首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 546 毫秒
1.
刘江斌 《地质与勘探》2017,53(2):371-380
通过铸体薄片、扫描电镜、高压压汞、X射线衍射等方法对旬邑地区延长组长81储层成岩作用进行研究,在此基础上分析储层孔隙演化过程,讨论成岩作用差异对储层孔隙演化的影响。结果表明:长81砂岩储层由岩屑长石砂岩和长石岩屑砂岩组成,主要受压实作用、胶结作用及溶蚀作用的影响。长81储层原始未胶结砂岩孔隙度为36.01%,压实作用造成孔隙度损失为20.37%,早期胶结引起孔隙度降低8.51%,溶蚀作用使孔隙度增加3.25%,晚期胶结导致孔隙度下降5.54%。砂岩岩性差别对储层孔隙演化影响较小,成岩作用的差异是影响储层孔隙演化的主要因素,直接制约孔隙演化过程和储层质量。  相似文献   

2.
《地下水》2015,(5)
通过薄片观察、扫描电镜、X光衍射、物性压汞实验等方法,结合对储层岩石学特征、成岩作用特征,孔隙结构等的系统研究。砂岩以岩屑质长石砂岩、长石质岩屑砂岩为主,具有成分成熟度较低、结构成熟度中等的特征。研究区长8储层主要处于中成岩A晚期一中成岩B早期,并可以将其分为建设性和破坏性两种成岩作用,其中有利的成岩相包括绿泥石薄膜剩余孔隙相、长石溶蚀相、高岭石胶结相和裂缝孔隙相,而不利的两种成岩相分别是碳酸盐胶结相和强压实相。孔隙演化定量研究表明,压实作用和胶结作用使大量的原生孔隙损失,溶蚀作用产生的次生孔隙,又使孔隙又有所改善。长8储层发育多种类型孔隙、喉道及孔隙组合类型,总体看,长81的储集性能较长82的好。  相似文献   

3.
根据铸体薄片、扫描电镜、压汞分析,对鄂尔多斯盆地川口油田小李渠区长6砂岩储层特征进行研究.结果表明,研究区岩性主要为长石砂岩和岩屑质长石砂岩,具有典型的低成分成熟度、高结构成熟度特征。孔隙类型多样,主要为粒间孔、长石溶孔和浊沸石溶孔。储层物性较差,受沉积相带和成岩作用的双重影响,其中分流河道微相最有利于储层发育;压实作用和胶结作用使孔喉缩小,而成岩早期的绿泥石有利于原生粒间孔的保存,溶蚀作用产生了一定的的长石和浊沸石溶蚀孔隙,是主要的增孔因素。  相似文献   

4.
彭滩-杨井地区长2主力层砂岩岩石学、成岩作用、孔隙类型研究表明:该区长2储层岩石类型以长石砂岩和岩屑长石砂岩为主,成分和结构成熟度均较低,主要经历的成岩作用有压实作用、胶结作用、交代作用和溶解作用。根据砂岩成岩作用特征,结合其埋藏深度、岩石古地温、有机质成熟度等分析资料及岩石结构、孔隙类型特征,长2主力层主要处于晚成岩A期成岩阶段。  相似文献   

5.
鄂尔多斯盆地华庆油田长81段储层物性影响因素   总被引:3,自引:0,他引:3  
任大忠 《地质与勘探》2014,50(3):591-598
在综合大量样品测试数据与图像的基础上,研究了华庆油田长81段储层特征和物性影响因素。研究表明:砂岩岩性以中细砂岩与细砂岩岩屑长石砂岩和长石岩屑砂岩为主,储集空间以剩余原生粒间孔和长石溶孔为主。孔隙类型以中孔隙和小孔隙为主,优势孔隙具有双孔隙结构特征。储层类型为低孔特低渗-超低渗岩性油藏,储层孔喉半径与物性具有正相关的分带性。沉积作用-成岩作用共同影响着储层的发育特征,较好的物性发育在中粒岩屑长石砂岩、细-中粒岩屑长石砂岩与细粒岩屑长石砂岩的砂体中,压实作用使原生孔隙度损失21.92%,胶结作用使原生孔隙度损失8.61%,溶蚀作用使孔隙度提高了4.46%。继续研究沉积和成岩作用对储层物性特征的影响,将有利于认识和处理同类储层的勘探开发。  相似文献   

6.
鄂尔多斯盆地陇东地区三叠系延长组长8储层特征   总被引:15,自引:1,他引:15  
鄂尔多斯盆地陇东地区延长组长8油层段是重要的储集层之一,包括长81和长82两个砂岩组。通过储层岩石学、储层物性、孔隙结构及储层控制因素等方面对储层特征进行分析,总结并评价储层储集性能。研究结果表明,储层岩石类型主要为中细粒长石砂岩和岩屑长石砂岩,成分成熟度低,结构成熟度中—高;岩石物性总体较差,属低孔、低渗储层,发育粒间孔隙、溶蚀孔隙、晶间孔等孔隙类型,喉道以中细喉—细喉为主。储集性变化受沉积作用和成岩作用控制,沉积作用控制了储层砂体展布,进而影响其岩石学特征的表现,压实作用、胶结作用和溶蚀作用控制了储层孔隙结构特征及储层物性,根据岩性和物性分析特征可将储集岩分为4类,优质储层的勘探应以沉积作用控制的多套砂体相互叠置的水下分流河道沉积为重点。  相似文献   

7.
鄂尔多斯盆地大牛地气田下石盒子组储层成岩作用特征   总被引:2,自引:0,他引:2  
鄂尔多斯盆地大牛地气田二叠系下石盒子组储层砂岩具有成分成熟度低,结构成熟度中等到好的特点,岩性以岩屑石英砂岩和岩屑砂岩为主.砂岩属于特低孔特低渗储层,以次生溶蚀粒间孔为主要储集空间.储层成岩作用主要包括压实、溶解、胶结和交代4种,目前处于中成岩阶段B期.成岩作用对储集物性的影响主要表现在孔隙度和渗透率两方面.机械压实作...  相似文献   

8.
根据砂岩薄片、铸体薄片、扫描电镜、X-衍射等分析,对子长油田安定区块长6储层砂体的岩石学特征、成岩作用进行了研究。结果表明:研究区长6储层储集砂体成分主要由长石质岩屑砂岩和岩屑质长石砂岩组成,砂岩具成分成熟度较低、分选性较好、磨圆度较差的特点,其成岩作用处于晚成岩 A 期。早期的压实作用及胶结作用是使原生孔隙遭受破坏的主要因素,而溶蚀作用是形成次生孔隙的主要因素。  相似文献   

9.
研究鄂尔多斯盆地志丹地区长9油层组的储层地质特征,通过钻井取心、薄片鉴定、物性分析及测井等资料,综合分析长9油层组的沉积、储层和成岩作用特征及其储集物性的影响因素。研究表明:长9油层组主要为三角洲前缘水下分流河道、滨浅湖和半深湖—深湖沉积,岩性以细粒长石砂岩和长石岩屑砂岩为主,整体具有成分成熟度低而结构成熟度较高的特点,孔隙类型以残余粒间孔和溶蚀孔隙为主,储层物性差,为超低孔低渗的致密砂岩储层。鄂尔多斯盆地志丹地区长9储层地质特征复杂,储集物性受沉积微相和成岩作用的共同控制,以水下分流河道砂为主要储集体,压实作用和胶结作用使储层物性明显变差,而溶蚀作用对储层物性起主要贡献作用。  相似文献   

10.
为了研究二连盆地乌里雅斯太凹陷H区阿尔善油层组储层特征及影响因素,采用储层岩心观察、铸体薄片、扫描电镜、常规压汞等测试资料,对储层岩石学特征、孔隙特征、物性特征、沉积作用和成岩作用进行了分析,结果表明阿尔善油层组为近源、快速堆积,砂岩类型主要是长石质岩屑砂岩和岩屑质长石砂岩,表现为胶结物含量高、结构成熟度低和成分成熟度低的"一高两低"特点。储层受碎屑粒径、压实程度、碳酸盐含量的影响,主要发育中-细喉道,储集空间以残余粒间孔和粒间溶孔为主,物性分析判断为低孔-低渗储层。研究区最好的储层为扇三角洲前缘水下分流河道砂,其次为远端席状砂和河口坝砂。研究区目的层原始孔渗分布主要受沉积作用控制;成岩作用中胶结作用对储层既有部分破坏作用又有部分改善作用,压实作用主要起破坏作用,溶解作用主要起改善作用。  相似文献   

11.
泌阳凹陷核三下亚段砂岩成岩作用及储集性   总被引:12,自引:1,他引:12  
泌阳凹陷东部核三下亚段砂岩储层由辨状河三角洲成因的长石砂岩及岩屑长石砂岩组成。主要成岩作用包括压实、石英和长石次生加大、晶粒状方解石胶结、溶解、自生绿泥石等,演化程度已达到晚成岩B亚期。成岩作用使砂岩原生孔隙体系发生强烈变化。各种成岩作用对储集性有不同影响,孔隙度的减少主要与压实及碳酸盐胶结作用有关;石英和长石次生加大及自生粘土衬边经常使喉道堵塞,对渗透率危害较大;溶解作用形成的次生孔隙及喉道对砂  相似文献   

12.
通过对川西坳陷新场气田上三叠统须家河组须四、须二段储集层成岩作用类型及其特征研究,认为储集层主要经历了压实压溶作用、自生矿物胶结作用和溶解作用3种类型。储集层成岩-储集相可以划分成5种,即强溶解成岩-储集相、绿泥石衬边粒间孔成岩-储集相、压实压溶成岩-储集相、碳酸盐胶结成岩-储集相和石英次生加大成岩-储集相。不同的储集层成岩-储集相由于经历了不同的成岩演化序列,使得储集层中的残余原生粒间孔和次生溶孔的形成条件各不一样,储集层中孔隙的保存主要决定于孔隙被压实、自生矿物的充填、多期的溶解作用等因素,并与孔隙中发育的绿泥石衬边有紧密联系。在上述5种成岩-储集相中,有效的成岩-储集相只有两种,即强溶解成岩-储集相和绿泥石衬边粒间孔成岩-储集相,它们对须家河组须四、须二段优质储层的形成起着至关重要的作用,而其它几种成岩-储集相对优质储层的形成是无效的。  相似文献   

13.
延长组长8 油层组是鄂尔多斯盆地镇泾区块的主力油层之一,岩性以岩屑长石砂岩和长石岩屑砂岩为主,为典型的 特低孔特低渗储层。储集空间以次生溶蚀粒间孔为主,喉道以缩颈型、片状和弯片状为主,孔喉结构发育3 种类型,以II 型为主。长8 砂岩储层特征主要受沉积作用、成岩作用、裂缝发育程度和油气充注4 个因素控制。最有利于储层发育的沉积 微相为水下分流河道,且中砂岩的储集物性好于细砂岩,富含石英、长石和变质岩岩屑的砂岩的储集物性好于火成岩岩屑、 沉积岩岩屑和云母含量高的砂岩。成岩作用对储集物性的影响具有双重性,建设性成岩作用包括溶解和孔隙衬里绿泥石胶 结作用2 种,两者均很发育的层段是油气储集的最有利地带;破坏性成岩作用主要包括机械压实作用和晚期亮晶方解石胶 结作用。裂缝以白垩纪末- 古近纪的构造裂缝为主,其使长8 储层渗透率急剧增大,储层非均值性增强。油气充注对储集 物性的影响主要表现为促进溶解作用的发生以及次生孔隙的形成和保存。  相似文献   

14.
鄂尔多斯盆地姬塬地区延长组长4+5低渗透储层成因   总被引:3,自引:0,他引:3       下载免费PDF全文
碎屑岩储层成岩作用复杂而强烈,对储层物性有着重要影响。应用岩相学研究方法,在对鄂尔多斯盆地姬塬地区延长组长4+5低渗砂岩储层成岩作用及其对物性影响定量研究基础上,探讨了低渗储层成因机理。成岩作用和孔隙演化研究表明,压实作用虽然造成12%~20%的孔隙度损失,但是压实后剩余孔隙度仍高达15%~23%,早期胶结作用使孔隙度损失很小,压实作用和早期胶结作用并没有使储层致密,不影响油气渗流。溶蚀作用进一步改善了储层,晚成岩阶段A期-B期形成的钠长石、亮晶方解石、白云石、自生高龄石和铁绿泥石等大量胶结物的晚期胶结作用使储层孔隙度仅有4%~6%,储层因此而致密,由此影响油气渗流。晚期裂隙作用对储层孔隙度贡献为6%~8%,改善了储层物性而使其成为有效储层。盆地演化及与之对应的成岩事件研究认为,印支运动前,姬塬地区长4+5储层处于浅埋藏阶段,经历压实作用和早期胶结作用,早-中侏罗世长 7烃源岩进入未成熟-低熟阶段,形成富含有机酸流体进入储层而发生溶蚀作用,早白垩世中-晚期进入深埋藏成岩阶段,晚期胶结物大量形成而使储层致密。生烃增压作用导致的裂隙以及晚白垩世以来的构造运动形成的裂缝对研究区长4+5有效储层形成具有非常重要意义,同时对低渗油气藏勘探也具有指导意义。  相似文献   

15.
本文借助于薄片分析、扫描电镜分析、阴极发光分析和物性分析等研究手段,以鄂尔多斯盆地华庆地区长6油层组低渗透砂岩的形成机制为解剖对象,通过对砂岩埋藏前组成、化学成岩作用和物理成岩作用的相对重要性、自生矿物组成、孔隙构成、物性与孔隙结构等研究,明确了主要成岩作用对储层的影响。在此基础上,结合沉积相的研究,选择骨架颗粒构成、自生矿物组成、物性、孔隙构成以及粒间体积等有关的15个成岩相定量评价参数,对华庆地区长6油层组低渗透砂岩进行成岩相的定量评价。结果表明:① 华庆地区长6油层组砂岩经历了较强的物理成岩作用和较弱的化学成岩作用,原生孔隙是主要储集空间,压实作用是孔隙度降低的最主要因素,其次为方解石的胶结作用;② 成岩相定量评价表明,弱胶结、强压实成岩相以及强方解石胶结、中-强压实成岩相的储层质量均较差,受北部物源区控制的绿泥石胶结、弱-中等压实成岩相具有较好的储层质量,建议作为今后的优选勘探开发区。  相似文献   

16.
蒋威  谭先锋  王佳  付明庆  陈青  吴康军  冉天 《现代地质》2016,30(6):1348-1360
摘要:致密砂岩作为非常规油气的重要载体,对其致密化成因及储层形成机理研究具有重要意义。利用钻井岩心、薄片观察、阴极发光和流体包裹体等手段,对川中地区龙女寺东端须家河组致密砂岩的成岩作用及储层形成机理进行研究。结果表明:龙女寺东端须家河组遭受了机械压实-压溶作用、胶结作用、交代作用、溶蚀作用和构造破裂作用,机械压实作用和胶结作用是导致砂岩致密化的主要因素,溶蚀作用和破裂作用是储层形成的主要因素;须家河组目前处于中成岩A-B期,经历的流体活动主要有同生成岩期地表水沉淀早期方解石胶结和绿泥石薄膜,早成岩B期压溶作用控制石英Ⅰ期次生加大形成与孔隙流体溶解黏土矿物、长石和易溶岩屑等,中成岩A期大量油气充注促进石英Ⅱ、Ⅲ期次生加大与少量方解石溶解,中成岩B期燕山/喜山运动促进储层形成;储层形成机理主要涵盖残余原生孔的保存和次生孔的形成,有利的沉积环境、溶蚀作用、异常高压和构造破裂作用共同控制储层形成,有利的沉积环境、溶蚀作用和异常高压主要是保护残余原生孔和形成次生孔,构造破裂作用产生大量微裂缝,提高储层渗流能力,并为形成溶蚀扩大孔提供条件。  相似文献   

17.
利用岩心、铸体薄片、扫描电镜、碳氧同位素及流体包裹体等资料,对鄂尔多斯盆地姬塬西部三叠系延长组长8油层组致密储集层特征进行了研究,重点分析了储集层成岩作用特征和储集层致密化成因机制及过程。研究区长8油层组砂岩主要为岩屑长石砂岩和长石岩屑砂岩,经历了压实—压溶、胶结、交代、溶蚀及构造破裂等成岩作用,整体处于中成岩A期晚期。典型成岩序列依次为机械压实、绿泥石黏土膜、早期(泥晶)方解石胶结、石英次生加大、长石、岩屑溶蚀、自生高岭石胶结、自生石英胶结、中期(含)铁方解石胶结。综合研究认为:(1)近物源伴随湖平面快速上升的沉积环境提供了储集层致密化的物质基础,不同沉积微相储集层物性差别较大,分流河道最好,分流间湾最差;(2)长8油层组原始孔隙度为41.35%,压实作用损孔率为50.67%,造成储集层孔隙度急剧降低,胶结作用损孔率为37.48%,导致孔隙度进一步减小,溶蚀作用仅增加了3.26%的孔隙度,难以有效改善储集层质量;(3)上述沉积与成岩因素共同导致储集层致密,致密化过程可分为压实孔隙骤减阶段、早期胶结减孔阶段、溶蚀作用增孔阶段和晚期胶结致密阶段共4个阶段;(4)油气大量充注期储集层孔隙度远低于10%,长8油层组先致密后成藏。  相似文献   

18.
The Middle Jurassic Khatatba Formation acts as a hydrocarbon reservoir in the subsurface in the Western Desert, Egypt. This study, which is based on core samples from two exploration boreholes, describes the lithological and diagenetic characteristics of the Khatatba Formation sandstones. The sandstones are fine‐ to coarse‐grained, moderately to well‐sorted quartz arenites, deposited in fluvial channels and in a shallow‐marine setting. Diagenetic components include mechanical and chemical compaction, cementation (calcite, clay minerals, quartz overgrowths, and a minor amount of pyrite), and dissolution of calcite cements and feldspar grains. The widespread occurrence of an early calcite cement suggests that the Khatatba sandstones lost a significant amount of primary porosity at an early stage of its diagenetic history. In addition to calcite, several different cements including kaolinite and syntaxial quartz overgrowth occur as pore‐filling and pore‐lining cements. Kaolinite (largely vermicular) fills pore spaces and causes reduction in the permeability of the reservoir. Based on framework grain–cement relationships, precipitation of the early calcite cement was either accompanied by or followed the development of part of the pore‐lining and pore‐filling cements. Secondary porosity development occurred due to partial to complete dissolution of early calcite cements and feldspar. Late kaolinite clay cement occurs due to dissolved feldspar and has an impact on the reservoir quality of the Khatatba sandstones. Open hydraulic fractures also generated significant secondary porosity in sandstone reservoirs, where both fractures and dissolution took place in multiple phases during late diagenetic stages. The diagenesis and sedimentary facies help control the reservoir quality of the Khatatba sandstones. Fluvial channel sandstones have the highest porosities and permeabilities, in part because of calcite cementation, which inhibited authigenic clays or was later dissolved, creating intergranular secondary porosity. Fluvial crevasse‐splay and marine sandstones have the lowest reservoir quality because of an abundance of depositional kaolinite matrix and pervasive, shallow‐burial calcite and quartz overgrowth cements, respectively. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

19.
Ridge sandstone of Jurassic Jumara dome of Kachchh was studied in an attempt to quantify the effects of diagenetic process such as compaction, cementation and dissolution on reservoir properties. The average framework composition of Ridge sandstone is Q80F17L3, medium-to coarse grained and subarkose to arkose. Syndepositional silty to clayey matrix (3% average) is also observed that occurs as pore filling. The diagenetic processes include compaction, cementation and precipitation of authigenic cements, dissolution of unstable grains and grain replacement and development of secondary porosity. The major cause of intense reduction in primary porosity of Ridge sandstone is early cementation which include silica, carbonate, iron, kaolinite, illite, smectite, mixed layer illite-smectite and chlorite, which prevents mechanical compaction. The plots of COPL versus CEPL and IGV versus total cement suggest the loss of primary porosity in Ridge sandstone is due to cementation. Cements mainly iron and carbonate occurs in intergranular pores of detrital grains and destroys porosity. The clay mineral occurs as pore filling and pore lining and deteriorates the porosity and permeability of the Ridge sandstone. The reservoir quality of the studied sandstone is reduced by clay minerals (kaolinite, illite, smectite, mixed layer illitesmectite, chlorite), carbonate, iron and silica cementation but on the other hand, it is increased by alteration and dissolution of the unstable grain, in addition to partial dissolution of carbonate cements. The potential of the studied sandstone to serve as a reservoir is strongly related to sandstone diagenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号