain malachite and covellite on the surface. The mineralization of the Nuri deposit is divided into skarn stage, retrograde stage, oxide stage, quartz‐polymetallic sulfide stage and quartz‐carbonate stage. Detailed petrographic observation on the fluid inclusions in garnet, scheelite and quartz from the different stages shows that there are four types of primary fluid inclusions: two‐phase aqueous inclusions, daughter mineral‐bearing multiphase inclusions, CO2‐rich inclusions and single‐phase inclusions. The homogenization temperature of the fluid inclusions are 280°C–386°C (skarn stage), 200°C–340°C (oxide stage), 140°C–375°C (quartz‐polymetallic sulfide stage) and 160°C–280°C (quartz‐carbonate stage), showing a temperature decreasing trend from the skarn stage to the quartz‐carbonate stage. The salinity of the corresponding stages are 2.9%–49.7 wt% (NaCl) equiv., 2.1%–7.2 wt% (NaCl) equiv., 2.6%–55.8 wt% (NaCl) equiv. and 1.2%–15.3 wt% (NaCl) equiv., respectively. The analyses of CO2‐rich inclusions suggest that the ore‐forming pressures are 22.1 M Pa–50.4 M Pa, corresponding to the depth of 0.9 km–2.2 km. The Laser Raman spectrum of the inclusions shows the fluid compositions are dominated in H2O, with some CO2 and very little CH4, N2, etc. δD values of garnet are between ?114.4‰ and ?108.7‰ and δ18OH2O between 5.9‰ and 6.7‰; δD of scheelite range from ?103.2‰ to ?101.29‰ and δ18OH2O values between 2.17‰ and 4.09‰; δD of quartz between ?110.2‰ and ?92.5‰ and δ18OH2O between ?3.5‰ and 4.3‰. The results indicate that the fluid came from a deep magmatic hydrothermal system, and the proportion of meteoric water increased during the migration of original fluid. The δ34S values of sulfides, concentrated in a rage between ?0.32‰ to 2.5‰, show that the sulfur has a homogeneous source with characteristics of magmatic sulfur. The characters of fluid inclusions, combined with hydrogen‐oxygen and sulfur isotopes data, show that the ore‐forming fluids of the Nuri deposit formed by a relatively high temperature, high salinity fluid originated from magma, which mixed with low temperature, low salinity meteoric water during the evolution. The fluid flow through wall carbonate rocks resulted in the formation of layered skarn and generated CO2 or other gases. During the reaction, the ore‐forming fluid boiled and produced fractures when the pressure exceeded the overburden pressure. Themeteoric water mixed with the ore‐forming fluid along the fractures. The boiling changed the pressure and temperature, oxygen fugacity, physical and chemical conditions of the whole mineralization system. The escape of CO2 from the fluid by boiling resulted in scheelite precipitation. The fluid mixing and boiling reduced the solubility of metal sulfides and led the precipitation of chalcopyrite, molybdenite, pyrite and other sulfide.  相似文献   

3.
The Weiquan Ag-polymetallic deposit is located on the southern margin of the Central Asian Orogenic Belt and in the western segment of the Aqishan-Yamansu arc belt in East Tianshan,northwestern China. Its orebodies, controlled by faults, occur in the lower Carboniferous volcanosedimentary rocks of the Yamansu Formation as irregular veins and lenses. Four stages of mineralization have been recognized on the basis of mineral assemblages, ore fabrics, and crosscutting relationships among the ore veins. Stage I is the skarn stage(garnet + pyroxene), Stage Ⅱ is the retrograde alteration stage(epidote + chlorite + magnetite ± hematite 士 actinolite ± quartz),Stage Ⅲ is the sulfide stage(Ag and Bi minerals + pyrite + chalcopyrite + galena + sphalerite + quartz ± calcite ± tetrahedrite),and Stage IV is the carbonate stage(quartz + calcite ± pyrite). Skarnization,silicification, carbonatization,epidotization,chloritization, sericitization, and actinolitization are the principal types of hydrothermal alteration. LAICP-MS U-Pb dating yielded ages of 326.5±4.5 and 298.5±1.5 Ma for zircons from the tuff and diorite porphyry, respectively. Given that the tuff is wall rock and that the orebodies are cut by a late diorite porphyry dike, the ages of the tuff and the diorite porphyry provide lower and upper time limits on the age of ore formation. The δ~(13)C values of the calcite samples range from-2.5‰ to 2.3‰, the δ~(18)O_(H2 O) and δD_(VSMOW) values of the sulfide stage(Stage Ⅲ) vary from 1.1‰ to 5.2‰ and-111.7‰ to-66.1‰, respectively,and the δ~(13)C, δ~(18)O_(H2 O) and δD_(V-SMOW) values of calcite in one Stage IV sample are 1.5‰,-0.3‰, and-115.6‰, respectively. Carbon, hydrogen, and oxygen isotopic compositions indicate that the ore-forming fluids evolved gradually from magmatic to meteoric sources. The δ~(34)S_(V-CDT) values of the sulfides have a large range from-6.9‰ to 1.4‰, with an average of-2.2‰, indicating a magmatic source, possibly with sedimentary contributions. The ~(206)Pb/~(204)Pb, ~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of the sulfides are 17.9848-18.2785,15.5188-15.6536, and 37.8125-38.4650, respectively, and one whole-rock sample at Weiquan yields~(206)Pb/~(204)Pb,~(207)Pb/~(204)Pb, and ~(208)Pb/~(204)Pb ratios of 18.2060, 15.5674, and 38.0511,respectively. Lead isotopic systems suggest that the ore-forming materials of the Weiquan deposit were derived from a mixed source involving mantle and crustal components. Based on geological features, zircon U-Pb dating, and C-H-OS-Pb isotopic data, it can be concluded that the Weiquan polymetallic deposit is a skarn type that formed in a tectonic setting spanning a period from subduction to post-collision. The ore materials were sourced from magmatic ore-forming fluids that mixed with components derived from host rocks during their ascent, and a gradual mixing with meteoric water took place in the later stages.  相似文献   

4.
《Resource Geology》2018,68(3):303-325
The Lujing uranium deposit, located in the southeastern part of the Nanling metallogenic province, is one of the representative granite‐related hydrothermal uranium deposits in South China. Basic geology, geochemistry, and geochronology of the deposit have been extensively studied. However, there is still a chronic lack of systematic research on the genesis and metallogenic process of the deposit. Thus, we recently carried out an electron microprobe and stable isotopic analysis. The main research results and progresses are as follows: Uranium minerals in this deposit include coffinite, pitchblende, and uranothorite, and small amounts of uranium exist in accessory minerals in the form of isomorphism. Coffinite, which occurs predominantly as the pseudomorphs after pitchblende, also occurs as a primary mineral and is locally formed from the remobilization of uranium from adjacent uranium‐bearing minerals. The mineralizing fluid was originally composed of a magmatic fluid generated by late Yanshanian magmatism. The high As content of pyrite in ores may reflect the addition of meteoric water, or the formation water (or both), to the magmatic hydrothermal system. The δ34S values vary from −14.4‰ to 13.9‰ (mean δ34S = −3.9‰), showing a range that is similar to nearby Cambrian metamorphic strata and Indosinian granites, indicating that these host rocks represent the source of sulfur; however, the possibility of a mantle source cannot be completely ruled out. According to our new isotopic data and recent Pb isotopic data, we conclude that the uranium in ores was derived by leaching dominantly from the uranium‐rich host rocks, especially the Cambrian metamorphic strata. The δ13CPDB values (−8.75‰ to 1.40‰; mean δ13CPDB = −5.41‰) and δ18OSMOW values (5.45–18.62‰; mean δ18O = 13.02‰) of reddish calcite from the ore‐forming stage suggest that the CO2 in the mineralizing fluids was derived predominantly from the mantle, with a small component contributed by marine carbonates. Based on these new data and previous research results, this paper proposes that uranium metallogenesis in the Lujing deposit is closely associated with mafic magmatism resulting from crustal extension during the Cretaceous to Paleogene in South China.  相似文献   

5.
《Resource Geology》2018,68(3):227-243
As a newly discovered medium‐sized deposit (proven Pb + Zn resources of 0.23 Mt, 9.43% Pb and 8.73% Zn), the Dongzhongla skarn Pb–Zn deposit is located in the northern margin of the eastern Gangdese, central Lhasa block. Based on the geological conditions in this deposit of ore‐forming fluids, H, O, C, S, Pb, Sr, and noble gas isotopic compositions were analyzed. Results show that δ18OSMOW of quartz and calcite ranged from −9.85 to 4.17‰, and δDSMOW ranged from −124.7 to −99.6‰ (where SMOW is the standard mean ocean water), indicating magma fluids mixed with meteoric water in ore‐forming fluids. The δ13CPDB and δ18OSMOW values of calcite range from −1.4 to −1.1‰ and from 5.3 to 15.90‰, respectively, show compositions consistent with the carbonate limestone in the surrounding rocks, implying that the carbon was primarily sourced from the dissolution of carbonate strata in the Luobadui Formation. The ore δ34S composition varied in a narrow range of 2.8 to 5.7‰, mostly between 4‰ and 5‰. The total sulfur isotopic value δ34S was 4.7‰ with characteristics of magmatic sulfur. The 3He/4He values of pyrite and galena ranged from 0.101 to 5.7 Ra, lower than those of mantle‐derived fluids (6 ± 1 Ra), but higher than those of the crust (0.01–0.05 Ra), and therefore classified as a crust–mantle mixed source. The Pb isotopic composition for 206Pb/204Pb, 207Pb/204Pb, and 208Pb/204Pb values of the ores were in the ranges of 18.628–18.746, 15.698–15.802, and 39.077–39.430, respectively, consistent with the Pb isotopic composition of magmatic rocks in the deposit, classified as upper‐crust lead. The ore lead was likely sourced partially from the crustal basement of the Lhasa Terrane. The initial (87Sr/86Sr)i value from five sulfide samples ranged from 0.71732 to 0.72767, and associated ore‐forming fluids were mainly sourced from the partial melting of the upper‐crust materials. Pb isotopic compositions of ore sulfides from the Dongzhongla deposit are similar to that of the Yuiguila and Mengya'a deposit, indicating that they have similar sources of metal‐rich ore‐forming solution. According to basic skarn mineralogy, the economic metals, and the origin of the ore‐forming fluids, the Dongzhongla deposit was classified as a skarn‐type Pb–Zn deposit.  相似文献   

6.
The Xuebaoding crystal deposit, located in northern Longmenshan, Sichuan Province, China, is well known for producing coarse‐grained crystals of scheelite, beryl, cassiterite, fluorite and other minerals. The orebody occurs between the Pankou and Pukouling granites, and a typical ore vein is divided into three parts: muscovite and beryl within granite (Part I); beryl, cassiterite and muscovite in the host transition from granite to marble (Part II); and the main mineralization part, an assemblage of beryl, cassiterite, scheelite, fluorite, apatite and needle‐like tourmaline within marble (Part III). No evidence of crosscutting or overlapping of these ore veins by others suggests that the orebody was formed by single fluid activity. The contents of Be, W, Sn, Li, Cs, Rb, B, and F in the Pankou and Pukouling granites are similar to those of the granites that host Nanling W–Sn deposits. The calculated isotopic compositions of beryl, scheelite and cassiterite (δD, ?69.3‰ to ?107.2‰ and δ18OH2O, 8.2‰ to 15.0‰) indicate that the ore‐forming fluids were mainly composed of magmatic water with minor meteoric water and CO2 derived from decarbonation of marble. Primary fluid inclusions are CO2? CH4+ H2O ± CO2 (vapor), with or without clathrates and halites. We estimate the fluid trapping condition at T = 220 to 360°C and P > 0.9 kbar. Fluid inclusions are rich in H2O, F and Cl. Evidence for fluid‐phase immiscibility during mineralization includes variable L/V ratios in the inclusions and inclusions containing different phase proportions. Fluid immiscibility may have been induced by the pressure released by extension joints, thereby facilitating the mineralization found in Part III. Based on the geochemical data, geological occurrence, and fluid inclusion studies, we hypothesize that the coarse‐grained crystals were formed by: (i) the high content of ore elements and volatile elements such as F in ore‐forming fluids; (ii) occurrence of fluid immiscibility and Ca‐bearing minerals after wall rock transition from granite to marble making the ore elements deposit completely; (iii) pure host marble as host rock without impure elements such as Fe; and (iv) sufficient space in ore veins to allow growth.  相似文献   

7.
The Zhawulong granitic pegmatite lithium deposit is located in the Ganzi-Songpan orogenic belt. Fluid inclusions in spodumene and coexisting quartz were studied to understand the cooling path and evolution of fluid within albite–spodumene pegmatite. There are three distinguishable types of fluid inclusions: crystal-rich, CO2–NaCl–H2O, and NaCl–H2O. At more than 500°C and 350~480 MPa, crystal-rich fluid inclusions were captured during the pegmatitic magma-hydrothermal transition stage, characterized by a dense hydrous alkali borosilicate fluid with a carbonate component. Between 412°C and 278°C, CO2–NaCl–H2Ofluid inclusions developed in spodumene (I) and quartz (II) with a low salinity (3.3–11.9 wt%NaCl equivalent) and a high volatile content, which represent the boundary between the transition stage and the hydrothermal stage. The subsequentNaCl–H2Ofluid inclusions from the hydrothermal stage, between 189°C and 302°C, have a low salinity (1.1–13.9 wt%NaCl equivalent). The various types of fluid inclusions reveal the P–T conditions of pegmatite formation, which marks the transition process from magmatic to hydrothermal. The ore-forming fluids from the Zhawulong deposit have many of the same characteristics as those from the Jiajika lithium deposit. The ore-forming fluid provided not only materials for crystallization of rare metal minerals, such as spodumene and beryl, but also the ideal conditions forthe growth of ore minerals. Therefore, this area has favorable conditions for lithium enrichment and excellent prospecting potential.  相似文献   

8.
The Wulasigou Cu-Pb-Zn deposit,located 15 km northwest of Altay city in Xinjiang,is one of many Cu-Pb-Zn polymetallic deposits in the Devonian Kelan volcanic-sedimentary basin in southern Altaids.Two mineralizing periods can be distinguished:the marine volcanic sedimentary PbZn mineralization period,and the metamorphic hydrothermal Cu mineralization period,which is further divided into an early bedded foliated quartz vein stage(Q1) and a late sulfide-quartz vein stage(Q2) crosscutting the foliation.Four types of fluid inclusions were recognized in the Q1 and Q2 quartz from the east orebodies of the Wulasigou deposit:H_2O-CO_2 inclusions,carbonic fluid inclusions,aqueous fluid inclusions,and daughter mineral-bearing fluid inclusions.Microthermometric studies show that solid CO_2 melting temperatures(T_(m,CO2)) of H_2O-CO_2 inclusions in Ql are from-62.3℃ to-58.5C,clathrate melting temperatures(T_(m,clath)l) are from 0.5 C to 7.5 C,partial homogenization temperatures(T_(h,CO2)) vary from 3.3℃ to 25.9℃(to liquid),and the total homogenization temperatures(T_(h,tot)) vary from 285℃ to 378℃,with the salinities being 4.9%-15.1%NaCl eqv.and the CO_2-phase densities being 0.50-0.86 g/cm~3.H_2O-CO_2 inclusions in Q2 have T_(m,CO_2) from-61.9℃ to-56.9℃,T_(m,clath)from 1.3℃ to 9.5℃,T_(h,CO2) from 3.4℃ to 28.7℃(to liquid),and T_(h,tot) from 242℃ to 388℃,with the salinities being 1.0%-15.5%NaCl eqv.and the CO_2-phase densities being 0.48-0.89 g/cm~3.The minimum trapping pressures of fluid inclusions in Q1 and Q2 are estimated to be 260-360 MPa and180-370 MPa,respectively.The δ~(34)S values of pyrite from the volcanic sedimentary period vary from2.3‰ to 2.8‰(CDT),and those from the sulfide-quartz veins fall in a narrow range of-1.9‰ to 2.6‰(CDT).The δD values of fluid inclusions in Q2 range from-121.0‰ to-100.8‰(SMOW),and theδ~(18)O_(H2O) values calculated from δ~(18)O of quartz range from-0.2‰ to 8.3‰(SMOW).The δD-δ~(18)O_(H2O)data are close to the magmatic and metamorphic fields.The fluid inclusion and stable isotope data documented in this study indicate that the vein-type copper mineralization in the Wulasigou Pb-Zn-Cu deposit took place in an orogenic-metamorphic enviroment.  相似文献   

9.
The Cangyuan Pb-Zn-Ag polymetallic deposit is located in the Baoshan Block, southern Sanjiang Orogen. The orebodies are hosted in low-grade metamorphic rocks and skarn in contact with Cenozoic granitic rocks. Studies on fluid inclusions (FIs) of the deposit indicate that the ore-forming fluids are CO2-bearing, NaCl-H2O. The initial fluids evolved from high temperatures (462–498 °C) and high salinities (54.5–58.4 wt% NaCl equiv) during the skarn stage into mesothermal (260–397 °C) and low salinities (1.2–9.5 wt% NaCl equiv) during the sulfide stage. The oxygen and hydrogen isotopic compositions (δ18OH2O: 2.7–8.8‰; δD: −82 to −120‰) suggest that the ore-forming fluids are mixture of magmatic fluids and meteoric water. Sulfur isotopic compositions of the sulfides yield δ34S values of −2.3 to 3.2‰; lead isotopic compositions of ore sulfides are similar to those of granitic rocks, indicating that the sulfur and ore-metals are derived from the granitic magma. We propose that the Cangyuan Pb-Zn-Ag deposit formed from magmatic hydrothermal fluids. These Cenozoic deposits situated in the west of Lanping-Changdu Basin share many similarities with the Cangyuan in isotopic compositions, including the Laochang, Lanuoma and Jinman deposits. This reveals that the Cenozoic granites could have contributed to Pb-Zn-Cu mineralization in the Sanjiang region despite the abundance of Cenozoic Pb-Zn deposits in the region, such as the Jingding Pb-Zn deposit, that is thought to be of basin brine origin.  相似文献   

10.
The Xiuwenghala gold deposit is located in the Beishan Orogen of the southern Central Asian Orogenic Belt. The vein/lenticular gold orebodies are controlled by Northeast‐trending faults and are hosted mainly in the brecciated/altered tuff and rhyolite porphyry of the Lower Carboniferous Baishan Formation. Metallic minerals include mainly pyrite and minor chalcopyrite, arsenopyrite, galena, and sphalerite, whilst nonmetallic minerals include quartz, chalcedony, sericite, chlorite, and calcite. Hydrothermal alterations consist of silicic, sericite, chlorite, and carbonate. Alteration/mineralization processes comprise three stages: pre‐ore silicic alteration (Stage I), syn‐ore quartz‐chalcedony‐polymetallic sulfide mineralization (Stage II), and post‐ore quartz‐calcite veining (Stage III). Fluid inclusions (FIs) in quartz and calcite are dominated by L‐type with minor V‐type and lack any daughter mineral‐bearing or CO2‐rich/‐bearing inclusions. From Stages I to III, the FIs homogenized at 240–260°C, 220–250°C, and 150–190°C, with corresponding salinities of 2.9–10.9, 3.2–11.1, and 2.9–11.9 wt.% NaCl eqv., respectively. The mineralization depth at Xiuwenghala is estimated to be relatively shallow (<1 km). FI results indicate that the ore‐forming fluids belong to a low to medium‐temperature, low‐salinity, and low‐density NaCl‐H2O system. The values decrease from Stage I to III (3.7‰, 1.7–2.4‰, and ?1.7 to 0.9‰, respectively), and a similar trend is found for their values (?104 to ?90‰, ?126 to ?86‰, and ?130 to ?106‰, respectively). This indicates that the fluid source gradually evolved from magmatic to meteoric. δ34S values of the hydrothermal pyrites (?3.0 to 0.0‰; avg. ?1.1‰) resemble those of typical magmatic/mantle‐derived sulfides. Pyrite Pb isotopic compositions (206Pb/204Pb = 18.409–18.767, 207Pb/204Pb = 15.600–15.715, 208Pb/204Pb = 38.173–38.654) are similar to those of the (sub)volcanic ore host, indicating that the origin of ore‐forming material was mainly the upper crustal (sub)volcanic rocks. Integrating evidence from geology, FIs, and H–O–S–Pb isotopes, we suggest that Xiuwenghala is best classified as a low‐sulfidation epithermal gold deposit.  相似文献   

11.
The Bujinhei Pb–Zn deposit is located in the southern Great Xing'an Range metallogenic belt. It is a representative medium‐ to high‐temperature hydrothermal vein type deposit controlled by fractures, and orebodies hosted in the Permian Shoushangou Formation. The hydrothermal mineralization is classified into three stages: pyrite ± arsenopyrite–quartz (Stage 1), polymetallic sulfide–quartz (Stage 2), and polymetallic sulfide–calcite (Stage 3). Fluid inclusion petrography, laser Raman analyses and microthermometry indicate that the liquid‐rich aqueous inclusions (L) and vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 1 and as medium‐ to high‐ temperature and low‐ to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids. The liquid‐rich (L) and rare vapor‐rich CO2 ± CH4–H2O inclusions (C) occur in the Stage 2 with medium‐temperature and low‐salinity NaCl–H2O ± CO2 ± CH4 hydrothermal fluids. The exclusively liquid‐rich (L) fluid inclusions are observed in the Stage 3, and the hydrothermal fluid belongs to medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids. The results of hydrogen and oxygen isotope analyses indicate that ore‐forming fluids were initially derived from the magmatic water and mixed with local meteoric water in the late stage (δ18OH2O‐SMOW = 6.0 to 2.2‰, δDSMOW = ?103 to ?134‰). The carbon isotope compositions (?18.4‰ to ?26.5‰) indicate that the carbon in the fluid was derived from the surrounding strata. The sulfur isotope compositions (5.7 to 15.2‰) indicate that the ore sulfur was also primarily derived from the strata. The ore vein No. 1 occurs in fractures and approximately parallel to the rhyolite porphyry; orebodies have a close spatial and temporal relationship with the rhyolite porphyry. The rhyolite porphyry yielded a crystallization age of 122.9  ± 2.4 Ma, indicating that the Bujinhei deposit may be related to the Early Cretaceous magmatic event. Geochemical analyses reveal that the Bujinhei rhyolite porphyry is high in K2O and peraluminous, and derived from an acidic liquid as a result of strong interaction with hydrothermal fluid during the late magmatic stage; it is similar to A2‐type granites, and formed in a backarc extensional environment. These results indicate that the Bujinhei Pb–Zn deposit was a vein type system that formed in Early Cretaceous and influenced by the Paleo‐Pacific tectonic system. Bujinhei deposit is a representative hydrothermal vein type deposit on the genetic types, and occurs on the western slope of the southern Great Xing'an Range. The ore‐forming fluids were medium‐ to high‐temperature and low‐to medium‐salinity NaCl–H2O–CO2–CH4 hydrothermal fluids, which became medium‐temperature and low‐salinity NaCl–H2O hydrothermal fluids in later stages, and came from magmatic water and mixed with meteoric water, whereas the ore‐forming materials were mainly derived from the surrounding strata. The LA–ICP–MS zircon U–Pb dating indicates that the Bujinhei deposit formed at the period of late Early Cretaceous, potentially in a backarc extensional environment influenced by the Paleo‐Pacific tectonic system.  相似文献   

12.
《Resource Geology》2018,68(3):275-286
The volcanic‐hosted Xiangshan uranium orefield is the largest uranium deposit in South China. Recent exploration has discovered extensive Pb–Zn mineralization beneath the uranium orebodies. Detailed geological investigation reveals that the major metallic minerals include pyrite, sphalerite, galena, and chalcopyrite, whilst the major non‐metallic minerals include quartz, sericite, and calcite. New δ18Ofluid and δDfluid data indicate that the ore‐forming fluids were mainly derived from magmatic, and the sulfide δ34S values (2.2–6.9‰) suggest a dominantly magmatic sulfur source. The Pb isotope compositions are homogeneous (206Pb/204Pb = 18.120–18.233, 207Pb/204Pb = 15.575–15.698, and 208Pb/204Pb = 37.047–38.446). The 87Sr/86Sr ratios of sulfide minerals range from 0.7197 to 0.7204, which is much higher than volcanic rocks and fall into the range of metamorphic basement. Lead and strontium isotopic compositions indicate that the metallogenic materials probably were derived from metamorphic basement. Pyrite Rb–Sr dating of the ores yielded 131.3 ± 4.0 Ma, indicating that the Pb–Zn mineralization occurred in the Early Cretaceous.  相似文献   

13.
The Tiegelongnan Cu (Au) deposit is the largest copper deposit newly discovered in the Bangong–Nujiang metallogenic belt. The deposit has a clear alteration zoning consisting of, from core to margin, potassic to propylitic, superimposed by phyllic and advanced argillic alteration. The shallow part of the deposit consists of a high sulphidation‐state overprint, mainly comprising disseminated pyrite and Cu–S minerals such as bornite, covellite, digenite, and enargite. At depth porphyry‐type mineralization mainly comprises disseminated chalcopyrite, bornite, pyrite, and a minor vein molybdenite. Mineralization is disseminated and associated with veins contained within the porphyry intrusions and their surrounding rocks. The zircon U–Pb ages of the mineralized diorite porphyry and granodiorite porphyry are 123.1 ± 1.7 Ma (2σ) and 121.5 ± 1.5 Ma (2σ), respectively. The molybdenite Re–Os age is 121.2 ± 1.2 Ma, suggesting that mineralization was closely associated with magmatism. Andesite lava (zircon U–Pb age of 111.7 ± 1.6 Ma, 2σ) overlies the ore‐bodies and is the product of post‐mineralization volcanic activity that played a critical role in preserving the ore‐bodies. Values of ?4.6 ‰ to + 0.8 ‰ δ34S for the metal sulfides (mean ? 1.55 ‰) suggest that S mainly has a deep magmatic source. The H and O isotopic composition is (δD = ?87 ‰ to ?64 ‰; δ18OH2O = 5.5 ‰ to 9.0 ‰), indicating that the ore‐forming fluids are mostly magmatic‐hydrothermal, possibly mixed with a small amount of meteoric water. The zircon εHf(t) of the diorite porphyry is 3.7 to 8.3, and the granodiorite porphyry is 1.8 to 7.5. Molybdenite has a high Re from 382.2 × 10?6 to 1600 × 10?6. Re and Hf isotope composition show that Tiegelongnan has some mantle source, maybe the juvenile lower crust from crust–mantle mixed source. Metallogenesis of the Tiegelongnan giant porphyry system was associated with intermediate to acidic magma in the Early Cretaceous (~120 Ma). The magma provenance of the Tiegelongnan deposit has some mantle‐derived composition, possibly mixed with the crust‐derived materials.  相似文献   

14.
The Yaoling tungsten deposit is a typical wolframite quartz vein‐type tungsten deposit in the South China metallogenic province. The wolframite‐bearing quartz veins mainly occur in Cambrian to Ordovician host rocks or in Mesozoic granitic rocks and are controlled by the west‐north‐west trending extensional faults. The ore mineralization mainly comprises wolframite and variable amounts of molybdenite, chalcopyrite, pyrite, fluorite, and tourmaline. Hydrothermal alteration is well developed at the Yaoling tungsten deposit, including greisenization, silicification, fluoritization, and tourmalinization. Three types of primary/pseudosecondary fluid inclusions have been identified in vein quartz, which is intimately intergrown with wolframite. These include two‐phase liquid‐rich aqueous inclusions (type I), two‐ or three‐phase CO2‐rich inclusions (type II), and type III daughter mineral‐bearing multiphase high‐salinity aqueous inclusions. Microthermometric measurements reveal consistent moderate homogenization temperatures (peak values from 200 to 280°C), and low to high salinities (1.3–39 wt % NaCl equiv.) for the type I, type II, and type III inclusions, where the CO2‐rich type II inclusions display trace amounts of CH4 and N2. The ore‐forming fluids are far more saline than those of other tungsten deposits reported in South China. The estimated maximum trapping pressure of the ore‐forming fluids is about 1230–1760 bar, corresponding to a lithostatic depth of 4.0–5.8 km. The δDH2O isotopic compositions of the inclusion fluid ranges from ?66.7 to ?47.8‰, with δ18OH2O values between 1.63 and 4.17‰, δ13C values of ?6.5–0.8‰, and δ34S values between ?1.98 and 1.92‰, with an average of ?0.07‰. The stable isotope data imply that the ore‐forming fluids of the Yaoling tungsten deposit were mainly derived from crustal magmatic fluids with some involvement of meteoric water. Fluid immiscibility and fluid–rock interaction are thought to have been the main mechanisms for tungsten precipitation at Yaoling.  相似文献   

15.
川西甲基卡二云母花岗岩和伟晶岩内发育大量原生熔体包裹体和富晶体流体包裹体。为了查明甲基卡成矿熔体、流体性质与演化特征,运用激光拉曼光谱和扫描电镜鉴定了甲基卡花岗伟晶岩型锂矿床中二云母花岗岩及伟晶岩脉不同结构带内的原生熔体、流体包裹体的固相物质。分析结果表明,甲基卡二云母花岗岩石英内熔体包裹体的矿物组合为磷灰石+白云母、白云母+钠长石、白云母+石墨;伟晶岩绿柱石内富晶体流体包裹体的矿物组合主要为刚玉、富铝铁硅酸盐+刚玉+锂辉石、锂辉石+石英+锂绿泥石;伟晶岩锂辉石内富晶体流体包裹体的矿物组合主要为磷灰石、锡石、磁铁矿、石英+钠长石+锂绿泥石、萤石、富钙镁硅酸盐+富铁铝硅酸盐+富铁硅酸盐+石英;花岗岩浆熔体与伟晶岩浆熔体(流体)具有一定的差异,成矿熔体、流体成分总体呈现出碱质元素(Na、Si、Al)、挥发分(F、P、CO_2)含量增高及基性元素(Fe、Mg、Ca)降低的特征;包裹体中子矿物与主矿物的化学成分具有一定的差别,揭示出伟晶岩熔体(流体)存在局部岩浆分异作用,具不混溶性及非均匀性。因此认为,伟晶岩熔浆(流体)为岩浆分异与岩浆不混溶共同作用的产物,挥发分含量的增高(F、P、CO_2)使伟晶岩能够与稀有金属组成各类络合物或化合物,这对于稀有金属成矿起到了至关重要的作用。  相似文献   

16.
The Antuoling Mo deposit is a major porphyry‐type deposit in the polymetallic metallogenic belt of the northern Taihang Mountains, China. The processes of mineralization in this deposit can be divided into three stages: an early quartz–pyrite stage, a middle quartz–polymetallic sulfide stage, and a late quartz–carbonate stage. Four types of primary fluid inclusions are found in the deposit: two‐phase aqueous inclusions, daughter‐mineral‐bearing multiphase inclusions, CO2–H2O inclusions, and pure CO2 inclusions. From the early to the late ore‐forming stages, the homogenization temperatures of the fluid inclusions are 300 to >500°C, 270–425°C, and 195–330°C, respectively, with salinities of up to 50.2 wt%, 5.3–47.3 wt%, and 2.2–10.4 wt% NaCl equivalent, revealing that the ore‐forming fluids changed from high temperature and high salinity to lower temperature and lower salinity. Moreover, based on the laser Raman spectra, the compositions of the fluid inclusions evolved from the NaCl–CO2–H2O to the NaCl–H2O system. The δ18OH2O and δD values of quartz in the deposit range from +3.9‰ to +7.0‰ and ?117.5‰ to ?134.2‰, respectively, reflecting the δD of local meteoric water after oxygen isotopic exchange with host rocks. The Pb isotope values of the sulfides (208Pb/204Pb, 36.320–37.428; 207Pb/204Pb, 15.210–15.495; 206Pb/204Pb, 16.366–17.822) indicate that the ore‐forming materials originated from a mixed upper mantle–lower crust source.  相似文献   

17.
The Mayuan stratabound Pb-Zn deposit in Nanzheng,Shaanxi Province,is located in the northern margin of the Yangtze Plate,in the southern margin of the Beiba Arch.The orebodies are stratiform and hosted in breciated dolostone of the Sinian Dengying Formation.The ore minerals are primarily sphalerite and galena,and the gangue minerals comprise of dolomite,quartz,barite,calcite and solid bitumen.Fluid inclusions from ore-stage quartz and calcite have homogenization tempreatures from 98 to 337℃ and salinities from 7.7 wt%to 22.2 wt%(NaCl equiv.).The vapor phase of the inclusions is mainly composed of CH_4 with minor CO_2 and H_2S.The δD_(fluid) values of fluid inclusions in quartz and calcite display a range from-68‰ to-113‰(SMOW),and the δ~(18)O_(fluid)values calculated from δ~(18)O_(quartz) and δ~(18)O_(calcite) values range from 4.5‰ to 16.7‰(SMOW).These data suggest that the ore-forming fluids may have been derived from evaporitic sea water that had reacted with organic matter.The δ~(13)C_(CH4) values of CH_4 in fluid inclusions range from-37.2‰ to-21.0‰(PDB),suggesting that the CH_4 in the ore-forming fluids was mainly derived from organic matter.This,together with the abundance of solid bitumen in the ores,suggest that organic matter played an important role in mineralization,and that the thermochemical sulfate reduction(TSR) was the main mechanism of sulfide precipitation.The Mayuan Pb-Zn deposit is a carbonate-hosted epigenetic deposit that may be classified as a Mississippi Valley type(MVT) deposit.  相似文献   

18.
The Qianfanling Mo deposit, located in Songxian County, western Henan province, China, is one of the newly discovered quartz-vein type Mo deposits in the East Qinling–Dabie orogenic belt. The deposit consists of molybdenite in quartz veins and disseminated molybdenite in the wall rocks. The alteration types of the wall rocks include silicification, K-feldspar alteration, pyritization, carbonatization, sericitization, epidotization and chloritization. On the basis of field evidence and petrographic analysis, three stages of hydrothermal mineralization could be distinguished: (1) pyrite–barite–quartz stage; (2) molybdenite–quartz stage; (3) quartz–calcite stage.Two types of fluid inclusions, including CO2-bearing fluid inclusions and water-rich fluid inclusions, have been recognized in quartz. Homogenization temperatures of fluid inclusions vary from 133 °C to 397 °C. Salinity ranges from 1.57 to 31.61 wt.% NaCl eq. There are a large number of daughter mineral-CO2-bearing inclusions, which is the result of fluid immiscibility. The ore-forming fluids are medium–high temperature, low to moderate salinity H2O–NaCl–CO2 system. The δ34S values of pyrite, molybdenite, and barite range from − 9.3‰ to − 7.3‰, − 9.7‰ to − 7.3‰ and 5.9‰ to 6.8‰, respectively. The δ18O values of quartz range from 9.8‰ to 11.1‰, with corresponding δ18Ofluid values of 1.3‰ to 4.3‰, and δ18D values of fluid inclusions of between − 81‰ and − 64‰. The δ13CV-PDB values of fluid inclusions in quartz and calcite have ranges of − 6.7‰ to − 2.9‰ and − 5.7‰ to − 1.8‰, respectively. Sulfur, hydrogen, oxygen and carbon isotope compositions show that the sulfur and ore-forming fluids derived from a deep-seated igneous source. During the peak collisional period between the North China Craton and the Yangtze Craton, the ore-forming fluids that derived from a deep igneous source extracted base and precious metals and flowed upwards through the channels that formed during tectonism. Fluid immiscibility and volatile exsolution led to the crystallization of molybdenite and other minerals, and the formation of economic orebodies in the Qianfanling Mo deposit.  相似文献   

19.
The Iju Cu porphyry is located in the NW part of the Kerman Magmatic Copper Belt (KMCB). It is related to a ~ 9 Ma granodiorite porphyry intrusion, with three main stages of hydrothermal activity. The homogenization temperatures for the fluid inclusions are in the ranges of 200–494 °C, and their salinities vary from 4.0 to 42.8 wt% NaCl equiv., which are typical magmatic-hydrothermal fluids. The δ34S values of sulfides range from −0.4 to +3.2 ‰ (V-CDT), and the δ34S values of anhydrite samples range from +11.6 to +16.8 ‰. The δ34S values of sulfides show a narrow range, implying a homogeneous sulfur source. The oxygen isotopic composition of hydrothermal water in equilibrium with quartz samples ranges from +3.4 to +6.0 ‰ (V-SMOW) consistent with the hydrothermal fluids having a magmatic signature, but diluted with meteoric waters in the main mineralizing stage. The most important factors responsible for metal precipitation in the Iju porphyry deposit are fluid boiling, oxygen fugacity decrease and cooling followed by dilution with meteoric water. The primary fluids of the Iju Cu deposit are characterized by relatively high temperature and moderate salinity, and are CO2-rich, indicating a typical post-collisional porphyry system.  相似文献   

20.
The Aerhada Pb-Zn-Ag deposit is located in the western segment of the Great Hinggan Range Ag-Pb-Zn-Cu-Mo-Au-Fe metallogenic belt in NE China. Orebodies occur mainly as vein type and are hosted by sandstone and siliceous slate. Three stages of primary mineralization, including an early arsenopyrite-pyrite-quartz, a middle polymetallic and silver sulfides-quartz and a late sphalerite-pyrite-calcite-fluorite are recognized. Four types of fluid inclusions have been identified in the ore-bearing quartz and fluorite veins, i.e., liquid-rich, gas-rich, three-phase CO2 aqueous inclusions, and pure gas or liquid aqueous inclusions. Microthermometric studies on fluid inclusions reveal that homogenization temperatures from early to late stages range from 253° to 430 °C, 195° to 394 °C and 133° to 207 °C, respectively. Fluid salinities range from 2.9 to 14.0 wt.% NaCl equiv. The vapor composition of the ore fluid is dominated by H2O, CO2 and CH4, with minor proportions of N2. The fluid δ18OH2O and δDH2O values vary from +1.6 to +9.3‰ and −122 to −56‰, respectively, and reflect a magmatic fluid and a meteoric fluid dominant hydrothermal system for the early and late stages of mineralization, respectively. The calculated δ34SH2S values of hydrothermal fluids in equilibrium with sulfides range from +5.2 to +7.1‰, suggesting a mixed source for sulfur, i.e., the local magmatic and sedimentary rocks. The Pb isotope compositions of sulfides are similar to those of the local magmatic and sedimentary rocks, implying that lead and possibly silver relate to these sources. The noble gas isotope compositions of fluid inclusions hosted in ore minerals suggest that the ore-forming fluids were dominantly derived from a deep mantle source. Fluid mixing and dilution are inferred as the dominant mechanisms for ore deposition. The Aerhada Pb-Zn-Ag deposit can be classified as a medium to low temperature hydrothermal vein type deposit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号