首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Intercomparison of precipitation simulated by regional climate models over East Asia in 1997 and 1998
Authors:Dong-Kyou Lee  Jr" target="_blank">William J GutowskiJr  Hyun-Suk Kang  Chun-Ji Kim
Institution:School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea,Department of Geological and Atmospheric Sciences, Iowa State University, Ames, USA,School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea,School of Earth and Environmental Sciences, Seoul National University, Seoul, Korea
Abstract:Regional climate simulations in Asia from May 1997 to August 1998 were performed using the Seoul National University regional climate model (SNURCM) and Iowa State University regional climate model (ALT.MM5/LSM), which were developed by coupling the NCAR/Land Surface Model (LSM) and the Mesoscale Model (MM5). However, for physical processes of precipitation, the SNURCM used the Grell scheme for the convective parameterization scheme (CPS) and the simple ice scheme for the explicit moisture scheme (EMS), while the ALT.MM5/LSM used the Betts-Miller scheme for CPS and the mixed phase scheme for EMS.The simulated precipitation patterns and amounts over East Asia for the extreme climatic summer in 1997 (relative drought conditions) and 1998 (relative flood conditions) were especially focused upon. The ALT.MM5/LSM simulated more precipitation than was observed in 1997 due to more moisture and cloud water in the lower levels, despite weak upward motion. In the SNURCM, strong upward motion resulted in more precipitation than that was observed in 1998, with more moisture and cloud water in the middle levels. In the ALT.MM5/LSM, weak upward motion, unchanged moisture in the lower troposphere, and the decrease in latent heat flux at the surface increased convective precipitation only by 3% for the 1998 summer event. In the SNURCM, strong upward motion, the increase in moisture in the lower troposphere, and the increase in latent heat flux at the surface increased convective precipitation by 48% for the summer of 1998. The main differences between both simulations were moisture availability and horizontal momentum transport in the lower troposphere, which were also strongly influenced by large-scale forcing.
Keywords:regional climate simulation  summer precipitation variability  extreme climatic event  physical process
本文献已被 CNKI 维普 万方数据 SpringerLink 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号