首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
利用化德国家基本气象站1957—2014年逐日地面最低温度资料,以地面最低温度≤0℃为指标,建立了该地历年初霜日期、终霜日期和无霜期序列,分析了近58a的变化特征。结果表明:(1)化德站58a平均终霜日期为5月28日,初霜日期为9月11日,无霜期为105d10(2)近58a终霜日期呈明显的提前变化趋势,平均每10a提前2.5d;而初霜日期变化趋势不显著;无霜期明显延长,平均每10a延长了3.4d10(3)初、终霜日期和无霜期序列的年际波动大,极差为标准差的4~5倍,初霜最早可提前在8月18日出现,终霜最晚可推迟到6月19日结束。该地初、终霜日期和无霜期年际变率大,保证率低,是影响农作物生长的主要因素之一。因此,掌握霜冻发生的气候规律,提高霜冻的预报预测准确率,对于当地政府和相关部门积极采取防御措施,保障农业丰产丰收有着重要意义。  相似文献   

2.
选取1971—2013年枣庄国家一般气象站逐日最低气温资料,采用线性倾向估计法和异常霜冻指标,分析了枣庄站霜冻的变化趋势和异常发生情况。结果表明:枣庄初霜冻日的线性倾向率约为1.5d/10 a,即约以1.5d/10 a的速度推后;终霜冻日的线性倾向率约为-4.9 d/10 a,即约以4.9 d/10 a的速度提前;无霜冻期的线性倾向率约为6.9d/10 a,即约以6.9d/10a的速度延长。年代际间的变化从20世纪80年代以后也表现为初霜冻开始的日期越来越晚,终霜冻结束的日期越来越早,无霜期表现为逐渐延长的特点。异常霜冻表现为:特早初霜冻和偏早初霜冻各年代均有发生,其中特早初霜冻发生频率为2.3%,偏早初霜冻发生频率为9.3%;特晚终霜冻和偏晚终霜冻主要发生在20世纪70年代,21世纪10年代各有一次,特晚终霜冻发生频率为7%,偏晚终霜冻发生频率为11.6%。  相似文献   

3.
采用阿勒泰地区7个气象观测站1961—2013年0cm最低地温≤0℃的初日、终日资料,运用线性趋势、Mann-Kendall突变检测法、Morlet小波变换、R/S持续分析法对阿勒泰地区的终霜日、初霜日及无霜期进行分析,结果表明:阿勒泰各站呈初霜冻开始迟、终霜冻结束早、无霜期延长的趋势,且大部分站通过了显著性检验。大部分站终霜日和部分站初霜日在20世纪80年代发生突变;大部分站无霜期在70年代中后期和80年代发生突变。各站终霜日、初霜日及无霜期存在明显的年际和年代际尺度的周期变化,年际周期具有一定的同步性,但年代际周期差异较大。全区及各站终(初)霜日将由过去53a的提前(推后)趋势逐渐转为推后(提前)趋势,无霜期由过去53a的延长趋势转变为缩短趋势。阿勒泰地区的霜冻灾害主要由终霜冻造成,而终霜冻灾害在空间上主要分布于吉木乃、哈巴河、阿勒泰站,时间上主要出现于90年代。  相似文献   

4.
利用巴楚国家基本气候站1961—2013年53 a的气温、降水量等资料,结合1981—2013年的棉花发育期、单位面积产量,采用线性倾向估计计算、检验方法、气候趋势系数和气候倾向率方法,对1961年以来巴楚气候变化特征、1981年以来棉花发育期、产量进行分析,探讨了巴楚近期气候变化对棉花生产的影响。结果表明:近53 a来,巴楚年和各季平均气温、平均最高气温、平均最低气温总体呈线性上升趋势,其中年平均最低气温的升温率最明显;各季节中春、秋季平均最低气温的升温率最大;年、各季节降水量呈明显的增多趋势,季节中夏季降水量的增幅最大,为3.25 mm/10 a;初霜日的变化呈推后趋势(1.2 d/10 a)、而终霜日呈提前趋势(-2.4d/10 a),使无霜期明显延长(1.1 d/10 a)。近33 a来,巴楚县棉花各发育期均表现出不同程度的提前趋势,其中现蕾期的提前趋势最明显,为4.8 d/10 a(P0.01);棉花停止生长期呈延迟趋势,延迟幅度为3.7 d/10 a(P0.01)。初、终霜冻日、无霜期与棉花产量总体呈正相关,初霜日推后、终霜日提前、无霜期延长,棉花产量增多。  相似文献   

5.
利用宝鸡市11个县(区)气象站1964—2013年观测资料及低温冻害灾害调查资料,对宝鸡市初、终霜冻日和无霜期的时空分布特征进行分析,结果表明:宝鸡市平均初霜冻日多在9月中旬至10月上旬,平均终霜冻日多在4月上旬至5月上旬,初霜冻日随海拔高度的增高而提前,终霜冻日随海拔高度的增高而推迟。渭河河谷地带无霜期最长为214d,秦岭北麓太白山区最短为150d。宝鸡市初霜冻日呈推迟趋势,线性趋势率为2.4d/10a,50a约推后了12d;终霜冻日总体呈提前趋势,线性趋势率为-1.3d/10a,50a约提前了9d。无霜期以3.7d/10a的线性趋势率延长,50a约延长了18d。50a间宝鸡的气温呈显著上升趋势,1996年发生突变,在气温发生突变后,全市平均初霜冻日推迟了11.9d,终霜冻日提前了11.8d,最早初霜冻日推迟了24.9d,最晚终霜冻日提前了24.5d,无霜期范围向南北部山区推移扩大。  相似文献   

6.
利用通辽市9个气象站1961—2013年逐日最低气温资料,以日最低气温≤2℃为指标,建立了单站初霜日期、终霜日期和无霜期序列,分析了近53a的变化特征。结果表明:(1)通辽全市平均初霜日期为9月29日,终霜日期为5月1日,平均无霜期为149d。(2)近53a全市平均初霜日期呈明显的推后变化趋势,终霜日期呈明显的提前变化趋势,无霜日数显著增加。53a初霜推后了9.6d,终霜提前了16.2d,无霜期延长了22.7d。(3)各站初、终霜日期和无霜期序列的离散程度均较大,极差为标准差的4倍以上,早霜年份秋霜可提前在8月14日出现,晚霜年春霜可推迟到6月9日出现。该地初、终霜日期和无霜期年际变化的稳定性差,变率大保证率低,是农作物产量不稳定的主要影响因素之一。  相似文献   

7.
以≤0℃地面最低气温作为霜冻指标,利用平凉地区7个气象观测站1971~2012年的逐日地面最低气温资料,采用现代气候诊断方法,分析了初、终霜冻和无霜冻期的变化特征。结果表明:在近42年间,平凉市初、终霜冻日数呈减少趋势,无霜冻期延长;初霜冻发生频率减小,终霜冻发生频率增加;平均初霜冻日期呈推迟变化趋势,终霜冻日期呈提早变化趋势,无霜冻期呈延长变化趋势,其气候倾向率均大于2d/10a,并均通过α=0.05的显著性检验;平凉地区初霜冻日普遍推后1~5d,终霜冻日普遍提前1~5d,无霜冻期普遍延长1~9d。平凉各地霜冻受灾程度差异较大,灵台和庄浪在受灾人口、直接经济损失和农业经济损失方面受灾较重。  相似文献   

8.
利用且末绿洲近50 a初、终霜日等气候资料,分析该地区的霜冻变化特征,初步探讨其对主要农作物的影响.结果表明:且末绿洲近50 a来终霜危害大于初霜,初霜冻推迟、终霜冻提前趋势明显,无霜期呈微弱延长趋势但不显著;初、终霜均具有5a、33 a的振荡周期,未来一段时期均处在偏晚期;进入21世纪以后未出现特早初霜和特晚终霜.总体上看,气候变暖使该地区霜冻灾害减少,对主要农作物的生长有利.  相似文献   

9.
利用焉耆盆地3个气象站1961-2014年的初终霜冻日、无霜期资料,采用线性倾向估计法、多项式趋势、M-K检测等统计方法,分析焉耆盆地54a来霜冻气候变化特征。结果表明:(1)焉耆盆地平均初、终霜冻整体均呈显著线性后推趋势,平均分别后推了3d和21d,终霜冻推后速率大于初霜冻,无霜期呈缩短趋势,平均缩短了18d,具有明显的年代际特征。(2)平均初、终霜冻及无霜期分别于1987年、1985年、1967年发生了气候突变,初、终霜冻均表现为由提前转为明显推迟,无霜期表现为由延长转为缩短.(3)焉耆盆地特早、偏早初霜冻发生频率分别为7%和22%,发生在60年代到90年代,特晚、偏晚终霜冻发生频率分别为4%和11%,多发生在70年代和90年代,21世纪各出现一次。(4)终霜日显著推后,无霜期缩短,是今后焉耆盆地农业生产结构优化关注的重点。  相似文献   

10.
河套地区初终霜日变化趋势分析及霜冻预防   总被引:2,自引:0,他引:2  
利用巴彦淖尔市河套地区5个站40a(1971—2010年)的逐年最低气温资料,用统计学方法 ,对河套地区近40a的初、终霜出现日期和无霜期的变化特征进行分析。结果表明:河套地区初霜日日期推后,终霜日日期提前,无霜期逐步延长,霜冻灾害呈逐年减少趋势。通过具体数据分析,有助于了解河套地区霜冻气候的变化特征,为霜冻灾害的预测预防和农作物的种植结构调整提供一定的参考。  相似文献   

11.
Using the International Comprehensive Ocean-Atmosphere Data Set(ICOADS) and ERA-Interim data, spatial distributions of air-sea temperature difference(ASTD) in the South China Sea(SCS) for the past 35 years are compared,and variations of spatial and temporal distributions of ASTD in this region are addressed using empirical orthogonal function decomposition and wavelet analysis methods. The results indicate that both ICOADS and ERA-Interim data can reflect actual distribution characteristics of ASTD in the SCS, but values of ASTD from the ERA-Interim data are smaller than those of the ICOADS data in the same region. In addition, the ASTD characteristics from the ERA-Interim data are not obvious inshore. A seesaw-type, north-south distribution of ASTD is dominant in the SCS; i.e., a positive peak in the south is associated with a negative peak in the north in November, and a negative peak in the south is accompanied by a positive peak in the north during April and May. Interannual ASTD variations in summer or autumn are decreasing. There is a seesaw-type distribution of ASTD between Beibu Bay and most of the SCS in summer, and the center of large values is in the Nansha Islands area in autumn. The ASTD in the SCS has a strong quasi-3a oscillation period in all seasons, and a quasi-11 a period in winter and spring. The ASTD is positively correlated with the Nio3.4 index in summer and autumn but negatively correlated in spring and winter.  相似文献   

12.
The spatial and temporal variations of daily maximum temperature(Tmax), daily minimum temperature(Tmin), daily maximum precipitation(Pmax) and daily maximum wind speed(WSmax) were examined in China using Mann-Kendall test and linear regression method. The results indicated that for China as a whole, Tmax, Tmin and Pmax had significant increasing trends at rates of 0.15℃ per decade, 0.45℃ per decade and 0.58 mm per decade,respectively, while WSmax had decreased significantly at 1.18 m·s~(-1) per decade during 1959—2014. In all regions of China, Tmin increased and WSmax decreased significantly. Spatially, Tmax increased significantly at most of the stations in South China(SC), northwestern North China(NC), northeastern Northeast China(NEC), eastern Northwest China(NWC) and eastern Southwest China(SWC), and the increasing trends were significant in NC, SC, NWC and SWC on the regional average. Tmin increased significantly at most of the stations in China, with notable increase in NEC, northern and southeastern NC and northwestern and eastern NWC. Pmax showed no significant trend at most of the stations in China, and on the regional average it decreased significantly in NC but increased in SC, NWC and the mid-lower Yangtze River valley(YR). WSmax decreased significantly at the vast majority of stations in China, with remarkable decrease in northern NC, northern and central YR, central and southern SC and in parts of central NEC and western NWC. With global climate change and rapidly economic development, China has become more vulnerable to climatic extremes and meteorological disasters, so more strategies of mitigation and/or adaptation of climatic extremes,such as environmentally-friendly and low-cost energy production systems and the enhancement of engineering defense measures are necessary for government and social publics.  相似文献   

13.
Various features of the atmospheric environment affect the number of migratory insects, besides their initial population. However, little is known about the impact of atmospheric low-frequency oscillation(10 to 90 days) on insect migration. A case study was conducted to ascertain the influence of low-frequency atmospheric oscillation on the immigration of brown planthopper, Nilaparvata lugens(Stl), in Hunan and Jiangxi provinces. The results showed the following:(1) The number of immigrating N. lugens from April to June of 2007 through 2016 mainly exhibited a periodic oscillation of 10 to 20 days.(2) The 10-20 d low-frequency number of immigrating N. lugens was significantly correlated with a low-frequency wind field and a geopotential height field at 850 h Pa.(3) During the peak phase of immigration, southwest or south winds served as a driving force and carried N. lugens populations northward, and when in the back of the trough and the front of the ridge, the downward airflow created a favorable condition for N. lugens to land in the study area. In conclusion, the northward migration of N. lugens was influenced by a low-frequency atmospheric circulation based on the analysis of dynamics. This study was the first research connecting atmospheric low-frequency oscillation to insect migration.  相似文献   

14.
The atmospheric and oceanic conditions before the onset of EP El Ni?o and CP El Ni?o in nearly 30 years are compared and analyzed by using 850 hPa wind, 20℃ isotherm depth, sea surface temperature and the Wheeler and Hendon index. The results are as follows: In the western equatorial Pacific, the occurrence of the anomalously strong westerly winds of the EP El Ni?o is earlier than that of the CP El Ni?o. Its intensity is far stronger than that of the CP El Ni?o. Two months before the El Ni?o, the anomaly westerly winds of the EP El Ni?o have extended to the eastern Pacific region, while the westerly wind anomaly of the CP El Ni?o can only extend to the west of the dateline three months before the El Ni?o and later stay there. Unlike the EP El Ni?o, the CP El Ni?o is always associated with easterly wind anomaly in the eastern equatorial Pacific before its onset. The thermocline depth anomaly of the EP El Ni?o can significantly move eastward and deepen. In addition, we also find that the evolution of thermocline is ahead of the development of the sea surface temperature for the EP El Ni?o. The strong MJO activity of the EP El Ni?o in the western and central Pacific is earlier than that of the CP El Ni?o. Measured by the standard deviation of the zonal wind square, the intensity of MJO activity of the EP El Ni?o is significantly greater than that of the CP El Ni?o before the onset of El Ni?o.  相似文献   

15.
Storms that occur at the Bay of Bengal (BoB) are of a bimodal pattern, which is different from that of the other sea areas. By using the NCEP, SST and JTWC data, the causes of the bimodal pattern storm activity of the BoB are diagnosed and analyzed in this paper. The result shows that the seasonal variation of general atmosphere circulation in East Asia has a regulating and controlling impact on the BoB storm activity, and the “bimodal period” of the storm activity corresponds exactly to the seasonal conversion period of atmospheric circulation. The minor wind speed of shear spring and autumn contributed to the storm, which was a crucial factor for the generation and occurrence of the “bimodal pattern” storm activity in the BoB. The analysis on sea surface temperature (SST) shows that the SSTs of all the year around in the BoB area meet the conditions required for the generation of tropical cyclones (TCs). However, the SSTs in the central area of the bay are higher than that of the surrounding areas in spring and autumn, which facilitates the occurrence of a “two-peak” storm activity pattern. The genesis potential index (GPI) quantifies and reflects the environmental conditions for the generation of the BoB storms. For GPI, the intense low-level vortex disturbance in the troposphere and high-humidity atmosphere are the sufficient conditions for storms, while large maximum wind velocity of the ground vortex radius and small vertical wind shear are the necessary conditions of storms.  相似文献   

16.
Observed daily precipitation data from the National Meteorological Observatory in Hainan province and daily data from the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR) reanalysis-2 dataset from 1981 to 2014 are used to analyze the relationship between Hainan extreme heavy rainfall processes in autumn (referred to as EHRPs) and 10–30 d low-frequency circulation. Based on the key low-frequency signals and the NCEP Climate Forecast System Version 2 (CFSv2) model forecasting products, a dynamical-statistical method is established for the extended-range forecast of EHRPs. The results suggest that EHRPs have a close relationship with the 10–30 d low-frequency oscillation of 850 hPa zonal wind over Hainan Island and to its north, and that they basically occur during the trough phase of the low-frequency oscillation of zonal wind. The latitudinal propagation of the low-frequency wave train in the middle-high latitudes and the meridional propagation of the low-frequency wave train along the coast of East Asia contribute to the ‘north high (cold), south low (warm)’ pattern near Hainan Island, which results in the zonal wind over Hainan Island and to its north reaching its trough, consequently leading to EHRPs. Considering the link between low-frequency circulation and EHRPs, a low-frequency wave train index (LWTI) is defined and adopted to forecast EHRPs by using NCEP CFSv2 forecasting products. EHRPs are predicted to occur during peak phases of LWTI with value larger than 1 for three or more consecutive forecast days. Hindcast experiments for EHRPs in 2015–2016 indicate that EHRPs can be predicted 8–24 d in advance, with an average period of validity of 16.7 d.  相似文献   

17.
Based on the measurements obtained at 64 national meteorological stations in the Beijing–Tianjin–Hebei (BTH) region between 1970 and 2013, the potential evapotranspiration (ET0) in this region was estimated using the Penman–Monteith equation and its sensitivity to maximum temperature (Tmax), minimum temperature (Tmin), wind speed (Vw), net radiation (Rn) and water vapor pressure (Pwv) was analyzed, respectively. The results are shown as follows. (1) The climatic elements in the BTH region underwent significant changes in the study period. Vw and Rn decreased significantly, whereas Tmin, Tmax and Pwv increased considerably. (2) In the BTH region, ET0 also exhibited a significant decreasing trend, and the sensitivity of ET0 to the climatic elements exhibited seasonal characteristics. Of all the climatic elements, ET0 was most sensitive to Pwv in the fall and winter and Rn in the spring and summer. On the annual scale, ET0 was most sensitive to Pwv, followed by Rn, Vw, Tmax and Tmin. In addition, the sensitivity coefficient of ET0 with respect to Pwv had a negative value for all the areas, indicating that increases in Pwv can prevent ET0 from increasing. (3) The sensitivity of ET0 to Tmin and Tmax was significantly lower than its sensitivity to other climatic elements. However, increases in temperature can lead to changes in Pwv and Rn. The temperature should be considered the key intrinsic climatic element that has caused the "evaporation paradox" phenomenon in the BTH region.  相似文献   

18.
正The Taal Volcano in Luzon is one of the most active and dangerous volcanoes of the Philippines. A recent eruption occurred on 12 January 2020(Fig. 1a), and this volcano is still active with the occurrence of volcanic earthquakes. The eruption has become a deep concern worldwide, not only for its damage on local society, but also for potential hazardous consequences on the Earth's climate and environment.  相似文献   

19.
The moving-window correlation analysis was applied to investigate the relationship between autumn Indian Ocean Dipole (IOD) events and the synchronous autumn precipitation in Huaxi region, based on the daily precipitation, sea surface temperature (SST) and atmospheric circulation data from 1960 to 2012. The correlation curves of IOD and the early modulation of Huaxi region’s autumn precipitation indicated a mutational site appeared in the 1970s. During 1960 to 1979, when the IOD was in positive phase in autumn, the circulations changed from a “W” shape to an ”M” shape at 500 hPa in Asia middle-high latitude region. Cold flux got into the Sichuan province with Northwest flow, the positive anomaly of the water vapor flux transported from Western Pacific to Huaxi region strengthened, caused precipitation increase in east Huaxi region. During 1980 to 1999, when the IOD in autumn was positive phase, the atmospheric circulation presented a “W” shape at 500 hPa, the positive anomaly of the water vapor flux transported from Bay of Bengal to Huaxi region strengthened, caused precipitation ascend in west Huaxi region. In summary, the Indian Ocean changed from cold phase to warm phase since the 1970s, caused the instability of the inter-annual relationship between the IOD and the autumn rainfall in Huaxi region.  相似文献   

20.
正While China’s Air Pollution Prevention and Control Action Plan on particulate matter since 2013 has reduced sulfate significantly, aerosol ammonium nitrate remains high in East China. As the high nitrate abundances are strongly linked with ammonia, reducing ammonia emissions is becoming increasingly important to improve the air quality of China. Although satellite data provide evidence of substantial increases in atmospheric ammonia concentrations over major agricultural regions, long-term surface observation of ammonia concentrations are sparse. In addition, there is still no consensus on  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号