首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Vertical profiles of temperature and humidity were measured over the sea in two series of 48 hours each, during the summer near the Israeli coast of the Mediterranean. A prominent inversion was observed in the temperature profiles. In the first series the average height of the inversion base was 350m and in the second, 600m. In the inversion a very sharp decrease of the absolute humidity was found. Below the inversion down to the sea surface the atmosphere was well mixed. A significant diurnal oscillation was observed at the height of the inversion base. During the day the inversion moved up and during the night it moved down. This movement was 250m in the first series and 450m in the second. The movement of the inversion base was almost adiabatic. It is suggested that the fluctuation in the height of the inversion base is mainly due to the developing breeze.  相似文献   

2.
This study analyses the atmospheric boundary layer over the Bilbao metropolitan area during summer (13–18 Jul 2009) and winter (20–29 Jan 2010) episodes using the Environment–High Resolution Limited Area Model (Enviro-HIRLAM) coupled with the building effect parameterisation (BEP). The main objectives of this study are: to evaluate the performance of the model to simulate the land–sea breezes over this complex terrain; to assess the simulations with the integration of an urban parameterisation in Enviro-HIRLAM and finally; and to analyse the urban–atmosphere interactions. Even if the hydrostraticity of the model is a limitation to simulate atmospheric flows over complex terrain, sensibility tests demonstrate that 2.4 km is the optimal horizontal resolution over Bilbao that allows at the same time: to obtain satisfactory reproducibility of the large-scale processes and to explore the urban effects at local scale. During the summer episode, a typical regime of diurnal sea breeze from the NW-N-NE direction and nocturnal valley breezes from the SE direction are observed over Bilbao. The urban heat island (UHI) phenomenon is developed in the city centre expanding to the suburbs from 22 to 10 local time (LT), covering an area of 130 km2. The maximum UHI intensity, 1 °C, is reached at the end of the night (5 LT), and it is advected 12 km towards the sea by the land breezes. The urban boundary layer (UBL) height amplitude varies from 100 (night time) to 1,360 m (at 14 LT). During the winter episode, the land breeze dominates the atmospheric diffusion during the day and night time. The maximum UHI intensity, 1.7 °C, is observed at 01 LT. It is spread and remained over the city covering an area of 160 km2, with a vertical extension of 33 m. The UBL reaches 780 m height at 16 LT the following day.  相似文献   

3.
Simultaneous observations were made by an acoustic sounder and on a meteorological tower during the month of May 1978 at the Atomic Power Station Tarapur. The probing range of the acoustic sounder was 700 m. The meteorological tower could sense wind and temperature at various levels up to a height of 120 m.The site being close to the sea shore, the thermal environment of the lower atmosphere is controlled mostly by land and sea breeze circulations. Thermal convective structures were seen during the daytime and also at night. The frequency of plume formation and the height of the plumes were, however, low during the night. The convective boundary layer in the daytime ranged from 400–500 m while at night it was mostly under 200 m. The observation of thermals at night is explained by the presence of a naturally stable marine layer above 30 m at this site. In the morning hours, winds suddenly change their direction allowing advection of a land breeze which is responsible for the formation of surface-based shear echoes to a height of 200 m during the transition period and for the subsequent development of an elevated layer due to mixing of two different air masses. A marine layer was also seen over Tarapur for a few days during the early evening and night hours. Its height was mostly around 400 m. It may indicate the presence of a subsidence inversion at Tarapur. The need for collection of supporting meteorological data to a height of 500 m by tethered balloon or some other suitable in-situ technique is stressed.  相似文献   

4.
利用东疆红柳河黑戈壁下垫面陆气相互作用观测站2017年近地大气边界层梯度探测资料和红柳河气象站天气现象观测数据,分析该地区典型晴天条件下的近地层风速、温度和比湿的四季廓线特征。结果表明:四季近地层风廓线变化规律明显。典型晴天条件下,在0.5~4 m高度内风速随高度的增加而变大的速度较快,在4~32 m范围内,白天风速随高度增大较缓慢,但夜间出现快速增大;存在明显的夜间逆温,逆温层主要集中在4~32 m,冬季逆温强于夏季,晨间0.5~32 m间的温度差可达4.6℃,且红柳河四季的气温日较差均较大,秋季可达到15.7℃;夜间比湿高于白天,秋、冬季夜间逆湿层出现在10~32 m,其比湿差为0.15 g/kg左右,夏季无逆湿现象。  相似文献   

5.
塔中春季阴天近地层风速、温度和湿度廓线特征分析   总被引:1,自引:0,他引:1  
利用塔中最新安装的80 m梯度观测塔探测系统采集的资料,详细分析了2006年4月2日1次阴天天气时塔克拉玛干沙漠腹地近地层风速、温度和湿度廓线演变特征,并与典型晴天廓线做了对比,得到以下结果:(1)阴天,夜间风速廓线风速值随高度增高而增大,但不是以对数增长,而是以比对数关系更快的速度增长;白天,风速很小,近地层10 m上下廓线分布规律各异;(2)温度廓线有夜间辐射型、早上过渡型、白天日射型及傍晚过渡型4种类型,与晴天类似;(3)比湿廓线存在一个极小值,其出现高度以上比湿随高度增加而增加,廓线呈逆湿特征,极小值出现高度以下比湿随高度减小而增加。  相似文献   

6.
珠江三角洲秋季大气边界层温度和风廓线观测研究   总被引:4,自引:1,他引:3       下载免费PDF全文
根据2004年10月珠江三角洲3个代表性观测点大气边界层观测资料, 分析了珠江三角洲秋季大气边界层温度和风廓线特征。结果表明:珠江三角洲秋季气温递减率较低, 逆温出现频率较高, 强度较弱, 海风使珠江口贴地逆温的出现时间推迟、低空逆温的出现频率增加。珠江三角洲秋季受多种局地环流影响, 边界层内风廓线比较复杂, 晚上城市群与非城市群地区风向有明显差别; 城市群和珠江口多次分别观测到城市热岛环流和海风环流。  相似文献   

7.
We examine the climatological diurnal cycle of surface air temperature in a 6 km resolution atmospheric simulation of Southern California from 1995 to the present. We find its amplitude and phase both have significant geographical structure. This is most likely due to diurnally-varying flows back and forth across the coastline and elevation isolines resulting from the large daily warming and cooling over land. Because the region’s atmosphere is generally stably stratified, these flow patterns result in air of lower (higher) potential temperature being advected upslope (downslope) during daytime (nighttime). This suppresses the temperature diurnal cycle amplitude at mountaintops where diurnal flows converge (diverge) during the day (night). The nighttime land breeze also advects air of higher potential temperature downslope toward the coast. This raises minimum temperatures in land areas adjacent to the coast in a manner analogous to the daytime suppression of maximum temperature by the cool sea breeze in these same areas. Because stratification is greater in the coastal zone than in the desert interior, these thermal effects of the diurnal winds are not uniform, generating spatial structures in the phase and shape of the temperature diurnal cycle as well as its amplitude. We confirm that the simulated characteristics of the temperature diurnal cycle as well as those of the associated diurnal winds are also found in a network of 30 observation stations in the region. This gives confidence in the simulation’s realism and our study’s findings. Diurnal flows are probably mainly responsible for the geographical structures in the temperature diurnal cycle in other regions of significant topography and surface heterogeneity, their importance depending partly on the degree of atmospheric stratification.  相似文献   

8.
利用葫芦岛观测站1980—2009年观测资料,分析了葫芦岛沿岸海陆风风速的季节特征和日变化规律,以及海陆风环流对沿岸环境的影响。结论如下:1)葫芦岛站点在冬季出现海陆风日数最多,其他依次为秋季、夏季和春季。陆风风速从春季到冬季呈现递减趋势;海风在春季最大,其次为秋季的,冬季的最小。总体上,海陆风日中海风要强于陆风。2)对海陆风风速椭圆拟合结果表明,海陆风在10:32由陆风转化为海风,海风在16:32达到最大,在21:42由海风转化为陆风,陆风在04:32达到最大。3)由于海风的存在,沿岸地带在春夏两季日最高气温在12时出现,秋冬季的在13时出现。4)能见度日变化在四季中表现一致,早晨能见度转好的时刻比最低气温出现时刻滞后约2 h,在海风维持较长时间后空气绝对湿度增加导致能见度开始转差。5)冬季静止型海陆风日比例最高,再循环型海陆风日在秋季出现最多,而夏季通风型海陆风日出现最多。  相似文献   

9.
胶东半岛地区海陆风特征   总被引:5,自引:1,他引:5       下载免费PDF全文
邢秀芹 《气象》1997,23(5):55-57
该文分析了海上长岛站与其相邻的龙口,蓬莱,烟台,牟平等沿海站气温的日变化差异与胶东半岛地区海陆风的关系。结果表明,胶东半岛海陆风向昼夜发生反向转换与海陆间因下垫面性质不同,受热不均产生的温度日变化差异是一致的;半岛地区海陆风昼夜风向反向转换一年四季都存在,并且有明显的规律,海陆风转换时间早晚及持续时间和长短随季节而豪华。  相似文献   

10.
Summary This paper is concerned with sea/land-breeze systems over relatively flat tropical islands to the north of continental Australia. The purpose of this study is to contribute to the relatively small body of knowledge on tropical island sea/land-breeze systems in this region and to highlight their particular characteristics. The evolution and structure of coastal circulations over the Tiwi Islands, northern Australia are examined using observations made during the Maritime Continent Thunderstorm Experiment (MCTEX), November/December 1995. During the transition period between dry and wet (monsoon) seasons, strong diurnal surface heating dominates the local meteorology. Thermally modified pressure differences across the coastline are seen to control the timing, direction and intensity of local winds. The evolution and structure of the resulting circulations appear to be affected greatest by tropospheric stability and friction, while the Coriolis force, synoptic winds and topography are of much less importance in this case. Consequently, even small differences in surface properties seem to produce strong and well defined local wind circulations. The depth of the sea breeze averaged 1200 m, while the land breeze was considerably shallower (290 m). Return flows were evident in both circulations, although better defined in land breeze cases. Day to day variation in vertical structure was considerable and appeared to be controlled by stability in the lower troposphere. Spatial patterns of surface temperature, pressure and wind show formation of an island heat low by day and a cool high pressure centre at night, resulting in island scale convergence and divergence, respectively. Received February 27, 2000/Revised October 16, 2000  相似文献   

11.
大理苍山—洱海局地环流的数值模拟   总被引:4,自引:2,他引:2  
许鲁君  刘辉志  曹杰 《大气科学》2014,38(6):1198-1210
利用耦合了湖泊模型的WRF_CLM模式模拟了秋季大理苍山—洱海地区的局地环流特征。结果表明:模式对近地面温度、风向、风速的模拟与观测基本一致,模拟结果能较好地再现该地区山谷风和湖陆风相互作用的局地环流特征。在秋季,大理苍山的谷风起止时间为08:00~17:00(北京时,下同),湖风起止时间为09:00~19:00。局地环流受高山地形及洱海湖面影响明显,山谷风形成早于湖陆风1 h,夜间山风、陆风强盛于白天谷风、湖风。白天苍山谷风与洱海湖风的叠加作用会驱动谷风到达2600 m的高度,而傍晚最先形成的苍山山风则会减弱洱海的湖风环流。夜间盆地南部在两侧山风、陆风的共同作用下,形成稳定而持续的气旋式环流。日出以后,对流边界层迅速发展,边界层高度逐渐增高。陆地17:00温度达到最高,边界层高度也达到峰值2000 m,之后逐渐降低。日落后形成稳定边界层,边界层高度在夜间基本保持在100 m。相对于陆地,湖面白天边界层高度低300 m,夜间边界层高度高100 m。  相似文献   

12.
一次冷锋过境后的海风三维结构数值模拟   总被引:2,自引:1,他引:1       下载免费PDF全文
为研究大尺度系统风对海风的影响以及海风三维结构特征,利用山东省123个地面自动站资料、青岛地区三十多个内陆及沿海、海岛观测站以及奥帆赛场3个浮标站资料,对2006年8月21日青岛一次海风个例进行了分析,并利用美国俄克拉荷马大学风暴分析预测中心开发的ARPS(the Advanced Regional Prediction System)模式,对海风过程进行了数值模拟研究。结果发现:在较强的离岸风背景下,当内陆气温高于海面气温2℃左右时,海风也可以发生。海风首先在海岸线附近的海上开始,发展的同时向内陆及远海地区推进。海风低层环流很浅,主要位于500 m以下。在较强的偏北离岸风下,海风向内陆推进的距离很短。偏北的大尺度系统风由于渤海冷下垫面的影响,不利于青岛海风的维持。海风开始时,在1500~2500 m高度处同时有反环流出现,但直到傍晚前后,海风的垂直环流圈才发展得比较清晰,其高度也更接近地面。海风消亡后,高层的垂直环流圈及反环流维持3 h左右才逐渐消亡。  相似文献   

13.
Summary The boundary-layer structure of the Elqui Valley is investigated, which is situated in the arid north of Chile and extends from the Pacific Ocean in the west to the Andes in the east. The climate is dominated by the south-eastern Pacific subtropical anticyclone and the cold Humboldt Current. This combination leads to considerable temperature and moisture gradients between the coast and the valley and results in the evolution of sea and valley wind systems. The contribution of these mesoscale wind systems to the heat and moisture budget of the valley atmosphere is estimated, based on radiosoundings performed near the coast and in the valley. Near the coast, a well-mixed cloud-topped boundary layer exists. Both, the temperature and the specific humidity do not change considerably during the day. In the stratus layer the potential temperature increases, while the specific humidity decreases slightly with height. The top of the thin stratus layer, about 300 m in depth, is marked by an inversion. Moderate sea breeze winds of 3–4 m s−1 prevail in the sub-cloud and cloud layer during daytime, but no land breeze develops during the night. The nocturnal valley atmosphere is characterized by a strong and 900 m deep stably stratified boundary layer. During the day, no pronounced well-mixed layer with a capping inversion develops in the valley. Above a super-adiabatic surface layer of about 150 m depth, a stably stratified layer prevails throughout the day. However, heating can be observed within a layer above the surface 800 m deep. Heat and moisture budget estimations show that sensible heat flux convergence exceeds cold air advection in the morning, while both processes compensate each other around noon, such that the temperature evolution stagnates. In the afternoon, cold air advection predominates and leads to net cooling of the boundary layer. Furthermore, the advection of moist air results in the accumulation of moisture during the noon and afternoon period, while latent heat flux convergence is of minor relevance to the moisture budget of the boundary layer. Correspondence: Norbert Kalthoff, Institut für Meteorologie und Klimaforschung, Universit?t Karlsruhe/Forschungszentrum Karlsruhe, Postfach 3640, 76021 Karlsruhe, Germany  相似文献   

14.
湛江东海岛二月海陆风环流特征研究   总被引:1,自引:0,他引:1  
徐峰  王晶  张羽  张书文  黄克鑫 《气象科学》2012,32(4):423-429
利用2011年2月湛江东海岛风廓线雷达资料,系统分析了湛江东海岛2月平均风场特征及海陆风特征,结果表明:2月湛江东海岛150 m高度处以东偏北出现频率最大,在E、ENE和NE三个方位的风向出现频率之和为66.6%,偏西七个方位的风向出现频率之和仅为1%。以SSW方位为界,偏东风与偏西风的出现频率差异明显。各整点的月平均风速1:00—15:00变化较小,均在1 m/s左右波动;15:00—20:00风速及风速波动都较大,最大值出现在16:00时,为2.1 m/s。2011年2月中只有2日与14日两日符合海陆风日条件,两日共同海风时段为13:00—20:00,持续7 h;陆风时段为2:00—7:00,持续5 h。海风平均风速为2.1 m/s,陆风平均风速为0.8 m/s,海风平均风速明显大于陆风风速。海风与陆风环流垂直高度相差甚小,约1.2 km,风速随高度变化趋势均为先增后减;海风最大风速出现在750 m高度处,陆风出现在500 m高度处,500~750 m高度区间海风环流强度明显强于陆风环流。2 km之上为均匀一致的系统性西风环流。  相似文献   

15.
The 2003–2006 observations were utilized to analyze the surface characteristics of summer land-sea breezes along the coastland of Guangxi and the Weather Research and Forecast model was applied to simulate the breeze structure on August 1–2,2006.Results show that 1) the intensity and distributions of the breezes reproduced from improved urban underlying surface were close to observations.In the daytime the coastwise urban band was a convergent belt of sea breeze,corresponding to the centers of torrential rains;in the nighttime hours the surface of the Gulf of Tonkin (the Vietnamese name) or the Northern Bay (the Chinese name) acted as a convergent zone of land breezes,likely to produce convective cloud cluster;2) the experiment on urbanization showed the heat island effect enhancing (weakening) the sea (land) breeze development.Furthermore,the heat island effect mitigated the atmospheric cooling via radiation over the cities in the night,weakening sinking motion correspondingly,thereby suppressing the dominant factor responsible for the steady development of temperature inversion.As a result,the inversion vigor was reduced greatly,but nevertheless no strong effect of the decreased subsidence was found upon the inversion height.  相似文献   

16.
Summary The dispersion of recycled particulates in the complex coastal terrain surrounding Kangnung city, Korea was investigated using a three-dimensional non-hydrostatic numerical model and lagrangian particle model (or random walk model). The results show that particulates at the surface of the city that float to the top of thermal internal boundary layer (TIBL) are then transported along the eastern slope of the mountains with the sea breeze passage and nearly reach the top of the mountains. Those particulates then disperse eastward at this upper level over the coastal sea and finally spread out over the open sea. Total suspended particulate (TSP) concentration near the surface of Kangnung city is very low. At night, synoptic scale westerly winds intensify due to the combined effect of the synoptic scale wind and land breeze descending the eastern slope of the mountains toward the coast and further seaward. This increase in speed causes development of internal gravity waves and a hydraulic jump up to a height of about 1km above the surface over the city. Particulate matter near the top of the mountains also descends the eastern slope of the mountains during the day, reaching the central city area and merges near the surface inside the nocturnal surface inversion layer (NSIL) with a maximum ground level concentration of TSP occurring at 0300 LST. Some particulates are dispersed following the propagation area of internal gravity waves and others in the NSIL are transported eastward to the coastal sea surface, aided by the land breeze. The following morning, particulates dispersed over the coastal sea from the previous night, tend to return to the coastal city of Kangnung with the sea breeze, developing a recycling process and combine with emitted surface particulates during the morning. These processes result in much higher TSP concentration. In the late morning, those particulates float to the top of the TIBL by the intrusion of the sea breeze and the ground level TSP concentration in the city subsequently decreases.  相似文献   

17.
From 1973–1976, research was performed around the Sea of Galilee, aimed at examining the wind regime in the area and whether the area develops a land-sea breeze despite its particular topographical location.
    The main conclusions were:
  1. During the summer mornings a lake breeze develops, blowing towards the shores of the lake. It ceases at the peak of its development when a westerly wind, originating in the development of a breeze along the Israeli Mediterranean coast, plunges towards the lake.
  2. Late at night, a wind flow develops from the land towards the lake, which combines with the katabatic winds that blow along the steep slopes surrounding the Kinneret.
  3. The stations at the upper level, at a height of 400–500 m above the Kinneret, are not affected by the lake breeze during the day or by the land breeze at night.
  4. In winter, the Kinneret lake breeze is almost as developed as in summer, because the westerly winds, originating in the Mediterranean sea breeze which hardly develops in this season, do not plunge into the Kinneret.
  相似文献   

18.
The Beijing meteorological tower is located in an area of Beijing, China, which has developed from a suburban to an inner city setting over the past 30 years. The impacts of this urbanization process on both the vertical profile and diurnal cycles of air temperature are investigated using hourly data collected from a series of monitoring levels (up to 325 m high) on the Beijing meteorological tower since 1984. We find that the inter-decadal temperature has increased gradually, and that a more significant increase occurred during the 1980s and 1990s due to the effects of urbanization. A well-defined change in temperature stratification was also observed over this period. The height of the temperature inversion layer decreased from the 1980s to the 2000s. A well-defined nighttime temperature inversion developed below 50 m during the summer in the 1980s, but this near-surface inversion is not seen in data from the 1990s and 2000s. This change can be related to an increase in turbulent mixing caused by urban roughness and surface heat storage that disturbs the near-surface temperature inversion layer. In addition, the diurnal change in temperature in the city in summer shows a maximum increase from sunrise to the early afternoon, which is mainly caused by the nature variability and global warming in both the summer and winter. The urbanization mainly contributes to the temperature increase in the afternoon and nighttime. Moreover the urbanization dominates the increase in daily mean near-surface temperature.  相似文献   

19.
Observational results of the structure of the sea breeze over the urban and suburban areas of Tokyo for four summer days are presented.On two of these days, the inland penetration of the sea breeze front could be clearly traced. In one case, the sea breeze was first observed along the shores of Tokyo Bay around 0900 JST, and propagated in three hours through the Tokyo City area, the width of which is about 20 km. It then advanced inland at a rate of 16 km h–1. Prior to the arrival of the sea breeze at the suburban site, the mixing height had remained at about 600 m for four hours. With the arrival of the sea breeze front, accompanied by an abrupt change in wind speed and direction, the mixing height increased sharply to 1700 m. It is suggested that this behavior and the structure of the front are intensified due to the urban effect, or the difference in the thermal characteristics between the urban and rural areas.On the days without a sea breeze front, the land breeze system during the early morning was less intense, allowing the sea breeze to develop simultaneously with the inland valley wind and easily form a large-scale local wind system during the morning hours. In both cases, the vertical motion accompanying the local wind system works as a feedback mechanism to control the local winds by modifying the thermal and pressure fields.  相似文献   

20.
The seasonality of the vertical air temperature profile in an urban area in the vicinity of the coast was studied. The vertical air temperature profile showed the characteristic seasonality. In the summer, the atmosphere was thermally stratified in the 60–100 m layer, while the 20–60 m layer was unstable or weakly stable throughout the day due to the strong solar radiation. On the other hand, no temperature inversion layer was observed in the winter presumably due to the heat supply from the sea as well as the strong wind speed in the vicinity of the coast. The vertical air temperature profiles at nighttime in the spring and autumn were transitional between the summer and the winter. In contrast, the vertical air temperature profile in the daytime in the spring was similar to that in the summer, while that in the autumn was comparable to that in the winter. Characteristic findings in the study due to the site location, i.e., in the vicinity of the coast, can be summarized as follows: (1) the elevated temperature inversion layer at noon was observed in the summer, and (2) no temperature inversion layer was observed in the winter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号