首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
随着北斗三号全球卫星导航系统(BDS-3)的成功组网,新启用的B2b信号由于承载着精密单点定位(PPP)服务而备受关注,但该信号的应用尚未普及,为探究PPP-B2b信号的服务性能,针对自研板卡接收的B1C和PPP-B2b导航电文数据,以德国地学研究中心(GFZ)提供的精密星历产品及其插值结果为参考基准,计算卫星定轨结果与参考基准的互差序列和均方根误差(RMSE),评估广播星历和PPP-B2b精密改正轨道的轨道精度.结果表明:广播轨道在径向(R)、切向(T)、法向(N)的精度均值分别为0.19 m、0.65 m和0.89 m;精密改正轨道在R、T、N的精度均值分别为0.13 m、0.32 m和0.29 m;自研板卡接收的PPP-B2b信号满足PPP的应用要求,为下一步开发基于PPP-B2b信号的相关产品提供数据参考.  相似文献   

2.
北斗三号卫星导航系统(BDS-3)开通已一年有余,通过研究2019-08—2021-08共2 a的北斗卫星导航系统(BDS)广播星历数据,采用事后精密星历对北斗二号卫星导航系统(BDS-2)和BDS-3卫星的轨道、钟差和空间信号测距误差(SISRE)进行分析. 结果表明:BDS-3系统开通后,卫星轨道精度比BDS-2提升明显,径向(R)误差均方根(RMS)值从0.87 m左右提升至优于0.23 m,精度提升约74%,3D误差RMS值从1.63 m以内提升到优于0.75 m,精度提升约54%;氢原子钟和铷原子钟精度相当,BDS-3钟差误差RMS值精度提升与BDS-2提升基本相同,精度提升约1 ns;SISRE精度比对中,BDS-2 SISRE的RMS值从0.9 m提升到0.7 m,BDS-3从0.8 m提升到0.5 m. 综合比较,BDS-3系统性能提升较大.   相似文献   

3.
针对北斗卫星导航系统的卫星姿态模型、天线相位中心改正及卫星定轨数据处理策略未统一的现状,该文对比分析了武汉大学和德国地学研究中心提供的北斗事后精密轨道和钟差产品的差异及精度,结合实测数据,通过分析精密单点定位的定位精度来比较两中心精密轨道和钟差的差异。实验结果表明:北斗卫星的精密轨道精度与轨道类型有关,地球静止轨道(GEO)卫星的轨道精度为米级,倾斜地球同步轨道(IGSO)卫星的轨道精度为分米级,中地球轨道(MEO)卫星切向、法向和径向的精度分别为10.81、5.41和3.37cm;GEO卫星钟差精度优于0.38ns,IGSO卫星钟差优于0.25ns,MEO卫星钟差优于0.15ns;两家分析中心产品的北斗静态精密单点定位的平面精度相当;北斗静态精密单点定位的RMS统计值平面精度优于3cm,三维精度优于7cm。  相似文献   

4.
广播星历SSR改正的实时精密单点定位及精度分析   总被引:1,自引:0,他引:1  
本文分析了利用广播星历和SSR改正信息获取实时精密星历和卫星钟差的方法,并对生成的实时产品进行了精度评估:利用IGS分析中心提供的实时NTRIP数据流SSR改正信息,基于广播星历改正RTPPP模型实现了实时静态和动态精密单点定位,并分别进行了精度分析。结果表明:将广播星历SSR改正获得的实时产品与IGS最终产品相比较,卫星轨道互差RMS值为4cm~7cm、卫星钟差互差RMS值优于0.3ns;实时静态PPP在观测时段6h以上的情况下,可实现水平方向2cm、高程方向4cm的定位精度,24h单天解的平面及高程方向精度均优于2cm;实时动态PPP的定位精度可达cm级,收敛至亚dm级精度的时间与事后PPP在不固定非差模糊度情况下所需的时间相当。  相似文献   

5.
GNSS是实时定位导航最重要的方法,精密卫星轨道钟差产品是GNSS高精度服务的前提。国际GNSS服务中心(IGS)及其分析中心长期致力于GNSS数据处理的研究及高精度轨道和钟差产品的提供。GFZ作为分析中心之一,提供GBM多系统快速产品。本文基于2015—2021年GBM提供的精密轨道产品,阐述了数据处理策略,分析了轨道的精度,介绍了非差模糊度固定的原理和对精密定轨的影响。结果表明:GBM快速产品中的GPS轨道精度与IGS后处理精密轨道相比的精度约为11~13 mm,轨道6 h预报精度约为6 cm;GLONASS预报精度约为12 cm,Galileo在该时期的精度均值为10 cm,但是在2016年底以后精度提升到5 cm左右;北斗系统的中轨卫星(medium earth orbit,MEO)在2020年以后预报精度约为10 cm;北斗的静止轨道卫星(geostationary earth orbit,GEO)卫星和QZSS卫星的预报精度在米级;卫星激光测距检核表明,Galileo、GLONASS、BDS-3 MEO卫星轨道精度分别为23、41、47 mm;此外,采用150 d观测值的试验结果表明,采用非差模糊度固定能显著改善MEO卫星轨道精度,对GPS、GLONASS、Galileo、BDS-2和BDS-3的MEO卫星的6 h时预报精度改善率分别为9%~15%、15%~18%、11%~13%、6%~17%和14%~25%。  相似文献   

6.
北斗三号卫星导航系统(BeiDou-3 navigation satellite system,BDS-3)精密单点定位(precise point positioning,PPP)-B2b信号为中国及周边地区提供实时PPP(real-time PPP,RTPPP)服务,为了推广PPP-B2b信号的应用,需要对其服务性能进行评估。根据全球连续监测评估系统(international GNSS monitoring and assessment system, iGMAS)在中国的测站2020年9月的观测数据,评估了基于PPP-B2b信号的北斗卫星导航系统的轨道和钟差精度;分析了使用BDS-3PPP-B2b产品的B1I+B3I、B1c+B2a信号组合的定位精度以及北(north,N)方向、东(east,E)方向、天(up,U)方向收敛情况。结果显示:BDS轨道产品径向精度均值为0.1 m,切向精度均值为0.31 m,法向精度均值为0.3 m;钟差精度均方根的均值为2.26 ns,标准差的均值为0.08 ns。关于PPP收敛时间情况,在N、E、U 3个方向上,使用德国地学中心多系统快速产品...  相似文献   

7.
陈良  耿长江  周泉 《测绘学报》2016,45(9):1028-1034
实时GNSS精密单点定位(PPP)技术必须使用实时的高精度卫星精密轨道和钟差。本文研究了精密卫星钟差融合解算模型及策略,并利用滤波算法实现了北斗/GPS实时精密卫星钟差融合估计算法。仿真实时试验结果显示:获得的北斗/GPS实时钟差与GFZ事后多GNSS精密钟差(GBM)的标准差在0.15 ns左右;使用该钟差进行GPS动态PPP试验,收敛后水平精度优于5 cm,高程精度优于10 cm;使用仿真实时钟差进行的北斗动态PPP与使用GFZ事后多GNSS精密钟差开展的试验相比精度相当,可实现分米级定位。  相似文献   

8.
不同参考基准精密星历对单点定位的影响   总被引:1,自引:1,他引:0  
精密单点定位的实质就是利用精密星历和精密卫星钟改正来实现定位。但是IGS不同分析中心提供的精密星历和卫星钟改正数的基准不一致,如果使用不同分析中心提供的精密星历和卫星钟差就会对定位精度产生影响。本文采用IGS精密星历和JPL精密星历,使用相同的IGS精密卫星钟差,分别计算对测站坐标精度的影响。  相似文献   

9.
提出并实现了一种基于广播星历和区域参考网的实时精密单点定位的新算法——NAPPP(network augmented precise point positioning)。采用可实时获取的广播星历,将用户站与附近的若干参考站一起联合处理,实时估计用户站位置参数以及导航卫星轨道和钟差改正数。实验结果表明,NAPPP算法静、动态实时定位精度分别为1~2cm和2~6cm,其定位精度和收敛速度明显优于基于IGS最终轨道和30s钟差的PPP定位结果,与基于CODE最终轨道和5s钟差的PPP定位结果相当。  相似文献   

10.
基于预报星历的常规实时精密单点定位存在相位模糊度难以收敛、定位精度低等问题.文中采用附加基准站改正信息的PPP算法,消除与卫星有关误差影响.依托香港卫星定位参考站网,采用WHU预报星历获取实时卫星轨道和钟差改正,开展基于预报星历和基准站辅助的中国北斗卫星导航系统实时PPP应用研究,并对其定位性能进行分析.试验结果表明,...  相似文献   

11.
针对北斗三号 (BDS-3)正式开通后的空间信号精度情况,选取2020-08-01—2021-07-31共 1 a的混合广播星历数据,以德国波茨坦地学研究中心(GFZ)和武汉大学国际GNSS服务(IGS)数据中心(WHU)提供的精密星历为参考分别从轨道精度、钟差精度和空间信号测距误差(SISRE)来进行BDS-3的空间信号精度评估. 结果表明:BDS-3的轨道精度在径向(R)、切向(A)、法向(C)三个方向上分别优于0.100 m、0.405 m、0.547 m,钟差精度优于1.926 ns,仅受轨道影响的SISRE (orb)为0.134 m,SISRE为0.612 m. 地球静止轨道(GEO)卫星的SISRE为1.137 m,倾斜地球同步轨道(IGSO)卫星和中圆地球轨道(MEO)卫星的SISRE相比GEO卫星分别减少36.3%、51.3%.   相似文献   

12.
国际GNSS服务(IGS)提供的GPS综合产品被广泛应用于各种高精度科学研究中. 随着各国卫星导航系统的发展,亟需研究针对多系统全球卫星导航系统(GNSS)产品的综合策略. 由于卫星姿态与钟差相互耦合,综合钟差时额外考虑姿态改正将进一步提高综合产品精度,因此研究了一种顾及卫星姿态的GNSS钟差综合策略,改正姿态后GPS综合残差最大可减小80%. 对142个IGS测站进行精密单点定位(PPP)解算发现,综合产品比单个分析中心产品更加稳定,东(E)、北(N)、高(U)方向的动态定位精度最大可提升22.7%、16.7%和18.3%. 相对于未顾及姿态改正的综合产品,顾及姿态改正的综合产品的动态定位精度最大可提升65.3%.   相似文献   

13.
通过载噪比(CNR)、数据完整率、伪距与载波相位观测值噪声和伪距多路径效应四个指标对北斗三号卫星导航系统(BDS-3)新频点B1C/B2a车载动态数据的特性进行了分析,测试了BDS-3新频点动态精密单点定位(PPP)的性能,并与其它全球卫星导航系统(GNSS)进行了对比. 试验结果表明,BDS-3新频点B2a平均CNR优于北斗卫星导航系统(BDS)其它频率,但略差于GPS L5;相较于其它GNSS,BDS数据完整率相对较高,其中BDS-3 B2a新频点数据完整率最高;BDS-3 B2b伪距观测值噪声最小,B1C和B2a伪距观测值噪声约为B2b信号的3倍,但不同频率相位观测值噪声处于同一量级;对于伪距多路径而言,BDS-3 B1C/B2a 信号略小于B2b 信号. 总体而言,GPS L5信号抑制多路径效应的能力最强. 在动态PPP性能方面,BDS-3 B1C/B2a双频组合动态PPP定位精度最优,其三维(3D)均方根(RMS)误差为0.439 m,相比BDS B1I/B3I、GPS L1/L2、GLONASS G1/G2和Galileo E1/E5a双频组合PPP,其精度改善率分别为49%、56%、81%和42%.   相似文献   

14.
针对北斗卫星三号(BDS-3)卫星钟的表现情况的问题,该文选取了全球均匀分布的120个国际GNSS服务(IGS)跟踪站的北斗三号卫星观测数据进行北斗卫星钟差估计,利用评价卫星钟差产品的方法分析北斗新一代卫星钟的精度水平。得到结果如下:北斗卫星钟中圆地球轨道(MEO)精度在0.1 ns以内、倾斜地球同步轨道(IGSO)精度在0.15 ns以内,地球静止轨道(GEO)精度在0.2~0.9 ns水平;BDS-3卫星的频率的万秒稳定度已经处于1×10-14水平;GPS与BDS精密单点定位解算结果的均方根误差(RMS)均在厘米级。基于卫星钟差实验结果表明,MEO比IGSO卫星钟差精度高,稳定性强;BDS-3搭载的铷钟(Rb-Ⅱ)和氢钟(PHM)比BDS-2的铷钟(Rb)更稳定,这是因为发射较早的卫星钟普遍受到硬件老化影响,相位与频率的波动较大;BDS在U方向上的精度与收敛速度略有不足,可通过GPS+BDS组合定位提升U方向单点定位性能。北斗卫星钟的精度、稳定性已达到钟差预报及实时精密单点定位应用的需求。  相似文献   

15.
BDS-3实时精密单点定位精度分析   总被引:7,自引:1,他引:6  
基于武汉大学自主研发的GNSS高精度数据处理软件PANDA,本文采用MGEX网测站BDS-2/BDS-3连续一周的观测数据,通过仿实时处理BDS-3精密轨道与钟差产品进行BDS-3卫星实时精密轨道产品重叠弧段评估,实时轨道径向精度优于10 cm,实时钟差STD优于0.3 ns。在此基础上验证分析了BDS-2、BDS-3及BDS-2+BDS-3融合的实时静态PPP与实时动态PPP定位。试验结果表明:BDS-3静态PPP定位精度水平优于2 cm,高程优于4 cm;BDS-2+BDS-3联合实时动态PPP收敛时间相较BDS-2分别提升了约38.2%、75.0%、49.7%;收敛后E方向精度优于3 cm,N方向精度优于2 cm,平均提升了38.2%,高程方向精度优于6 cm,平均提升了64%。  相似文献   

16.
相位小数偏差(UPD)的精确估计是实现精密单点定位(PPP)非差模糊度固定的重要前提.常用的PPP模型主要分为无电离层组合(IF)模型与非差非组合模型两类,针对两类模型所采用的UPD估计方法有所不同.首先从理论上推导证明了在采用相同处理策略的前提下,基于IF模型与非差非组合模型UPD估计的一致性;进一步采用全球均匀分布的45个国际GNSS服务(IGS)测站观测数据估计了北斗三号全球卫星导航系统(BDS-3) UPD产品,并分析两种估计模型获得的UPD产品的时间稳定性与一致性.结果表明:BDS-3宽巷(WL) UPD与窄巷(NL) UPD均保持较高的稳定性,10日WL UPD的平均标准差为0.060 7,单日NL UPD平均标准差为0.059 9.针对北斗二号卫星导航系统(BDS-2),两种模型估计得到的UPD结果具有较高的一致性;然而,BDS-3卫星的UPD结果出现与卫星轨道类型和生产厂家的相关特性,不同轨道类型、不同生产厂家之间的卫星UPD存在0.5周左右的显著差异,同一轨道类型、同一生产厂家的北斗卫星之间具有一致性,推测BDS-3不同轨道类型、不同生产厂家生产的卫星对应的接收机端硬...  相似文献   

17.
基于国际GNSS服务(IGS)提供的MGEX (Multi-GNSS Experiment)的观测数据,对北斗三号卫星导航系统(BDS-3)相位小数偏差(UPD)进行估计,进一步开展基于精密单点定位(PPP)的浮点/固定解试验,分析评估其定位性能. 结果表明:北斗卫星导航系统(BDS)定位精度与GPS大致相当; BDS-3 PPP在东(E)、北(N)、天顶(U)三个方向上浮点解的平均均方根(RMS)分别为1.4 cm、1.0 cm、1.6 cm;通过模糊度固定算法,可将三个方向的定位精度提升至0.9 cm、0.7 cm、1.4 cm.   相似文献   

18.
施闯  郑福  楼益栋 《测绘学报》2017,46(10):1354-1363
采用IGS、MGEX、北斗地基增强网的实时观测数据,研制北斗广域精密定位服务系统,实时生成北斗高精度轨道、钟差、电离层产品,提供厘米级北斗双频PPP、分米级单频PPP、米级单频伪距定位服务。对实时产品评估分析的结果表明:北斗卫星实时轨道与钟差产品URE统计精度约为2.0cm,实时电离层精度优于4.0TECU。采用全国分布的实时测站动态定位精度(95%置信度)评估分析表明:北斗双频PPP精度存在明显的区域特征,高纬度以及西部边缘地区的定位精度平面约0.2m,高程约0.3m;中部地区定位精度平面优于0.1m,高程优于0.2m,接近GPS实时PPP精度水平;北斗与GPS融合可以提高单北斗、单GPS的定位性能,尤其是显著加快了PPP收敛时间,收敛时间缩短到20min内。另外,除边缘地区外,北斗单频PPP实现平面0.5m,高程1.0m;北斗单频伪距单点定位实现平面2.0m,高程3.0m。  相似文献   

19.
随着我国北斗三号全球卫星导航系统(BDS-3)的全面建成,基于BDS-3的高精度定位定姿应用需求日益迫切.推导了无电离层组合模式BDS-3精密单点定位(PPP)模型及地心地固坐标系下的惯性导航系统(INS)误差方程,构建了BDS-3 PPP/INS紧组合定位滤波模型,分别针对BDS-3 PPP、BDS-3 PPP/INS松组合、BDS-3 PPP/INS紧组合三种模式进行了定位性能评估.实验结果表明:BDS-3 PPP/INS松组合与BDS-3 PPP位置精度基本一致;BDS-3 PPP/INS紧组合在东(E)、北(N)、天顶(U)方向位置精度为分别7.9 cm、9.3 cm、9.4 cm,较BDS-3 PPP/INS松组合位置精度分别提升了38.3%、33.1%、35.6%,速度精度分别提升了27.3%、45.8%、12%,姿态精度相当.  相似文献   

20.
精密单点定位方法估计对流层延迟精度分析   总被引:4,自引:0,他引:4  
在简要描述精密单点定位估计天项对流层延迟方法的基础上,分别采用IGS事后产品和实时产品处理了若干IGS跟踪站数据,估计出各站天顶对流层延迟,其中,实时精密卫星星历与钟差处理方案采用事后下栽实时产品、事后模拟实时处理的方式.与IGS结果相比,利用精密单点定位方法,采用IGS事后精密星历与卫星钟差估计的结果无明显的偏差,其精度优于6 mm;采用实时精密卫星星历与卫星钟差模拟估计的结果精度优于20 mm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号