首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Latnjavagge, a 9-km2 drainage basin with homogeneous lithology in periglacial northern Swedish Lapland, water balance, water chemistry and radio magnetotelluric geophysical investigations along selected profiles were integrated with assessment of regolith thickness as well as of ground frost conditions within the basin. In combination with direct field observations, the geophysical profiles demonstrated presence of relatively thin regolith in most of the investigated area, yet in some parts, the bedrock was located deeper and locally was not detected at 40-m depth. TDS values of the water were generally very low. The areas that contributed with the lowest ion concentrations were cold and had a thin regolith, whereas there were higher concentrations in water that drained radiation exposed slopes with earlier thaw and thicker regolith. The low resistivities found along the profiles in the geophysical investigations in combination with the relatively higher TDS values found in related runoff and subsurface water samples showed that larger volumes of ice-rich frozen ground were not found along the investigated profiles in late August.  相似文献   

2.
Abstract In the Latnjavagge drainage basin (68°21′N, 18°29′E), an arctic‐oceanic periglacial environment in northernmost Swedish Lapland, the fluvial sediment transport and the characteristics and importance of high‐magnitude/low‐frequency fluvial events generated by intense snowmelt or heavy rainfall have been investigated and compared with snowmelt‐ and rainfall‐induced discharge peaks in the Levinson‐Lessing Lake basin (Krasnaya river system) on the Taimyr Peninsula, an arctic periglacial environment in northern Siberia (74°32′N, 98°35′E). In Latnjavagge (9 km2) the intensity of fluvial sediment transport is very low. Most of the total annual sediment load is transported in a few days during snowmelt generated runoff peaks. Due to the continuous and very stable vegetation covering most areas below 1300 m a.s.l. in the Latnjavagge catchment, larger rainfall events are of limited importance for sediment transport in this environment. Compared to that, in the c. 40 times larger Krasnaya riversystem rainfall‐generated runoff peaks cause significant sediment transport. The main sediment sources in the Latnjavagge drainage basin are permanent ice patches, channel debris pavements mobilized during peak discharges and exposing fines, and material mobilized by slush‐flows. In the Krasnaya river system river bank erosion is the main sediment source. In both periglacial environments more than 90% of the annual sediment yield is transported during runoff peaks. The results from both arctic periglacial environments underline the high importance of high‐magnitude/low‐frequency fluvial events for the total fluvial sediment budgets of periglacial fluvial systems. Restricted sediment availability is in both arctic environments the major controlling factor for this behaviour.  相似文献   

3.
Monthly samples of riverine water were collected and analyzed for the concentrations of major ions (Ca2+, Mg2+, K+, Na+, HCO3, SO42−, Cl, NO3), dissolved silicon, and total dissolved solids (TDS) at Wuzhou hydrological station located between the middle and lower reaches of the Xijiang River (XJR) from March 2005 to April 2006. More frequent sampling and analysis were carried out during the catastrophic flooding in June 2005. Stoichiometric analysis was applied for tracing sources of major ions and estimating CO2 consumption from the chemical weathering of rocks. The results demonstrate that the chemical weathering of carbonate and silicate rocks within the drainage basin is the main source of the dissolved chemical substances in the XJR. Some 81.20% of the riverine cations originated from the chemical weathering processes induced by carbonic acid, 11.32% by sulfuric acid, and the other 7.48% from the dissolution of gypsum and precipitates of sea salts within the drainage basin. The CO2 flux consumed by the rock chemical weathering within the XJR basin is 2.37 × 1011 mol y− 1, of which 0.64 × 1011 mol y− 1 results from silicate rock chemical weathering, and 1.73 × 1011 mol y− 1 results from carbonate rock chemical weathering. The CO2 consumption comprises 0.38 × 1011 mol during the 9-d catastrophic flooding. The CO2 consumption from rock chemical weathering in humid subtropical zones regulates atmospheric CO2 level and constitutes a significant part of the global carbon budget. The carbon sink potential of rock chemical weathering processes in the humid subtropical zones deserves extra attention.  相似文献   

4.
Granitic regolith, developed in the Boulder Creek catchment and adjacent areas, records a history of deep weathering, some of which may predate Quaternary time. Field and well-log measurements of weathering, chemical denudation and rates of erosion derived from 10Be cosmogenic radionuclide (CRN) data help to quantify rates of landscape change in the post-orogenic Rocky Mountains. The density of oxidized, fractured bedrock ranges from 2.7 to about 2.2 g cm− 3, saprolite and grus have densities between 2.0 and 1.8 g cm− 3, and 30 soil samples averaged 1.6 ± 0.2 g cm− 3. Highly weathered regolith in 540 wells averages 3.3 m thick, mean depth to bedrock in 1661 wells is 7 m, and the weathered thickness exceeds 10 m in relatively large local areas east of the late Pleistocene glacial limit. Thickness of regolith shows no simple relationship to rock type or structure, local slope, or distance from channels. Catchments in the vicinity of the Boulder Creek have an average CRN erosion rate of 2.2 ± 0.7 cm kyr− 1 for the past 10,000 to 40,000 yr. Annual losses of cations and SiO2 vary from about 2 to 5 g m− 2 over a runoff range of 10 to nearly 160 cm.Using measured rates in simple box models shows that if a substantial fraction of void space is created by volume expansion in the weathering rock materials, 7 m of weathered rock materials could form in as little as 230 kyr. If density loss results mainly from chemical denudation and some volume expansion, however, the same weathering profile would take > 1340 kyr to form. Rates of erosion measured by CRN could be balanced by the rate of soil formation from saprolite if the annual solute loss from soil is 2.0 g m− 2 and 70% of the density decrease from saprolite to grus and soil results from strain. Saprolite, however, forms from oxidized bedrock at a far slower rate and rates of saprolite formation cannot balance soil and grus losses to erosion. The zone of thick weathered regolith is likely an eroding relict landscape. The undulating surface marked by relatively low relief and tors is not literally a topographic surface of Eocene, Oligocene or Miocene age unless it was covered with deposits that were removed in Pliocene or Quaternary time.  相似文献   

5.
Coupled hydrological and atmospheric modeling is an efficient method for snowmelt runoff forecast in large basins. We use short-range precipitation forecasts of mesoscale atmospheric Weather Research and Forecasting (WRF) model combining them with ground-based and satellite observations for modeling snow accumulation and snowmelt processes in the Votkinsk reservoir basin (184,319 km2). The method is tested during three winter seasons (2012–2015). The MODIS-based vegetation map and leaf area index data are used to calculate the snowmelt intensity and snow evaporation in the studied basin. The GIS-based snow accumulation and snowmelt modeling provides a reliable and highly detailed spatial distribution for snow water equivalent (SWE) and snow-covered areas (SCA). The modelling results are validated by comparing actual and estimated SWE and SCA data. The actual SCA results are derived from MODIS satellite data. The algorithm for assessing the SCA by MODIS data (ATBD-MOD 10) has been adapted to a forest zone. In general, the proposed method provides satisfactory results for maximum SWE calculations. The calculation accuracy is slightly degraded during snowmelt periods. The SCA data is simulated with a higher reliability than the SWE data. The differences between the simulated and actual SWE may be explained by the overestimation of the WRF-simulated total precipitation and the unrepresentativeness of the SWE measurements (snow survey).  相似文献   

6.
Transient landscape disequilibrium is a common response to climatic fluctuations between glacial and interglacial conditions. Such landscapes are best suited to the investigation of catchment-wide response to changes in incision. The geomorphology of the Trub and Grosse Fontanne, adjacent stream systems in the Napf region of the Swiss Molasse, was analyzed using a 2-m LIDAR DEM. The two catchments were impacted by the Last Glacial Maximum, LGM, even though the glaciers never overrode this region. They did, however, cause base levels to drop by as much as 80 m. Despite their similar tectonic, lithologic and climatic settings, these two basins show very different responses to the changing boundary conditions. Stream profiles in the Trub tend to be smooth, while in the Fontanne, numerous knickzones are visible. Similarly, cut-and-fill terraces are abundant in the Trub watershed, but absent in the Fontanne, where deep valleys have been incised. The Trub appears to be a coupled hillslope–channel system because the morphometrics throughout the basin are uniform. The morphology of hillslopes upstream of the knickzones in the Fontanne is identical to that of the Trub basin, but different downstream of the knickzones, suggesting that the lower reaches of the Fontanne have been decoupled from the hillslopes. However, the rapid incision of the Fontanne is having little effect on the adjacent upper hillslopes.We tested this interpretation using cosmogenic 10Be-derived basin-averaged denudation rates and terrace dating. The coupled nature of the Trub basin is supported by the similarity of denudation rates, 350 ± 50 mm ky− 1, at a variety of spatial scales. Upstream of the knickzones, rates in the Fontanne, 380 ± 50 mm ky− 1, match those of the Trub. Downstream of the knickzones, denudation rates increase to 540 ± 100 mm ky− 1. The elevated rates in the downstream areas of the Fontanne are due to rapid incision causing a decoupling of the hillslope from the channel. Basin response time and the magnitude of base level drop exert the principal control over the difference in geomorphic response between the two basins. The timing of the filling of the Trub valley, 17 ± 2 ka, and the initial incision of the Fontanne, 16 ± 3 ka, were calculated, verifying that these are responses to late glacial perturbations. Unique lithologic controls allow for one of the fastest regolith production rates yet to be reported,  380 mm ky− 1.  相似文献   

7.
The Nanga Parbat Himalaya presents some of the greatest relief on Earth, yet sediment production and denudation rates have only been sporadically addressed. We utilized field measurements and computer models to estimate bank full discharge, sediment transport, and denudation rates for the Raikot and Buldar drainage basins (north slope of Nanga Parbat) and the upper reach of the Rupal drainage basin (south slope).The overall tasks of determining stream flow conditions in such a dynamic geomorphic setting is challenging. No gage data exist for these drainage basins, and the overall character of the drainage basins (high relief, steep flow gradients, and turbulent flow conditions) does not lend itself to either ready access or complete profiling.Cross-sectional profiles were surveyed through selected reaches of these drainage basins. These data were then incorporated into software (WinXSPRO) that aids in the characterization (stage, discharge, velocity, and shear stress) of high altitude, steep mountain stream conditions.Complete field measurements of channel depths were rarely possible (except at several bridges where the middle of the channel could actually be straddled and probed) and, when coupled with velocity measurements, provided discrete points of field-measured discharge calculations. These points were then used to calibrate WinXSPRO results for the same reach and provided a confidence level for computer-generated results.Flow calculations suggest that under near bank full conditions, the upper Raikot drainage basin produces discharges of 61 cm and moves about 11,000 tons day−1 (9980 tons day−1) of sediment through its channel. Bank full conditions on the upper portion of the Rupal drainage basin generate discharges of 84 cm and moves only about 3800 tons day−1 (3450 tons day−1) of sediment. Although the upper Rupal drainage basin moves more water, the lower slope of the drainage basin (0.03) generates a much smaller shear stress (461 Pa) than does the higher slope (0.12) of the upper Raikot drainage basin (1925 Pa).Dissolved and suspended sediment loads were measured from water/sediment samples collected throughout the day and night over a period of 10 days at the height of the summer melt season but proved to be a minor variable in transport flux. Channel bed loads were measured using a pebble count method of bank material and then used to generate ratings curves of bed loads relative to discharge volumes. When coupled with discharge data and basin area, mean annual sediment yield and denudation rates for Nanga Parbat are produced. Denudation rates calculated in this fashion range from 0.2 mm year−1 in the slower, more sluggish Rupal drainage basin to almost 6 mm year−1 in the steeper, faster flowing Raikot and Buldar drainage basins.  相似文献   

8.
Soils of different vegetation types of the Saudi Arabian Gulf coast, dominated by mangrove, salt marsh and desert plant communities have been analysed for their soil profiles, texture, salinity, pH, water content and ionic concentration (Ca2+, Cl, K+, Na+, SO42−). The results show some important relationships between soils and plants. Special emphasis was given to the dominant intertidal plantsAvicennia marina, Arthrocnemum macrostachyum, Salicornia europaea, Halocnemum strobilaceum, Halopeplis perfoliata, Limonium axillare, the terrestrialZygophyllum qatarense, and non-vegetated sabkhas.  相似文献   

9.
Jose Luis Antinao  John Gosse   《Geomorphology》2009,104(3-4):117-133
The distribution and age of large (> 0.1 km2) Pliocene to recent rockslides in the Chilean Cordillera Principal (32–34.5 S), the Southern Central Andes, has been analyzed to determine the rockslide triggering mechanisms and impact on regional landscape evolution. Most of the rockslides appear in the western Cordillera Principal and cluster along major geological structures. Variographic analyses show spatial correlation between rockslides, geological structures and shallow seismicity. A relative chronosequence was calibrated with existing 14C and 40Ar/39Ar dates and new cosmogenic nuclide exposure ages for selected rockslides. Rockslide-induced sediment yield was estimated with empirical relations for rockslide area distributions. Throughout the Quaternary, rockslides have delivered sediment to streams at rates equivalent to denudation rates of 0.10 ±0.06 mm a− 1, while estimates using short term (20 a) seismicity records are 0.3− 0.2+ 0.6 mm a− 1. The estimates of sediment transfer and the spatial distribution of rockslides reflect a landscape in which tectonic and geological controls on denudation are more significant than climate.  相似文献   

10.
Stable hydrogen and oxygen isotope has important implication on water and moisture transportation tracing research. Based on stable hydrogen (δD) and oxygen (δ18O) isotope using a Picarro L1102-i and water chemistry (e.g. major ions, pH, EC and TDS) measurement, this study discussed the temporal variation and characteristics of stable hydrogen and oxygen isotope, chemistry (e.g. TDS, pH, EC, Ca2+, Mg2+, Na+ and Cl-) in various water bodies including glacier meltwater runoff, ice and snow, and precipitation at the Laohugou glacier basin during June 2012 to September 2013. Results showed that δD and δ18O in the meltwater runoff varied obviously with the temporal change from June to September, showing firstly increasing trend and then decreasing trend, with the highest values in July with high air temperature and strong glacier melting, which could indicate the temporal change of glacier melting process and extent. Variations of δD and δ18O in the runoff were similar with that of snow and ice on the glacier, and the values were also above the GMWL, which probably implied that the glacier runoff was mainly originated from glacier melting and precipitation supply. The glacier meltwater chemical type at the Laohugou glacier basin were mainly composed by Ca-Na-HCO3-SO4 and Ca-Mg-HCO3-SO4, which also varied evidently with the glacier melting process in summer. By analyzing the temporal change of stable hydrogen and oxygen isotope and chemistry in the melting period, we find it is easy to separate the components of the snow and ice, atmospheric precipitation and melt-runoff in the river, which could reflect the change process of glacier melting during the melting period, and thus this work can contribute to the glacier runoff change study of large-scale region by stable isotope and geochemical method in future.  相似文献   

11.
Mass transfers triggered by a rare rainfall event on 20–21 July, 2004, with 58.4 mm of rain within 24 h and 71.7 mm of rain within 48 h in the Latnjavagge catchment (9 km2 , 950–1440 m a.s.l.; 68°20'N, 18°30'E) in the higher Abisko mountain region (Swedish Lapland), are quantified and analysed in direct comparison with mean annual mass transfers in this drainage basin. In years without rare rainfall events the Latnjavagge catchment is characterized by restricted sediment availability resulting in low mechanical denudation and mass transfers. During the rare rainfall event of 20–21 July, 2004, major stability thresholds on the slope systems (triggering debris flows and slides) and in the channel systems (break‐up of channel debris pavements and step–pool systems) in the Latnjavagge catchment were passed and mass transfers by debris flows, slides and fluvial debris transport in creeks and channels were several times higher than the mean annual mass transfers in Latnjavagge. In the calculation of longer‐term mass transfers and sediment budgets, rare events like the 20–21 July, 2004 rainfall event have to be considered as essential components. A reliable estimation of the recurrence intervals of such rare events is especially problematic. The general problem of defining an adequate length of process monitoring programmes is pointed out.  相似文献   

12.
The objective of this research was to study the relationships between environmental factors and vegetation in order to find the most effective factors in the separation of the vegetation types in Poshtkou rangelands of Yazd province. Sampling of soil and vegetation were performed with randomized-systematic method. Vegetation data including density and cover percentage were estimated quantitatively within each quadrat, and using the two-way indicator species analysis (TWINSPAN), and vegetation was classified into different groups. The topographic conditions were recorded in quadrat locations. Soil samples were taken in 0–30 and 30–60 cm depths in each quadrat. The measured soil variables included texture, lime, saturation moisture, gypsum, acidity (pH), electrical conductivity, sodium absorption ratio, and soluble ions (Na+, K+, Mg2+, Cl, CO32−, HCO3 and SO42−). Multivariate techniques including principal component analysis (PCA) and canonical correspondence analysis (CCA) were used to analyse the collected data. The results showed that the vegetation distribution pattern was mainly related to soil characteristics such as salinity, texture, soluble potassium, gypsum, and lime. Totally, considering the habitat conditions, ecological needs and tolerance range each plant species has a significant relation with soil properties.  相似文献   

13.
We designed, constructed, calibrated and field-tested a lightweight (30 kg), 4.2 m diameter, 16.4 m3 polyethylene-covered dome static chamber ecosystem gas exchange cuvette that can quantify ecosystem CO2 and water vapour fluxes as low as 0.1 μmol CO2 m−2 s−1 and 0.1 mmol H2O m−2 s−1 with little impact on environmental conditions. Fluxes measured in May 2001 in an intact Great Basin sagebrush ecosystem at midday were significantly higher than in an adjacent post-wildfire successional ecosystem, with observed ranges from –0.71 to 1.49 μmol CO2 m−2 s−1 for CO2 and from –0.09 to 0.53 mmol H2O m−2 s−1 for water vapour.  相似文献   

14.
The arctic islands of the Lofoten-Vesterålen archipelago in northern Norway have a wide distribution of weathered land surfaces commonly located above 250 m with several apparent similarities. In order to investigate the characteristics of (deep) weathering in this region, northern Langøya and Hadseløya were chosen for in-depth analyses. Eight weathering profiles were excavated from various surfaces, and the stratigraphies were logged in detail. Material was collected throughout the weathering horizons, and all samples were subsequently analysed for clay mineralogy (< 63 μm fraction) and grain size distribution. The sampling strategy was complemented by samples from additional saprolites and other landforms such as moraines and rock glaciers. The XRD results indicate that the presence of secondary minerals, such as gibbsite (Al(OH)3) and kaolinite (Al2Si2O5(OH)4), are very common throughout the profiles. Gibbsite is an extreme end product of silicate weathering and usually associated with a warmer and more humid climate, as found in Scandinavia during the Tertiary. The grain size analyses (< 63 μm) show that the finer silt fractions (< 8 μm) tend to be high in the profiles (20–40%), with significant amounts of clay (5–15%) demonstrating that the regolith itself is susceptible to frost sorting mechanisms.10Be exposure dates from in situ quartz knobs on tors and boulders of local origin suggest > 40,000 years of subaerial conditions. Considering the steady surface erosion, this figure should be viewed as an absolute minimum age estimate. Mapping of the superficial sediments and geomorphological features of the study areas has revealed several common morphological features, which indicate dominance of glacial and periglacial processes in the areas lying below the lower boundary of blockfields (c. 250 m). The weathering mantles are not a periglacial end product, but rather a relict tertiary landform that were modulated by permafrost processes as well as biological processes at later stages. The regolith cover constrain the vertical extension of warm-based Quaternary ice sheets challenging the notion of a parabolic ice mass consuming every mountain top of Lofoten and Vesterålen.  相似文献   

15.
Sedimentary impacts from landslides in the Tachia River Basin, Taiwan   总被引:1,自引:0,他引:1  
Chien-Yuan Chen   《Geomorphology》2009,105(3-4):355-365
A case study of coseismic landslides and post-seismic sedimentary impacts of landslides due to rainfall events was conducted in the Tachia River basin, Taichung County, central Taiwan. About 3000 coseismic landslides occurred in the basin during the ML 7.3 Chi-Chi earthquake in 1999. The deposits from these landslides provided material for numerous debris flows induced by subsequent rainfall events. The estimated 4.1 × 107 m3 of landslide debris produced in the upland area caused sediment deposition in riverbeds, and flash floods inundated downstream areas with sediment during torrential rains. The landslide frequency-size distributions for the coseismic landslides and the subsequent rainfall-induced landslides were analyzed to determine the sediment budgets of the post-seismic geomorphic response in the landslide-dominated basin. Both the coseismic and the rainfall-induced landslides show a power–law frequency-size distribution with a rollover. It was found that the rainfall-induced landslide magnitude was smaller than the coseismic one, and that both have comparable negative scaling exponents in cumulative form, of about − 2.0 for larger landslides (> 10− 2 km2). This may be attributed to ongoing movement or reactivation of old landslides, and a natural stabilisation of small landslides between 10− 4 and 10− 2 km2. It is proposed that the characteristics of geological formations and rainfall as well as changes in landslide area are reflected in the power–law distribution.  相似文献   

16.
Previous studies of chemical weathering rates for soil developed on glacial moraines generally assumed little or no physical erosion of the soil surface. In this study, we investigate the influence of physical erosion on soil profile weathering rate calculations. The calculation of chemical weathering rates is based on the assumption that soil profiles represent the integrated amount of weathering since the time of moraine deposition. The weathering rate of a surface subjected to denudation is the sum of the weathering loss from the existing soil profile added to the weathering loss in the material removed by denudation, divided by the deposition age. In this study, the amount of weathered material removed since moraine deposition is calculated using the denudation rate estimated from cosmogenic nuclide data and the deposition age of the moraine. Weathering rates accounting for denudation since moraine deposition are compared to weathering rates based on the assumption of no physical erosion and on the assumption of steady-state denudation for the Type Pinedale moraine ( 21 ka) and the Bull Lake-age moraine ( 140 ka) in the Fremont Lake Area (Wind River Mountains, Wyoming, USA). The total weathering rates accounting for denudation are 8.15 ± 1.05 g(oxide) m 2 y 1 for the Type Pinedale moraine and 4.78 ± 0.89 g(oxide) m 2 y 1 for the Bull Lake-age moraine, which are  2 to 4 times higher, respectively, than weathering rates based on the assumption of no physical erosion. The weathering rates based on denudation since moraine deposition are comparable or smaller than weathering rates assuming steady-state denudation. We find the assumption of steady-state denudation is not valid in depositional landscapes with young deposition ages or slow denudation rates. The decrease in weathering rates over time between the Type Pinedale and Bull Lake-age soils that is observed in the case of no physical erosion is decreased when the influence of denudation on the total weathering rates is taken into account. Fresh unweathered material with high reactive mineral surface area is continuously provided to the surface layer by denudation diminishing the effect of decreasing weathering rate over time.  相似文献   

17.
 乌鲁木齐河源区发育现代冰川7条,冰川面积5.6 km2,并有大范围的积雪,冰雪消融期融雪径流对乌鲁木齐河贡献显著。应用SRM(snowmelt?runoff model)融雪径流模型来探讨乌鲁木齐河源区融雪期径流情况,利用度日方法,由流域本身特征及参变量获取方法的深入分析来率定模型参数,应用模拟指标Nash-Sutcliffe系数R2=0.702和积差Dv=6.81%来评价模型表现,研究发现:(1)气温、降水作为该模型的直接驱动变量对模型的模拟较为敏感。尝试对乌乌鲁木齐河源区的气温、降水数据进行IDW插值并进行修正,使得模型模拟精度提高,对模型变量的输入精度问题上提供了新的思路;(2)不同高度带上积雪的度日因子并不是稳定的,而度日因子的选取与调整对模型也非常重要;(3)模型本身的局限性也导致模拟精度的降低。结果表明SRM模型可在乌鲁木齐河流域推广应用,这必将对认识和利用乌鲁木齐河流域冰雪水资源具有重要意义。  相似文献   

18.
祁连山区季节性积雪资源的气候分析*   总被引:14,自引:0,他引:14  
陈乾  陈添宇 《地理研究》1991,10(1):24-38
本文采用1986年10月至1988年9月NOAA—9、10两颗卫星的AVHRR资料标准化后反演的积雪参量,对照祈连山区26个气象站1951—1988年逐日雪深、雪密度和积雪日数的资科,修正卫星反演的平均值。得到高分辨率多年平均雪深和雪盖频率的空间分布。从而估算出各流域平均雪储量,并与降雪量和春季融雪径流作对此分析。  相似文献   

19.
Variation in growth, physiology and ionic relations patterns of Allenrolfea occidentalis, a perennial halophyte of dry habitats, was studied under field conditions from May 1996 to November 1997. An A. occidentalis community has a characteristic soil pH of 7·3–8·3. During the two years, the population was exposed to great variations in soil salinity, from 29 to 146 dS m−1, and soil moisture, ranging from drought (9·2%) to wet (19%). The salt concentrations were significantly higher in the surface soil layers than in the subsurface layers. Seasonal changes in dry weight are directly related to soil salinity stress. Allenrolfea occidentalis had greater growth and biomass production under saline conditions. Na+and Clions were accumulated in plant tissues in much greater amounts than K+, Ca2+, and Mg2+. Soil salinities were significantly reduced at the end of the growing season. Water potentials of the shoots decreased significantly with increasing salinity. The plant (Fv/Fmratio) was more affected by salinity and irradiation levels during the summer period.  相似文献   

20.
The objective of this study is to outline how the ground-water quality is affected by geological factors, soil characteristics and subsurface structure. The results of 25 ground-water samples, and 30 soil samples of which 10 soil samples analysed chemically provide the basis of this study. Procedures to interpret water quality data are based on a combined use of the traditional graphical methods, ratios of Na+/Cland Ca2+/Mg2+, multivariate geostatistical methods and computation of the saturation indices (SI) of minerals. The results of soil analyses show that the grain size ranges from very coarse sand to clayey loams, and from well sorted and extremely poorly sorted. The soil salinity increases in old alluvial plains and decreases in the dissected wadis of limestone plateaux, while vertical distribution decreases with depth. It is found that the ground-water is supersaturated with respect to calcite and dolomite, and undersaturated with respect to gypsum. Calculated values of PCO2for the ground-water samples range from 2×10−4to 7×10−3with a mean value of 3×10−3(atm.). This indicates that the ground-water becomes charged with CO2during infiltration processes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号