首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
This article presents a procedure to calculate the bearing capacity of suction anchors subjected to inclined average and cyclic loads at the optimal load attachment point using the undrained cyclic shear strength of soft clays based on the failure model of anchors proposed by Andersen et al. The constant average shear stress of each failure zone around an anchor is assumed and determined based on the static equilibrium condition for the procedure. The cyclic shear strength of each failure zone is determined based on the average shear stress. The cyclic bearing capacity is finally determined by limiting equilibrium analyses. Thirty-six model tests of suction anchors subjected to inclined average and cyclic loads were conducted, which include vertical and lateral failure modes. Model test results were predicted using the procedure to verify its feasibility. The average relative error between predicted and test results is 1.7%, which shows that the procedure can be used to calculate the cyclic bearing capacity of anchors with optimal loading. Test results also showed that the anchor was still in vertical failure mode under combined average and cyclic loads if an anchor was in vertical failure mode under static loads. The anchor failure would depend on the vertical resistance degradation under cyclic loads if an anchor was in lateral failure mode under static loads. Cyclic bearing capacities associated with the number of load cycles to failure of 1000 were about 75% and 80% of the static bearing capacity for vertical failure anchors and lateral failure anchors, respectively.  相似文献   

2.
Suction caissons are widely used to support offshore fixed platforms in coastal areas. The loadings transferred to suction caissons include the eccentric lateral force induced by waves and self weight of the platform structure. However, under this kind of combined loading conditions, the failure mechanism of caissons with shallow embedment depths is quite different from conventional deep foundations or onshore shallow footings. The behaviour of caissons subjected to combined loadings may be described with the "failure locus" in force resultant spaces. Here the failure loci of smooth caissons are studied by use of finite element approach, with the embedment ratio of caissons varying in the range of 0.25~1.0 and eccentricity ratio of horizontal loadings in 0~10. The platform settlement and tilt limits are involved into determination of failure loci, thus the platforms can avoid significant displacements for the combined loadings located inside the failure locus. Three families of loading paths are used to map out the locus. It is found that the shape of failure loci depends on 3 non-dimensional parameters, and the failure locus of a given caisson changes gradually from the elliptical curve to hooked curve with increasing shear strength of soil. The lateral capacity of short caissons may be enhanced by vertical forces, compared with the maximum lateral capacity of long caissons occurring at the vertical force being zero. The critical embedment ratios partitioning elliptical and hooked loci are proposed.  相似文献   

3.
This paper presents a three dimensional limit method based on the upper bound theory for the stability of suction bucket foundations of offshore platforms. The bucket embedded in soil is subjected to a lateral load applied above the mud line. In order to simulate the lateral load, a fictitious soil layer is assumed, having a thickness equals to the vertical distance from the load point to the surface of the foundation. The unit weight and shear strength of the fictitious soil are set to be zero. The soil–bucket failure mechanism is approximated by a series of prisms. The three dimensional limit method starts from establishing a compatible velocity field and obtains the factor of safety by the energy and work balance equation. Optimization is followed to approach the critical failure mechanism that offers the minimum factor of safety. Two different basal surfaces are incorporated, i.e. an arbitrarily defined failure surface and a partly elliptical failure surface. Results of centrifuge modeling of bucket foundations are used to verify the method. The arbitrary failure surface provides more reasonable prediction than the partly elliptical failure surface. Being a multi-variable dependent problem, further investigation is needed to search for the critical failure mechanism.  相似文献   

4.
A system reliability estimation method for spatial jacket platforms is developed in this paper,The jacket platform is modeled into three-dimensional assembly of spatial beam and plate elements in Fi-nite Element Method(FEM).The limit failure states correspond to collapse of a series of structural mem-bers which are identified by engineering design criteria.In this paper the following aspects are taken intoaccount:the punching shear and buckiing failures in member failure modes for the tubular joints and tubu-lar columns respectively;incremental loading approach for establishment of the safety margin equations ofsystem failure;the algorithm of enumerating significant failure modes for the structural systems and otherconcepts,such as the false failure mode and the virtual limit state.The final work is devoted to the reliabili-ty analysis for a practical jacket platform presently put into operation on the Bohai Sea.The computed re-sults shows that method suggested in this paper is feasible and effective for  相似文献   

5.
Polygonal fault systems (PFS) are widely developed along many continental margin basins and some interior cratonic and foreland basins. They are networks of small normal faults that are usually found in tiers which are crudely layer-bound successions consisting mainly of fine-grained sediments. Their origin has been widely debated with explanations ranging from dewatering of overpressured layers to gravitational loading under fixed lateral boundary conditions. Their distribution in fine-grained intervals suggests that their genesis is connected to their initial lithology. Recent experimental work suggests that diagenesis of clay-rich sediments can lead to shear failure under low confining stresses. This explanation accords well with all subsurface observations of PFS made to date, and seems the most likely mechanism to explain their genesis. This diagenetic mode of shear fracturing in fine-grained sediments could be much more prevalent than in polygonal fault systems alone, and this has significant implications for shale gas exploration, CO2 sequestration and exploration for methane hydrates.  相似文献   

6.
钢制悬链线式立管的触地段与海床会发生频繁的相互作用,对管道的安全性影响很大。首先探索干土环境下管土作用的机理有助于更好地理解真实海况下管道—湿土作用规律。试验测试是研究管土作用最可信最直接的手段。进行了垂向及侧向管土作用机理性试验,根据土体抗剪强度验证了试验中相互作用机理与管道尺寸的无关性。研究了不同运动速度对土体反力的影响,发现运动速度对垂向及侧向管土作用均存在一定的放大效应,而垂向低速工况下放大效应不明显;接着分别研究了垂向与侧向管土作用的规律,分析了土体反力变化的成因,最后针对管土垂向—侧向的耦合效应进行研究,发现不同的垂向深度会极大地影响侧向管土作用。为后续的管道—含水土体相互作用试验奠定基础,也可为陆上管土作用相关研究提供参考与建议。  相似文献   

7.
The impact buckling of a laminated composite bar is investigated in case of one of its endsmoving due to axial impact compression.The governing equations considering the first-order sheardeformation effect are derived by the Hamilton principle and solved by the finite difference method.Thecritical axial shortness is determined by the B-R cirterion.The given example is used to highlight the in-fluences of initial imperfection,impact velocity,stress wave and coupled stiffness.It is found that theunsymmetrically laminated bar has a quite different dynamic buckling behaviour from that of thesymmetrically laminated bar.  相似文献   

8.
Abstract

Experimental evidence suggests that sands containing non-plastic or low-plasticity fines may show either decreasing or increasing shear strength with increasing fines content in certain situations. Accordingly, the presence of low-plasticity fines can significantly affect the ultimate lateral soil resistance; thus low-plasticity fines can affect the lateral response of piles. In this study, a quantitative method is proposed for determining the effect of low-plasticity fines in sand on the lateral response of piles in sand by combining a strain wedge model and a unified critical state compatible (UCSC) framework. An equivalent granular state parameter is employed in the UCSC framework to define the soil state uniquely in the strain wedge. The proposed quantitative method is incorporated in a finite element program. A series of numerical analyses are performed on a laterally loaded pile embedded in various relative densities of the base (clean) sand, to which various quantities of low-plasticity fines are added. The effect of low-plasticity fines on the lateral response is investigated. Furthermore, the effect of the low-plasticity fines on the response of the strain wedge is discussed.  相似文献   

9.
象山港盐度分布和水体混合 Ⅱ.混合分析   总被引:5,自引:3,他引:2  
利用1981-1990年象山港的实测水文断面资料和盐度通量分析方法定量检验了各种动力因子对象山港水体混合的贡献,探讨了象山港水体混合的控制机理。象山港牛鼻水道至佛渡水道为平流和潮弥散混合区,水体纵向混合较好。象山港狭湾内段的潮混合强度较弱,垂向环流和潮振荡的垂向切变作用突出,水体纵向混合较狭湾外差。象山港湾外段为内段与田外的过渡区,各种混合因子的地位随季节和潮汛而变,水体混合状况介于狭湾内段和口外  相似文献   

10.
Abstract

The effect of microstructure on shear strength of saturated marine clays was investigated by conducting a series of consolidated-drained (CD), consolidated-undrained (CU) triaxial shear tests and mercury intrusion porosimetry (MIP) tests on undisturbed and reconstitute specimens. The valuable findings from the experimental study are follows: (1) The shear strength of undisturbed specimens is lower than that of corresponding reconstituted specimens due to larger void ratio at the same confining pressure. However, undisturbed specimens have higher strength than reconstituted specimens when their void ratios are the same. (2) The main reason for the lower shear strength of reconstituted specimens with the same void ratio as undisturbed specimens is that more volume of inter-aggregate pores exists in the reconstituted specimens according to the MIP test results. And the difference in shear strength between undisturbed and reconstituted specimens is mainly caused by the difference in soil fabric. (3) The shear test results dealt with a reference void ratio, as a fabric index, show that there is a unique linear relation between strength and void ratio at failure to the reference void ratio. Moreover, the linear relation is suitable for other marine clays from the literature. Therefore, the reference void ratio can be used as a soil fabric index to normalize the strength characteristics of marine soft clays.  相似文献   

11.
循环应力下饱和黏土剪切变形特性试验研究   总被引:3,自引:0,他引:3  
针对饱和重塑黏土,利用土工静力-动力液压三轴-扭转多功能剪切仪,在不固结不排水(UU)条件下进行了应力控制式循环扭剪和竖向-扭转耦合试验,通过对试验结果的对比分析探讨了初始预剪应力和应力反向对应力-应变关系特性的影响,并阐述了不同加荷模式下孔隙水压力发展特性。以此为基础,综合考虑剪切变形和正向偏差变形的共同效应,同时为了能够反映平均残余变形和循环变形的影响,建议了一个综合应变破坏标准的算式。进而通过利用试验数据与目前常用的应变标准比较,表明这种破坏标准具有普遍适用性和较好的稳定性,适用于判定各种应力条件下黏土试样破坏及其强度。  相似文献   

12.
An experimental program was carried out to study the shear behavior of the reinforced con-crete composite beam(RCCB)subjected to two-phase uniformly distributed load.A total of 12 reinforcedconcrete composite beams were tested:10 of them were the RCCB subjected to two-phase uniformly dis-tributed load,the other 2 were the comparative reinforced concrete beams cast at the same time as theRCCB subjected to one-phase uniformly distributed load.The interface of precast unit and recast concretewas natural and rough.The test range of the main composite factors:the ratio of precast section depth tocomposite section depth was from 0.35 to 0.65,the ratio of first-phase load moment to precast section ulti-mate bearing moment was from 0.25 to 0.65.Based on the test results,the stresses of the longitudinal rein-forcements and stirrups,the load-bearing properties of the interface,the crack state and the failure charac-teristics of the RCCB under uniformly distributed load are discussed.The effects of the stirrups,the  相似文献   

13.
王栋  金霞 《中国海洋工程》2006,20(4):665-672
1 .IntroductionSuctioncaissons have been widely usedfor offshore oil exploration duetothe advantages of econo-my and simple installation over traditional piles (Huanget al .,2003) .For tensionleg platforms andspar platforms in deep ocean,suction caissons …  相似文献   

14.
一种推导Timoshenko梁频率方程的新方法   总被引:1,自引:0,他引:1  
在Timoshenko梁横向弯曲自由振动方程的基础上,首次推导建立两端受弹性约束梁的频率方程,通过此方程,研究两端受弹性约束梁的性质,并通过简支梁模型,初步估计剪切变形与转动惯量对Timoshenko梁频率的影响,估算Timoshenko梁与Euler梁频率之间的关系,给出估算公式,并用数值算例进行验证,结果表明数值法解Timoshenko频率方程的可靠性.  相似文献   

15.
Semi-deep skirted foundations are now considered to be a viable foundation option for a variety of onshore and offshore applications. The capacity under combined vertical, horizontal, and moment loadings must be found to ensure their capability and stability. In this study, undrained bearing capacity subjected to vertical loading, as part of combined loading is determined through stress characteristics and finite element analyses. Circular skirted foundations with different soil strength and geometries considering embedment depth effects have been studied. Stress field, kinematic mechanism accompanying failure, and bearing capacity factors for various embedment ratios are investigated. Acquired vertical failure mechanism has demonstrated the transition from a general shear to a punch shear failure. Comparisons with different research works including conventional methods, upper and lower bound, finite element analyses, physical modeling, experimental, and centrifuge tests have indicated the underestimation of conventional approaches and accuracy of proposed methods in determining bearing capacity. Furthermore, differences between predicted bearing capacities and the results of this study increased with D/B ratio due to ignoring the significant role of skin friction in larger embedment circumference.  相似文献   

16.
The local surface deformation resulting from the oblique impact of a columnar water jet has been computed, using a three-dimensional large eddy simulation, as a model of the overturning jet of a breaking wave. The emergence of the secondary jet from the front face of the initial jet has been examined and the organisation of the vortices within the jet characterised. As the secondary jet emerges, the vorticity field becomes unstable under the action of the strong shear beneath the jet surface and pairs of longitudinal counter-rotating vortices stretched along the direction of the jet projection are formed. The presence of these longitudinal vortex pairs creates convergent surface flows, resulting in the formation of longitudinal scars on the rear face of the projecting jet. Following significant growth of the scars on both its upper and lower surfaces, the jet decouples into fingers. The lateral widths of the longitudinal vortices provide a minimum measure of the finger size. A horizontal Froude number Frh, representing a measure of strength of horizontal shear in a gravity-dominated impacting flow is defined, which characterises the organisation of the longitudinal vortices occurring in the shear flow, and the resultant formation of scars and fingers. For higher Frh, stronger longitudinal vortices and deeper scars are formed at longer lateral intervals, enhancing the fingering process during the splashing event. Fundamental features of material transport in the vicinity of the surface of jets (e.g. gas transfer across a sea surface) are related to the entrainment of surface fluid by the longitudinal vortices, and is thus also characterised by Frh.  相似文献   

17.
ABSTRACT

An investigation is made to present analytical solutions provided by a three-dimensional displacement approach for analysis of bucket foundations subjected to vertical and lateral loads in cohesive soils. The nonlinear vertical and lateral stiffness coefficients along the skirt of the bucket foundation in nonhomogeneous soil are presented using three-dimensional solutions for vertical and lateral loads and taking into account the dependence of stiffness coefficients on the shear strain. The vertical, lateral, and rocking stiffness coefficients on the base of the skirt of a bucket foundation are obtained from the solutions of hollow rigid cylindrical punch acting on the surface of a soil. The ultimate vertical stress of a soil under the base of a bucket foundation subjected to vertical and moment loads is presented analytically by considering only compression and ignoring tension on the base. The vertical and lateral yields along the skirt and the compression and shear failures on the base are taken into account in analysis of ultimate load capacities. Envelopes of the combined ultimate horizontal and moment load capacities of a bucket foundation in clay are shown. Relationships between ultimate lateral and moment load capacities and the embedment ratio (skirt length to diameter) are presented.  相似文献   

18.
Transfer of sediments downslope by mass movement processes can be divided into rapid and slow events. The rapid events occur over a few minutes or hours, and the slow events are more continuous and take a longer period of time. Seismic records of rapid mass movement deposits are characterized by a clearly defined continuous shear surface, the lateral limits of which are unconformable, with generally chaotic or transparent internal structures, and an erosional scar. The deposits of slow mass movements are recognized by lack of a clearly defined shear surface, conformity of the lateral limits of those implied shear surfaces, stratified internal structures, stretching of upper sedimentary layers, and lack of an erosional scar.  相似文献   

19.
周松望  王建华 《海洋工程》2014,32(1):106-111
在一个大型土池中进行了软土中组合四桶基础在竖向静荷载与水平循环荷载共同作用下的承载力模型试验,研究了竖向静荷载与水平循环荷载对组合桶形基础破坏形式与承载力的影响。试验结果表明,组合四桶基础的变形主要包括水平循环变形与竖向循环累积沉降。基础的破坏形式取决于水平循环荷载与竖向静荷载。若竖向静荷载较小,过大的水平循环位移将导致基础破坏;随竖向静荷载增加,竖向循环累积沉降将变为导致基础破坏的主要原因。试验结果还表明,在不同竖向静荷载与水平循环荷载共同作用下,基础的水平循环承载力大约为水平静承载力的70%左右。  相似文献   

20.
A postbuckling analysis is presented for a shear deformable anisotropic laminated cylindrical shell with stiffener of finite length subjected to axial compression. The material of each layer of the shell is assumed to be linearly elastic, anisotropic and fiber-reinforced. The governing equations are based on a higher order shear deformation shell theory with von Kármán-Donnell-type of kinematic nonlinearity and including the extension/twist, extension/flexural and flexural/twist couplings. The ‘smeared stiffener’ approach is adopted for the beam stiffeners. This arrangement allows the beam stiffeners to be assembled directly into the global stiffness matrix. The nonlinear prebuckling deformations and initial geometric imperfections of the shell are both taken into account. A singular perturbation technique is employed to determine the buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling response of perfect and imperfect, grid, axial, ring stiffened, and unstiffened shells. The results confirm that there exists a compressive stress along with an associate shear stress and twisting when the anisotropic shell is subjected to axial compression. The postbuckling equilibrium path is unstable for the moderately thick cylindrical shell under axial compression and the stiffened shell structure is imperfection-sensitive.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号