首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 453 毫秒
1.
The surface rainfall processes associated with the torrential rainfall event over Hubei,China,during July 2007 were investigated using a two-dimensional cloud-resolving model.The model integrated the large-scale vertical velocity and zonal wind data from National Centers for Environmental Prediction(NCEP)/Global Data Assimilation System(GDAS) for 5 days.The time and model domain mean surface rain rate was used to identify the onset,mature,and decay periods of rainfall.During the onset period,the descending motion data imposed in the lower troposphere led to a large contribution of stratiform rainfall to the model domain mean surface rainfall.The local atmospheric drying and transport of rain from convective regions mainly contributes to the stratiform rainfall.During the mature periods,the ascending motion data integrated into the model was so strong that water vapor convergence was the dominant process for both convective and stratiform rainfall.Both convective and stratiform rainfalls made important contributions to the model domain mean surface rainfall.During the decay period,descending motion data input into the model prevailed,making stratiform rainfall dominant.Stratiform rainfall was mainly caused by the water vapor convergence over raining stratiform regions.  相似文献   

2.
Differences in rainfall budgets between convective and stratiform regions of a torrential rainfall event were investigated using high-resolution simulation data produced by the Weather Research and Forecasting(WRF) model. The convective and stratiform regions were reasonably separated by the radar-based convective–stratiform partitioning method, and the threedimensional WRF-based precipitation equation combining water vapor and hydrometeor budgets was further used to analyze the rainfall budgets. The results showed that the magnitude of precipitation budget processes in the convective region was one order larger than that in the stratiform region. In convective/stratiform updraft regions, precipitation was mainly from the contribution of moisture-related processes, with a small negative contribution from cloud-related processes. In convective/stratiform downdraft regions, cloud-related processes played positive roles in precipitation, while moisture-related processes made a negative contribution. Moisture flux convergence played a dominant role in the moisture-related processes in convective or stratiform updraft regions, which was closely related to large-scale dynamics. Differences in cloud-related processes between convective and stratiform regions were more complex compared with those in moisture-related processes.Both liquid-and ice-phase microphysical processes were strong in convective/stratiform updraft regions, and ice-phase processes were dominant in convective/stratiform downdraft regions. There was strong net latent heating within almost the whole troposphere in updraft regions, especially in the convective updraft region, while the net latent heating(cooling) mainly existed above(below) the zero-layer in convective/stratiform downdraft regions.  相似文献   

3.
Surface rainfall and cloud budgets associated with three heavy rainfall events that occurred over eastern China during the mei-yu season in June 2011 were analyzed using 2D cumulus ensemble model simulation data.Model domain mean rainfall showed three peaks in response to three prescribed ascending motion maxima,primarily through the mean moisture convergence during the torrential rainfall period.Prescribed ascending motion throughout the troposphere produced strong convective rainfall during the first (9 June) and third (17-18 June) rainfall events,whereas strong prescribed ascending motion in the mid and upper troposphere and weak subsidence near the surface generated equally important stratiform and convective rainfall during the second rainfall event (14 June).The analysis of surface rainfall budgets reveals that convective rainfall was associated with atmospheric drying during the first event and moisture convergence during the third event.Both stratiform and convective rainfall responded primarily to moisture convergence during the second event.An analysis of grid data shows that the first and third mean rainfall maxima had smaller horizontal scales of the precipitation system than the second.  相似文献   

4.
Cloud radiative and microphysical effects on the relation between spatial mean rain rate, rain intensity and fractional rainfall coverage are investigated in this study by conducting and analyzing a series of two-dimensional cloud resolving model sensitivity experiments of pre-summer torrential rainfall in June 2008. The analysis of time-mean data shows that the exclusion of radiative effects of liquid clouds reduces domain mean rain rate by decreasing convective rain rate mainly through the reduced convective-rainfall area associated with the strengthened hydrometeor gain in the presence of radiative effects of ice clouds, whereas it increases domain mean rain rate by enhancing convective rain rate mainly via the intensified convective rain intensity associated with the enhanced net condensation in the absence of radiative effects of ice clouds. The removal of radiative effects of ice clouds decreases domain mean rain rate by reducing stratiform rain rate through the suppressed stratiform rain intensity related to the suppressed net condensation in the presence of radiative effects of liquid clouds, whereas it increases domain mean rain rate by strengthening convective rain rate mainly via the enhanced convective rain intensity in response to the enhanced net condensation in the absence of radiative effects of liquid clouds. The elimination of microphysical effects of ice clouds suppresses domain mean rain rate by reducing stratiform rain rate through the reduced stratiform-rainfall area associated with severely reduced hydrometeor loss.  相似文献   

5.
Both water vapor and heat processes play key roles in producing surface rainfall.While the water vapor effects of sea surface temperature and cloud radiative and microphysical processes on surface rainfall have been investigated in previous studies,the thermal effects on rainfall are analyzed in this study using a series of two-dimensional equilibrium cloud-resolving model experiments forced by zonally-uniform,constant,large-scale zonal wind and zero large-scale vertical velocity.The analysis of thermally-related surface rainfall budget reveals that the model domain mean surface rain rate is primarily associated with the mean infrared cooling rate.Convective rainfall and transport of hydrometeor concentration from convective regions to raining stratiform regions corresponds to the heat divergence over convective regions,whereas stratiform rainfall corresponds to the transport of hydrometeor concentration from convective regions and heat divergence over raining stratiform regions.The heat divergence over convective regions is mainly balanced by the heat convergence over rainfall-free regions,which is,in turn,offset by the radiative cooling over rainfall-free regions.The sensitivity experiments of rainfall to the effects of sea surface temperature and cloud radiative and microphysical processes show that the sea surface temperature and cloud processes affect convective rainfall through the changes in infrared cooling rate over rainfall-free regions and transport rate of heat from convective regions to rainfall-free regions.  相似文献   

6.
Using the numerical model of mixed convective-stratiform clouds(MCS)in the paper(Hong1997)and the averaged stratification of torrential rain processes,the evolution processes,interaction of the two kinds of clouds,structure and the precipitation features in the MCS toproduce heavy rain are simulated and studied,and the physical reasons of producing torrential rainare analysed.The results indicate that the stratiform cloud surrounding the convective cloudbecomes weakened and dissipates in the developing and enhancing of the convective cloud,and therainfall rate and water content in the stratiform cloud increase as the distance from the convectivecloud becomes larger.The numerical experiments find out that the stratiform cloud provides abenificial developing environment for the convective cloud,i.e.,the saturated environment and theconvergence field in the stratiform cloud help to lengthen the life cycle of the convective cloud,produce sustained rainfall with high intensity and intermittent precipitation with ultra-highintensity.These and the ice phase microphysical processes are the main factors for the torrentialrain formation and the MCS is a very effective precipitation system.  相似文献   

7.
A cloud-resolving model simulation of a mesoscale convective system (MCS) producing torrential rainfall is performed with the finest horizontal resolution of 444 m. It is shown that the model reproduces the observed MCS, including its rainfall distribution and amounts, as well as the timing and location of leading rainbands and trailing stratiform clouds. Results show that discrete convective hot towers, shown in Vis5D at a scale of 2-5 kin, are triggered by evaporatively driven cold outflows converging with the high-θe air ahead. Then, they move rearward, with respect to the leading rainbands, to form stratiform clouds. These convective towers generate vortical tubes of opposite signs, with more intense cyclonic vorticity occurring in the leading convergence zone. The results appear to have important implications for the improvement of summertime quantitative precipitation forecasts and the understanding of vortical hot towers, as well midlevel mesoscale convective vortices.  相似文献   

8.
Regional climate simulations in Asia from May 1997 to August 1998 were performed using the Seoul National University regional climate model (SNURCM) and Iowa State University regional climate model (ALT.MM5/LSM), which were developed by coupling the NCAR/Land Surface Model (LSM) and the Mesoscale Model (MM5). However, for physical processes of precipitation, the SNURCM used the Grell scheme for the convective parameterization scheme (CPS) and the simple ice scheme for the explicit moisture scheme (EMS), while the ALT.MM5/LSM used the Betts-Miller scheme for CPS and the mixed phase scheme for EMS.
The simulated precipitation patterns and amounts over East Asia for the extreme climatic summer in 1997 (relative drought conditions) and 1998 (relative flood conditions) were especially focused upon. The ALT.MM5/LSM simulated more precipitation than was observed in 1997 due to more moisture and cloud water in the lower levels, despite weak upward motion. In the SNURCM, strong upward motion resulted in more precipitation than that was observed in 1998, with more moisture and cloud water in the middle levels. In the ALT.MM5/LSM, weak upward motion, unchanged moisture in the lower troposphere, and the decrease in latent heat flux at the surface increased convective precipitation only by 3% for the 1998 summer event. In the SNURCM, strong upward motion, the increase in moisture in the lower troposphere, and the increase in latent heat flux at the surface increased convective precipitation by 48% for the summer of 1998. The main differences between both simulations were moisture availability and horizontal momentum transport in the lower troposphere, which were also strongly influenced by large-scale forcing.  相似文献   

9.
A NUMERICAL MODEL OF MIXED CONVECTIVESTRATIFORM CLOUD   总被引:1,自引:0,他引:1  
A 2-D slab-symmetric model of mixed convective-stratiform cloud is developed bysuperimposing convective cloud-size field on the convergence field,in order to simulate and studythe mixed clouds consisting of stratiform cloud and convective cloud.A deep convective,anelasticand conservative system of equations with basic variables(V,θ,π')is solved by a new method tocalculate dynamic field.The water substance in the cloud is divided into 6 categories and themicrophysical processes are described in spectrum with two variable parameters and morereasonable particle number/size distributions.To compare with measured radar echo intensity andstructure,the model may calculate echo intensity of the model cloud observed by radar.  相似文献   

10.
In this study,two convective-stratiform rainfall partitioning schemes are evaluated using precipitation and cloud statistics for different rainfall types categorized by applying surface rainfall equation on grid-scale data from a two-dimensional cloud-resolving model simulation.One scheme is based on surface rainfall intensity whereas the other is based on cloud content information.The model is largely forced by the large-scale vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment(TOGA COARE).The results reveal that over 40% of convective rainfall is associated with water vapor divergence,which primarily comes from the rainfall type with local atmospheric drying and water hydrometeor loss/convergence,caused by precipitation and evaporation of rain.More than 40% of stratiform rainfall is related to water vapor convergence,which largely comes from the rainfall type with local atmospheric moistening and hydrometeor loss/convergence attributable to water clouds through precipitation and the evaporation of rain and ice clouds through the conversion from ice hydrometeor to water hydrometeor.This implies that the separation methods based on surface rainfall and cloud content may not clearly separate convective and stratiform rainfall.  相似文献   

11.
Effects of vertical wind shear on convective development during the landfall of tropical storm Bilis (2006) are investigated with a pair of sensitivity experiments using a two-dimensional cloud-resolving model. The validated simulation data from Wang et al. [Wang, D., Li, X., Tao, W.-K., Liu, Y., Zhou, H., 2009: Torrential rainfall processes associated with a landfall of severe tropical storm Bilis (2006): A two-dimensional cloud-resolving modeling study. Atmos. Res., 91, 94–104.] are used as the control experiment. The difference between the control and sensitivity experiments is that vertically varying zonal winds in the control experiment are replaced by their mass-weighted means in the sensitivity experiment. The imposed vertical velocity with ascending motion in the upper troposphere and descending motion in the lower troposphere is responsible for dominant stratiform rainfall on 15 July. The vertical wind shear does not have important impacts on development of stratiform rainfall. One day later, imposed upward motion extends to the lower troposphere. The inclusion of negative vertical wind shear produces well-organized convection and strong convective rainfall because it causes kinetic energy transfer from large-scale forcing to perturbation circulations.  相似文献   

12.
Effects of vertical wind shear, radiation, and ice clouds on cloud microphysical budget associated with torrential rainfall during landfall of severe tropical storm Bilis (2006) are investigated by using a series of analysis of two-day grid-scale sensitivity experiment data. When upper-tropospheric upward motions and lower-tropospheric downward motions occur on 15 July 2006, the removal of vertical wind shear and ice clouds increases rainfall contributions from the rainfall type (CM) associated with positive net condensation and hydrometeor loss/convergence, whereas the exclusion of cloud radiative effects and cloud-radiation interaction reduces rainfall contribution from CM. The elimination of vertical wind shear and cloud-radiation interaction increases rainfall contribution from the rainfall type (Cm) associated with positive net condensation and hydrometeor gain/divergence, but the removal of cloud radiative effects and ice clouds decreases rainfall contribution from Cm. The enhancements in rainfall contribution from the rainfall type (cM) associated with negative net condensation and hydrometeor loss/convergence are caused by the exclusion of cloud radiative effects, cloud-radiation interaction and ice clouds, whereas the reduction in rainfall contribution from cM results from the removal of vertical wind shear. When upward motions appear throughout the troposphere on 16 July, the exclusion of all these effects increases rainfall contribution from CM, but generally decreases rainfall contributions from Cm and cM.  相似文献   

13.
This study examines the time–height variation and structure of a tropical mesoscale convective system (TMCS). Convection experiments using VHF (53 MHz) radar aimed at improving the understanding of the vertical structure of TMCS occurred over Gadanki (13.5°N, 79.2°E), India during 21–22 June 2000 has been selected for the study. The time–height variations of reflectivity and vertical velocity exhibits four distinct patterns and have been used to classify four subjectively identified types of echoes; viz., formative, mature, transition zone and stratiform regions associated with TMCS. Average vertical velocity profiles were distinctive for each region. The mean vertical motion is upward at all levels in the troposphere during the formative phase. The vertical motion in the mature region is downward in the lower troposphere and upward in the middle and upper troposphere. The maximum upward motion is found in the middle troposphere and secondary maxima near the tropopause level. The transition zone is characterized by strong downdraft in the lower troposphere with local pockets of updrafts in the middle and upper troposphere. The magnitude of the mean vertical motion is considerably reduced in the stratiform region and is downward in the lower troposphere and upward in the upper troposphere. Time–height variation of reflectivity has been analyzed separately for each region. The observed diminished echo zone and tropopause break/weakening during the mature phase and two enhanced reflectivity zone in the stratiform region is also observed. A Cloud System Resolving Model (CSRM) simulation of the same event has been carried out. The CSRM simulations were able to capture the structure of the storm and are consistent with the observations. The model output in conjunction with observations has been used to validate the hypothesis.  相似文献   

14.
Summary Cloud microphysical properties in tropical convective and stratiform regions are examined based on hourly zonal-mean data from a two-dimensional cloud-resolving simulation. The model is integrated for 21 days with the imposed large-scale vertical velocity, zonal wind and horizontal advections obtained from Tropical Ocean Global Atmosphere Coupled Ocean-atmosphere Response Experiment (TOGA COARE). Time-mean cloud microphysical budgets are analyzed in raining stratiform regions, convective regions, and non-raining stratiform regions, respectively. In raining stratiform regions, ice water path (IWP) and liquid water path (LWP) have similar magnitudes. The collection process contributes slightly more to the growth of raindrops than the melting processes do, and surface rain rate is higher than the raindrop-related microphysical rate, indicating that the hydrometeor convergence from the convective regions plays a role in surface rainfall processes. In convective regions, IWP is much smaller than LWP, the collection process is dominant in producing raindrops, and surface rain rate is lower than the raindrop-related microphysical rate. In non-raining stratiform regions, IWP is much larger than LWP, and the melting processes are important in maintaining the raindrop budget. The statistical analysis of hourly data suggests that the slopes of linear regression equations between IWP and LWP in three regions are different. Rain producing processes in convective regions are associated with the water cloud processes regardless of convection intensity.  相似文献   

15.
A lag correlation analysis is conducted with a 21-day TOGA COARE cloud-resolving model simulation data to identify the phase relation between surface rainfall and convective available potential energy (CAPE) and associated physical processes. The analysis shows that the maximum negative lag correlations between the model domain mean CAPE and rainfall occurs around lag hour 6. The minimum mean CAPE lags mean and convective rainfall through the vapor condensation and depositions, water vapor convergence, and heat divergence whereas it lags stratiform rainfall via the transport of hydrometeor concentration from convective regions to raining stratiform regions, vapor condensation and depositions, water vapor storage, and heat divergence over raining stratiform regions.  相似文献   

16.
The short-term tropical surface rainfall processes in rainfall regions (raining stratiform and convective regions) and rainfall-free regions (non-raining stratiform and clear-sky regions) are investigated based on the hourly data from a two-dimensional cloud-resolving model simulation. The model is integrated over a 21-day period with imposed zonally uniform vertical velocity, zonal wind, horizontal temperature and vapor advection, and sea surface temperature from the Tropical Ocean Global Atmosphere Coupled Ocean Atmosphere Response Experiment (TOGA COARE). The analysis of the model domain-mean surface rainfall budget reveals that surface rainfall is mainly associated with water vapor convergence and local atmospheric drying. The mean surface rainfall lags the mean water vapor convergence by 3?h. The convective?Cstratiform rainfall separation analysis shows that convective rainfall is associated with water vapor convergence, whereas stratiform rainfall is related to the local atmospheric drying and hydrometeor loss/convergence. The transport of water vapor from rainfall-free regions to rainfall regions creates the main water vapor source for rainfall while it balances local atmospheric drying in rainfall-free regions. Surface evaporation plays a minor role in short-term surface rainfall processes.  相似文献   

17.
Regional dependence of microphysical and radiative effects of ice clouds on vertical structure of tropical tropospheric temperature is examined by analyzing thermodynamic budgets over clear sky, raining stratiform, convective, and non-raining stratiform regions with three two-dimensional sensitivity equilibrium cloud-resolving model simulation data. The decrease in the mean tropospheric cooling caused by radiative effects of ice clouds results from the decreases in local atmospheric cooling over clear sky regions around 12?C16?km through the decrease in heat divergence and below 7.5?km through the decrease in radiative cooling and over non-raining stratiform regions around 6?C13?km through the increase in latent heat. The increase in the mean tropospheric cooling caused by microphysical effects of ice clouds results from the increases in local atmospheric cooling over clear sky regions through the decrease in heat convergence below 4?km the increase in radiative cooling around 4?C8?km and over non-raining stratiform regions through the increase in radiative cooling around 7?C10?km. The raining regions do not show any significant thermal changes due to the cancellation between heat convergence and latent heat.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号