首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Successful retrieval of urban impervious surface area is achieved with remote sensing data using the multiple endmember spectral mixture analysis (MESMA). MESMA is well suited for studying the urban impervious surface area because it allows the number and types of the endmembers to vary on a per-pixel basis, thereby, allowing the control of the large spectral variability. However, MESMA must calculate all potential endmember combinations of each pixel to determine the best-fit one. Therefore, it is a time-consuming and inefficient unmixing technology, especially for hyperspectral images because these images have more complicated endmember categories. Hence, in this paper, we design an improved MESMA (SASD-MESMA: spectral angle and spectral distance MESMA) to enhance the computational efficiency of conventional MESMA, and we validate this new method by analyzing the Hyperion image (Jan-2011) and the field-spectra data of Guangzhou (China). In SASD-MESMA, the parameters of spectral angle (SA) and spectral distance (SD) are used to evaluate the similarity degree between library spectra and image spectra in order to identify the most representative endmember combination for each pixel. Results demonstrate that the SA and SD parameters are useful to reduce misjudgment in selecting candidate endmembers and effective for determining the appropriate endmembers in one pixel. Meanwhile, this research indicates that the proposed SASD-MESMA performs very well in retrieving impervious surface area, forest, grass and soil distributions on the sub-pixel level (the overall root mean square error (RMSE) is 0.15 and the correlation coefficient of determination (R2) is 0.68).  相似文献   

2.
Quantification of the urban composition is important in urban planning and management. Previous research has primarily focused on unmixing medium-spatial resolution multispectral imagery using spectral mixture analysis (SMA) in order to estimate the abundance of urban components. For this study an object-based multiple endmember spectral mixture analysis (MESMA) approach was applied to unmix the 30-m Earth Observing-1 (EO-1)/Hyperion hyperspectral imagery. The abundance of two physical urban components (vegetation and impervious surface) was estimated and mapped at multiple scales and two defined geographic zones. The estimation results were validated by a reference dataset generated from fine spatial resolution aerial photography. The object-based MESMA approach was compared with its corresponding pixel-based one, and EO-1/Hyperion hyperspectral data was compared with the simulated EO-1/Advanced Land Imager (ALI) multispectral data in the unmixing modeling. The pros and cons of the object-based MESMA were evaluated. The result illustrates that the object-based MESMA is promising for unmixing the medium-spatial resolution hyperspectral imagery to quantify the urban composition, and it is an attractive alternative to the traditional pixel-based mixture analysis for various applications.  相似文献   

3.
传统的混合像元分解算法认为每个像元都包含图像中所能提取的全部端元组分,但这并不符合实际情况。实际上图像中大多数混合像元仅由少部分端元混合而成。由于端元提取精度及噪声的影响,采用全部端元对混合像元进行分解,会使得混合像元中实际并不存在的端元的丰度估计值不为零,分解结果存在较大误差。由于混合像元大多存在于不同地物的交界处,基于此,本文提出了一种结合图像的空间信息选取混合像元最优端元子集的方法。利用一个空间结构元素,从混合像元的附近邻域开始搜索,将搜索到的纯净像元光谱与所提取的图像端元光谱进行对比,并确定混合像元的端元子集进行分解。根据RMSE大小和变化情况,逐步扩大结构元素的大小,不断调整搜索范围,直至得到最优端元组合。模拟数据和真实数据的试验结果表明,该方法相比传统的全端元光谱分解方法,在总体上获得了更好的分解效果。  相似文献   

4.
提出了一种基于Fisher权重分析的迭代光谱解混方法(WLSMA),该方法首先对高光谱图像进行区域分割,在分割后的各子块中自动提取端元;再次对提取的端元进行聚类,从光谱的整体特征上将不同类别的端元区分开,针对聚类结果中的每一类别各选取几个具有代表性的端元光谱,并对最优光谱进行窗口卷积处理,结合In_CoB指标构建端元光谱样本库;最后对图像进行迭代光谱解混处理,在丰度反演过程中引入基于Fisher准则的补偿权值矩阵以提高反演精度。AVIRIS高光谱数据实验证明,WLSMA不需要大量先验信息,利用Fisher准则和迭代光谱分析理论增强了相似性矿物的可分性,为加强对矿区地表岩性的认识和模拟提供了更大的灵活性和可能性,对高光谱矿物填图有一定的借鉴意义。  相似文献   

5.
矿物的混合多属于致密型混合,在可见光—短波红外波段的混合呈现非线性特征,同时由于矿物混合的复杂性以及图像中完全纯净的像元可能不存在等原因,使得从图像上提取端元具有较大不确定性。本文根据矿物单次散射反照率的线性可加性,提出一种基于矿物单次散射反照率光谱库的稀疏解混算法,利用Hapke模型将矿物反射率转换成矿物单次散射反照率,构建矿物单次散射反照率光谱库,以半监督的方式通过稀疏回归的方法从光谱库中寻找最优端元组合,并估算混合像元中各端元的丰度。利用RELAB矿物混合光谱库进行算法验证,结果表明,丰度反演的平均绝对误差为3.12%;将本文方法应用于美国内华达州铜矿区的AVIRIS高光谱图像数据,所得丰度图与美国地质勘探局USGS矿物识别结果具有较好的一致性。本文算法不需要从图像提取端元,并且考虑到了矿物的非线性混合特征,能够得到较高的反演精度,在近地行星和卫星表面岩矿成分的探测等领域具有较好的应用前景。  相似文献   

6.
许承权  邓雪彬 《测绘科学》2021,46(3):117-123
针对线性光谱解混方法,全约束条件下的最小二乘准则和正交子空间投影(OSP),因缺乏物理约束条件使得组分丰度估值容易出现负值这一问题,该文在线性光谱混合分析模型中增加光谱组分丰度"和为1"且为"非负"的约束条件,提出了归一化地物子空间投影下(NMSP)的光谱解混方法。该方法假定一条基准端元已知以消除组分之间的相关性,再基于基准端元对端元矩阵和影像矩阵进行平移,进一步消除像元在端元方向投影时原点引起的错误。实验结果表明,与约束条件下的OSP分类器以及最小二乘法相比,NMSP在光谱解混中可以得到更加合理的地物组分丰度且能保持端元丰度"非负"和稀疏的物理特性。  相似文献   

7.
CBERS-02B多光谱数据在城市不透水面 估算中的可用性研究   总被引:2,自引:0,他引:2  
以厦门岛为研究区,以CBERS-02B的CCD影像为数据源,采用基于可变端元的线性光谱混合模型估算了城市不 透水面组分含量,并探讨了该方法的实现过程与优势。通过端元评估确定了研究区的4个典型端元,即高反射不透水 面、低反射不透水面、高反射土壤和植被。在此基础上,以高、低反射不透水面端元的组分含量对城市不透水面含量 进行估算。精度评价结果显示:基于可变端元的方法要优于一般带全约束法;而在混合像元分解过程中加入全色波段 (band5)有助于提高模型估算精度,使得在像元尺度的精度与采用Landsat的已有报道相近,而在土地利用单元尺度实 现了对城市不透水面的无偏估计。研究实例也表明,尽管目前CBERS-02B数据在辐射定标和地理定位等方面还有待改 进,通过采用适当的处理过程和技术手段,依然能利用该数据对城市不透水面进行有效估算。  相似文献   

8.
Spectral mixture analysis (SMA) is a major approach for estimating fractional land covers through modeling the relationship between the spectral signatures of a mixed remote sensing pixel and those of the comprised pure land covers (also termed as endmembers). When SMA is implemented, endmember variability has proven to have significant impact on the accuracy of land cover fraction estimates. To address the endmember variability problem, this article developed a geostatistical temporal mixture analysis (GTMA) technique, with which spatially varying per-pixel endmember sets were estimated using an ordinary kriging interpolation technique. The method was applied to time-series moderate-resolution imaging spectroradiometer normalized difference vegetation index imagery in Wisconsin and North Carolina, United States to estimate regional impervious surface distributions. Analysis of results suggests that GTMA has achieved a promising accuracy. Detailed analysis indicates that a better performance has been achieved in less-developed areas than developed areas, and slight underestimation and slight overestimation have been detected in developed areas and less-developed areas, respectively. Moreover, while the performance of GTMA is comparable to those of phenology-based TMA and phenology-based multiple endmember TMA over the entire study area and in less-developed areas, a much better performance has been achieved in developed areas. Finally, this article argues that endmember variability may be more essential in developed areas when compared to less-developed areas.  相似文献   

9.
吴剑  程朋根  何挺  王静 《测绘科学》2008,33(1):137-140
混合像元问题是定量遥感中的热点问题之一,为了改进从遥感数据中提取定量信息,人们建立了各种混合光谱分解技术,其中线性光谱混合模型和神经网络模型就是两种比较成熟的方法。以陕西省横山地区的高光谱Hyperion数据为研究基础,通过最小噪声变换(MNF)、像元纯度指数(PPI)转换和RMS误差分析的迭代方法相结合提取影像中的纯净像元作为终端端元。分别运用神经网络模型和线性光谱混合模型对影像进行光谱分解,得到各个组分的分解图像。以标准植被指数(NDVI)影像为衡量标准,选取训练样本点,分别对两种模型进行回归分析,结果显示NDVI影像与线性光谱混合模型植被分解图像的判定系数(R2=0.91)要大于其与神经网络模型的判定系数(R2=0.81)。进一步分析表明在一般情况下,线性光谱混合模型具有比神经网络模型略高的分离精度,但是神经网络模型对细部信息的提取的效果要好于线性光谱混合模型,最后提出了端元均方根误差(EAR)指数,一种新的混合像元分解的思路。  相似文献   

10.
Urban impervious surface information is essential for urban and environmental applications at the regional/national scales. As a popular image processing technique, spectral mixture analysis (SMA) has rarely been applied to coarse-resolution imagery due to the difficulty of deriving endmember spectra using traditional endmember selection methods, particularly within heterogeneous urban environments. To address this problem, we derived endmember signatures through a least squares solution (LSS) technique with known abundances of sample pixels, and integrated these endmember signatures into SMA for mapping large-scale impervious surface fraction. In addition, with the same sample set, we carried out objective comparative analyses among SMA (i.e. fully constrained and unconstrained SMA) and machine learning (i.e. Cubist regression tree and Random Forests) techniques. Analysis of results suggests three major conclusions. First, with the extrapolated endmember spectra from stratified random training samples, the SMA approaches performed relatively well, as indicated by small MAE values. Second, Random Forests yields more reliable results than Cubist regression tree, and its accuracy is improved with increased sample sizes. Finally, comparative analyses suggest a tentative guide for selecting an optimal approach for large-scale fractional imperviousness estimation: unconstrained SMA might be a favorable option with a small number of samples, while Random Forests might be preferred if a large number of samples are available.  相似文献   

11.
运用归一化光谱混合模型分析城市地表组成   总被引:7,自引:1,他引:7  
运用归一化光谱混合分析(NSMA)方法,用ETM 数据调查广州市海珠区城市地表组成,采用亮度标准化方法减小亮度变化。通过标准化,使亮度差异在每个植被-非渗透性表面-土壤-水体(V-I-S-W)组成中减小或者消除,这样使得一个单一的端元能够代表一种地表组分。在此基础上,通过归一化影像,选择了植被、非渗透性表面、土壤和水体4种端元,运用一种约束光谱混合分析(SMA)模型,分解了不同种类的城市地表组成。通过与已有模型计算结果比较,认为本文所构建的模型较优,其对研究区非渗透性表面估计的均方根误差为12.6%。  相似文献   

12.
一种端元变化的神经网络混合像元分解方法   总被引:2,自引:2,他引:2  
遥感图像中普遍存在着混合像元,对混合像元进行分解是遥感图像处理中的难点,在端元(Endm ember)个数不变的情况下,往往得到的分解结果精度不高。本文基于fuzzy ARTMAP神经网络,提出一种基于端元变化的神经网络混合像元分解模型。首先利用混合像元与纯净端元之间的光谱相似性,判断出混合像元包含的端元个数及类别,然后结合fuzzy ARTMAP神经网络进行分解。实验结果表明:本文提出的方法比传统的线性混合模型及fuzzy ARTMAP神经网络模型的精度要高,而且更加符合实际情况。  相似文献   

13.
Quantifying impervious surfaces in urban and suburban areas is a key step toward a sustainable urban planning and management strategy. With the availability of fine-scale remote sensing imagery, automated mapping of impervious surfaces has attracted growing attention. However, the vast majority of existing studies have selected pixel-based and object-based methods for impervious surface mapping, with few adopting sub-pixel analysis of high spatial resolution imagery. This research makes use of a vegetation-bright impervious-dark impervious linear spectral mixture model to characterize urban and suburban surface components. A WorldView-3 image acquired on May 9th, 2015 is analyzed for its potential in automated unmixing of meaningful surface materials for two urban subsets and one suburban subset in Toronto, ON, Canada. Given the wide distribution of shadows in urban areas, the linear spectral unmixing is implemented in non-shadowed and shadowed areas separately for the two urban subsets. The results indicate that the accuracy of impervious surface mapping in suburban areas reaches up to 86.99%, much higher than the accuracies in urban areas (80.03% and 79.67%). Despite its merits in mapping accuracy and automation, the application of our proposed vegetation-bright impervious-dark impervious model to map impervious surfaces is limited due to the absence of soil component. To further extend the operational transferability of our proposed method, especially for the areas where plenty of bare soils exist during urbanization or reclamation, it is still of great necessity to mask out bare soils by automated classification prior to the implementation of linear spectral unmixing.  相似文献   

14.
Time-series remote sensing data are important in monitoring land surface dynamics. Due to technical limitations, satellite sensors have a trade-off between temporal, spatial and spectral resolutions when acquiring remote sensing images. In order to obtain remote sensing images with high spatial resolution and high temporal frequency, spatiotemporal fusion methods have been developed. In this paper, we propose a Linear Spectral Unmixing-based Spatiotemporal Data Fusion Model (LSUSDFM) for spatial and temporal data fusion. In this model, the endmember abundance of the low-resolution image pixel is calculated based on that of the high-resolution image by the spectral mixture analysis. The endmember spectrum signals of low-resolution images are then calculated continuously within an optimized moving window. Subsequently, the fused image is reconstructed according to the endmember spectrum and its corresponding abundance map. A simulated dataset and real satellite images are used to test the fusion model, and the fusion results are compared with a current spectral unmixing based downscaling fusion model (SUDFM). Our experimental work shows that, compared to the SUDFM, the proposed LSUSDFM can achieve better quality and accuracy of fused images, especially in effectively eliminating the “plaque” phenomenon in the results by the SUDFM. The LSUSDFM has great potential in generating images with both high spatial resolution and high temporal frequency, as well as increasing the number of spectral bands of the high spatial resolution data.  相似文献   

15.
The impervious surface area (ISA) has emerged not only as an indicator of the degree of urbanization, but also as a major indicator of environmental quality for drainage basin management. However, since almost all of the methods for estimating ISA have been developed for urban environments, it is questionable whether these methods can be successfully applied to drainage basins, such as those found in Japan, which usually have more complicated vegetation components (e.g. paddy field, plowed field and dense forest). This paper presents a pre-screened and normalized multiple endmember spectral mixture analysis (PNMESMA) method, which includes a new endmember selection strategy and an integration of the normalized spectral mixture analysis (NSMA) and multiple endmember spectral mixture analysis (MESMA), for estimating the ISA fraction in Lake Kasumigaura Basin, Japan. This new proposed method is superior to the previous methods in that the estimation error of the proposed method is much smaller than the previous SMA- or NSMA-based methods for drainage basin environments. The overall root mean square error was reduced to 5.2%, and no obvious underestimation or overestimation occurred for high or low ISA areas. Through the assessment of environmental quality in Lake Kasumigaura Basin using the ISA fraction, the results showed that the basin has been in the impacted category since 1987, and that in the two decades since, the environmental quality has continued to decline. If this decline continues, then Lake Kasumigaura Basin will fall into the degraded category by 2017.  相似文献   

16.
The normal compositional model (NCM) is a well-known and powerful model in hyperspectral unmixing which represents endmembers as independent Gaussian vectors to capture endmember variability. However, the assumption of independent endmembers diminishes the model accuracy because the high degree of correlation between endmembers of a scene and identical sources of variability demonstrate that the endmembers are dependent. This paper proposes a new hyperspectral unmixing algorithm which represents endmembers using dependent Gaussian vectors to estimate abundance fractions. To overcome the higher complexity caused by dependence assumption, this algorithm introduces new independent Gaussian vectors named Base Vectors to represent different endmembers by a weighted linear combination. Also, the proposed unmixing algorithm uses maximum likelihood method to estimate weight coefficients of Base Vectors which are used to represent mixed pixel. Finally, abundance estimation can be done using the new representation for endmembers and mixed pixel. The proposed algorithm is evaluated and compared with other state-of-the-art unmixing algorithms using simulated and real hyperspectral images. Experimental results demonstrate that the proposed unmixing algorithm can unmix pixels composed of correlated endmembers in hyperspectral images in the presence of spectral variability more accurately than previous methods.  相似文献   

17.
变端元混合像元分解冬小麦种植面积测量方法   总被引:1,自引:0,他引:1  
针对线性混合像元分解(Linear Spectral Unmixing,LSU)在端元(Endmember)个数不变情况下常会出现端元分解过剩现象导致分解结果精度不高的问题,以地物分布的聚集性特征为基础,提出了基于格网的变端元线性混合像元分解(Dynamic Endmember LSU,DELSU)方法.以冬小麦为研究...  相似文献   

18.
Modular Optoelectronic Scanner (MOS-B) spectrometer data over parts of Northern India was evaluated for wheat crop monitoring involving (a) sub pixel wheat fractional area estimation using spectral unmixing approach and (b) growth assessment by red edge shift at different phenological stages. Red shift of 10 nm was observed between crown root initiation stage to flowering stage. Wheat fraction estimates using linear spectral unmixing on Feb. 13, 1999 acquisition of MOS-B data had high correlation (0.82) with estimates from Wide Field Sensor (WiFS) data acquired on same date by IRS-P3 platform. It was observed that five bands (4,5,8,12,13 MOS-B bands) are sufficient for signature separability of major land cover classes viz. wheat, urban, wasteland, and water based on purely spectral separability criterion using Transformed Divergence (T.D.) approach. Higher number of bands saturated the T.D. values. In contrast, performance of sub pixel fractional area estimation using unmixing decreased drastically for eight bands (4,5,6,7,8,9,12,13 MOS-B bands) chosen from optimal band selection criteria in comparison to full set of 13 bands. The relative deviation between area estimated from Wifs and MOS-B increased from 1.72 percent when all thirteen bands were used in unmixing to 26.10 percent for the above eight bands.  相似文献   

19.
Spectral mixture analysis is an algorithm that is developed to overcome the weakness in traditional land-use/land-cover (LULC) classification where each picture element (pixel) from remote sensing is assigned to one and only one LULC type. In reality, a remotely sensed signal from a pixel is often a spectral mixture from several LULC types. Spectral mixture analysis can derive subpixel proportions for the endmembers from remotely sensed data. However, one frequently faces the problem in determining the spectral signatures for the endmembers. This study provides a cross-sensor calibration algorithm that enables us to obtain the endmember signatures from an Ikonos multispectral image for spectral mixture analysis using Landsat ETM+ images. The calibration algorithm first converts the raw digital numbers from both sensors into at-satellite reflectance. Then, the Ikonos at-satellite reflectance image is degraded to match the spatial resolution of the Landsat ETM+ image. The histograms at the same spatial resolution from the two images are matched, and the signatures from the pure pixels in the Ikonos image are used as the endmember signatures. Validation of the spectral mixture analysis indicates that the simple algorithm works effectively. The algorithm is not limited to Ikonos and Landsat sensors. It is, in general, applicable to spectral mixture analysis where a high spatial resolution sensor and a low spatial resolution sensor with similar spectral resolutions are available as long as images collected by the two sensors are close in time over the same place.  相似文献   

20.
本文对SOM神经网络算法进行改进,在标类的过程中采用3个策略加以控制,对初始产生的自组织映射图进行调整。通过改进,那些映射到可靠神经元的像素得到了很好的分类,而那些映射到不可靠神经元的像素都被作为不可分像元而提取出来。继而,从混合像元分解的角度来对这些不可分像元进行处理,按类型分解的思想确定混合像元的类别,实现对不可分像元的分类。将SOM神经网络和混合像元分解相结合的分类方法应用于高光谱图像的分类中,通过实验表明了该方法能较好地改善分类效果,提高分类精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号