首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 859 毫秒
1.
We conducted hydrographic observations in 2002 to investigate the anticyclonic eddy that emerges every summer in Funka Bay, Hokkaido, Japan, and elucidate dynamical structure and wind-driven upwelling within the eddy. The anticyclonic eddy has a vertical scale of 32 m and is characterized by a strong baroclinic flow and a sharp pycnocline with a concave isopycnal structure. The sharp pycnocline occurs below a warm and relatively low-salinity water termed summer Funka Bay water (FS), which is formed by heating from solar radiation and dilution from river discharge in summertime Funka Bay. Flow of the anticyclonic eddy rotates as a rigid body at each layer, and the horizontal scale and rotation period of the eddy in the surface layer are about 15 km and 2.2 days, respectively. The dynamical balance of the anticyclonic eddy is well explained by the gradient flow balance. The contribution of centrifugal force to the gradient flow balance is about 27%. Therefore, the effect of the nonlinear term associated with centrifugal force cannot be neglected in considering the dynamics of the anticyclonic eddy in summertime Funka Bay. In addition, upwelling of subsurface water was observed in the surface layer of the central part of the eddy. The formation mechanism of this upwelling is consistent with interaction between horizontal uniform wind and the eddy. This upwelling is driven by upward Ekman pumping velocity related to the horizontal divergence of Ekman transport. In summertime Funka Bay, there are two wind effects that affect the anticyclonic eddy: a decay effect of the upwelling of subsurface water resulting from horizontal uniform wind (mainly northwesterly wind), and a maintenance or spin-up effect of horizontal non-uniform wind (mainly southerly–southeasterly seasonal wind) with negative wind stress curl.  相似文献   

2.
Combining Argo observations with satellite remote sensing data during the period of 2002–2014, the mean three-dimensional structures of mesoscale eddies on both sides of the Luzon Strait (LS) were obtained via a composite method and analyzed to statistically examine the influences of background marine environment and the Kuroshio current on the eddy structures. The significant signals of temperature and salinity anomalies within the composite eddies extend much deeper in the region east of the LS (zone E) than those in the region west of the strait (zone W) because of stronger eddy intensity and larger vertical gradients of background temperature and salinity in the deep layer in zone E. In the vertical structure of temperature anomaly within the eddies, two cores occur at around 200 and 400 dbar depths, respectively, in zone E and only one core is centered at about 100 dbar in zone W. There is a clear three-core sandwich pattern in the vertical structure of salinity anomaly within the eddies in zone E. The Kuroshio water trapped in the eddy is responsible for abnormally positive salinity anomaly in the surface layer of the anticyclonic eddy center in zone W. On both sides of the LS, an asymmetric dipole structure in the surface layer gradually turns into a monopole one at depths, which resulted from the competition between horizontal advection effect and eddy pumping effect. The Kuroshio current influences the distribution patterns of isotherms and isohalines and enhances background temperature and salinity horizontal gradients on both sides of the LS, determining the orientations of dipole temperature and salinity structures within eddies.  相似文献   

3.
The impact of the choice of high-resolution atmospheric forcing on ocean summertime circulation in the Gulf of Lions (GoL; Mediterranean Sea) is evaluated using three different datasets: AROME (2.5 km, 1 h), ALADIN (9.5 km, 3 h), and MM5 (9 km, 3 h). A short-term ocean simulation covering a 3-month summer period was performed on a 400-m configuration of the GoL. The main regional features of both wind and oceanic dynamics were well-reproduced by all three atmospheric models. Yet, at smaller scales and for specific hydrodynamic processes, some differences became apparent. Inertial oscillations and mesoscale variability were accentuated when high-resolution forcing was used. Sensitivity tests suggest a predominant role for spatial rather than temporal resolution of wind. The determinant influence of wind stress curl was evidenced, both in the representation of a mesoscale eddy structure and in the generation of a specific upwelling cell in the north-western part of the gulf.  相似文献   

4.
Flow fluctuations inside an anticyclonic eddy in summertime Funka Bay were examined using three moorings and hydrographic data. The flow pattern above a sharp pycnocline with a concave isopycnal structure during the mooring period was characterized by high mean kinetic energy and relatively low eddy kinetic energy. The ratios of eddy to mean kinetic energy were equal to or less than one, and the mean flow field and isopycnal structure indicated the existence of a stable anticyclonic eddy above the sharp pycnocline under approximate geostrophic balance. Larger flow fluctuations with periods longer than 7 days were dominant inside the eddy. The low-frequency flow fluctuations are accompanied by north to northeastward movement of the eddy with deepening of the pycnocline and spin-up of the anticyclonic circulation. The wind field over Funka Bay is characterized by bay-scale wind fluctuations. The bay-scale winds are greatly influenced by the land topography around Funka Bay, resulting in non-uniform structure with significant wind stress curl. The bay-scale wind fluctuations are termed “locally modified wind” in the present study. The locally modified wind has a negative (positive) wind stress curl in the central–northeastern (southwestern) region of Funka Bay. The north to northeastward movement of the eddy is caused by horizontal non-uniform supply of vorticity from the locally modified wind forcing by the Ekman pumping process. Through this process, the anticyclonic circulation is enhanced (weakened) in the central–northeastern (southwestern) part of the eddy, resulting in the eddy moving north to northeastward with the pycnocline deepening and spin-up of the anticyclonic circulation. The locally modified wind forcing induces low-frequency flow fluctuations through the movement of the eddy in summertime Funka Bay.  相似文献   

5.
Estimating vertical velocity in the oceanic upper layers is a key issue for understanding ocean dynamics and the transport of biogeochemical elements. This paper aims to identify the physical sources of vertical velocity associated with sub-mesoscale dynamics (fronts, eddies) and mixed-layer depth (MLD) structures, using (a) an ocean adaptation of the generalized Q-vector form of the ω-equation deduced from a primitive equation system which takes into account the turbulent buoyancy and momentum fluxes and (b) an application of this diagnostic method for an ocean simulation of the Programme Océan Multidisciplinaire Méso Echelle (POMME) field experiment in the North-Eastern Atlantic. The approach indicates that w-sources can play a significant role in the ocean dynamics and strongly depend on the dynamical structure (anticyclonic eddy, front, MLD, etc.). Our results stress the important contribution of the ageostrophic forcing, even under quasi-geostrophic conditions. The turbulent w-forcing was split into two components associated with the spatial variability of (a) the buoyancy and momentum (Ekman pumping) surface fluxes and (b) the MLD. Process (b) represents the trapping of the buoyancy and momentum surface energy into the MLD structure and is identified as an atmosphere/oceanic mixed-layer coupling. The momentum-trapping process is 10 to 100 times stronger than the Ekman pumping and is at least 1,000 times stronger than the buoyancy w-sources. When this decomposition is applied to a filamentary mixed-layer structure simulated during the POMME experiment, we find that the associated vertical velocity is created by trapping the surface wind-stress energy into this structure and not by Ekman pumping.  相似文献   

6.
The oceanic response to a typhoon, where mesoscale ocean circulations co-exist, was investigated by analyzing the independent observations of profiling floats data at three different locations, satellite altimetry data near the eye of Typhoon Man-Yi (2007) before and after its passage, and synthetic aperture radar data taken during the typhoon’s passage. In spite of the nearly symmetric wind pattern around the eye, the distribution of mesoscale eddies had a major impact on the surface currents and mixed layer (ML) depths. As a result, the entrainment of the water below the ML into the ML was affected by the mesoscale circulation and became asymmetric, which accounted for most of the changes observed in the temperature profiles. Changes in the isotherms were driven primarily by the westward propagation of the mesoscale pattern rather than by the typhoon-induced shoaling. The typhoon-induced shoaling could have played a significant role in the generation of high-frequency (e.g., near-inertial) oscillations and/or sub-mesoscale structures. Although a similar or even greater energy flux was observed at the surface, the entrainment within the anticyclonic circulation was weaker than that within the cyclonic circulation and at the edge of the anticyclonic circulation because of the thick pre-existing ML. A strong ocean response to Typhoon Man-Yi (2007) within a cyclonic circulation or at the edge of an anticyclonic circulation, rather than within an anticyclonic eddy, has implications for the role of mesoscale ocean circulations in better understanding and forecasting the typhoon intensity.  相似文献   

7.
With the existence of eight substantial islands in the Southern California Bight, the oceanic circulation is significantly affected by island wakes. In this paper a high-resolution numerical model (on a 1 km grid), forced by a high-resolution wind (2 km), is used to study the wakes. Island wakes arise due both to currents moving past islands and to wind wakes that force lee currents in response. A comparison between simulations with and without islands shows the surface enstrophy (i.e., area-integrated square of the vertical component of vorticity at the surface) decreases substantially when the islands in the oceanic model are removed, and the enstrophy decrease mainly takes place in the areas around the islands. Three cases of wake formation and evolution are analyzed for the Channel Islands, San Nicolas Island, and Santa Catalina Island. When flows squeeze through gaps between the Channel Islands, current shears arise, and the bottom drag makes a significant contribution to the vorticity generation. Downstream the vorticity rolls up into submesoscale eddies. When the California Current passes San Nicolas Island from the northwest, a relatively strong flow forms over the shelf break on the northeastern coast and gives rise to a locally large bottom stress that generates anticyclonic vorticity, while on the southwestern side, with an adverse flow pushing the main wake current away from the island, positive vorticity has been generated and a cyclonic eddy detaches into the wake. When the northward Southern California Countercurrent passes the irregular shape of Santa Catalina Island, cyclonic eddies form on the southeastern coast of the island, due primarily to lateral stress rather than bottom stress; they remain coherent as they detach and propagate downstream, and thus they are plausible candidates for the submesoscale “spirals on the sea” seen in many satellite images. Finally, the oceanic response to wind wakes is analyzed in a spin-up experiment with a time-invariant wind that exhibits strips of both positive and negative curl in the island lee. Corresponding vorticity strips in the ocean develop through the mechanism of Ekman pumping.  相似文献   

8.
Eddy resolving modelling of the Gulf of Lions and Catalan Sea   总被引:1,自引:1,他引:0  
The generation process of strong long-lived eddies flowing southwestwards along the Catalan slope was revealed through numerical modelling and in situ observations. Careful analyses of a particular event in autumn 2007 demonstrated a link between a “LATEX” eddy, which remained in the southwestern corner of the Gulf of Lions and a “CATALAN” eddy, which moved along the Catalan Shelf, since the death of the former gave birth to the latter. The origin of such eddies was found to be an accumulation of potential energy in the southwestern corner of the Gulf of Lions: under the influence of the negative wind stress curl associated with the Tramontane, a warm and less dense water body can be isolated and fed by a coastal current carrying warm water from the Catalan Sea. In summer, this structure can grow and intensify to generate a strong anticyclonic eddy. After a long period of Tramontane, a burst of southeasterlies and northerlies appeared to detach the “LATEX” eddy, which flowed out of the Gulf of Lions, migrating along the Catalan continental slope and continued into the Balearic Sea as the “CATALAN” eddy.  相似文献   

9.
Observations of the Hudson River plume were taken in the spring of 2006 in conjunction with the Lagrangian Transport and Transformation Experiment using mooring arrays, shipboard observations, and satellite data. During this time period, the plume was subjected to a variety of wind, buoyant, and shelf forcings, which yield vastly different responses in plume structure including a downstream recirculating eddy. During weak and downwelling winds, the plume formed a narrow buoyant coastal current that propagated downstream near the internal wave speed. Freshwater transport during periods when the downwelling wind was closely aligned with the coast was near the river discharge values. During periods with a cross-shore component to the wind, freshwater transport in the coastal current estimated by the mooring array is less than the river discharge due to a widening of the plume that leads to the internal Rossby radius scaling for the plume width to be invalid. The offshore detachment of plume and formation of a downstream eddy that is observed surprisingly persisted for 2 weeks under a variety of wind forcing conditions. Comparison between mooring, shipboard, and satellite data reveal the downstream eddy is steady in time. Shipboard transects yield a freshwater content equal to the previous 3 days of river discharge. The feature itself was formed due to a large discharge following a strong onshore wind. The plume was then further modified by a brief upwelling wind and currents influenced by the Hudson Shelf Valley. The duration of the detachment and downstream eddy can be explained using a Wedderburn number which is largely consistent with the wind strength index described by Whitney and Garvine (J Geophys Res 110:C03014 1997).  相似文献   

10.
Evolution of an anticyclonic eddy southwest of Taiwan   总被引:8,自引:1,他引:7  
Satellite images of sea-surface temperature, surface chlorophyll a concentration, and sea-level anomaly, together with ocean reanalysis data of Asia and Indian–Pacific Ocean (AIPOcean1.0), are utilized to study the three-dimensional characteristics and evolution of an anticyclonic warm eddy adjacent to the southwest coast of Taiwan during October and November 2006. Originated from the Kuroshio intrusion in the Luzon Strait, but unlike previously found westward moving anticyclonic eddies (AE) in the northeastern South China Sea, this AE was so close to the Taiwan coast and stayed where it was formed for over 1 month until it dissipated. Energy analysis is utilized to study the evolution process of the AE, and it shows that the barotropic instability (BTI) and baroclinic instability introduced by the Kuroshio intrusion flow appear to be the main energy sources for the AE. Periodical enhancement/relaxation of local northeasterly monsoon and its associated negative wind stress curl modify the current patterns in this region, reinforce the intraseasonal variability of the Kuroshio intrusion flow, and act together with Kuroshio to form the AE. Eddies detected from AIPOcean1.0 data also show that AEs are most likely to be generated southwest of Taiwan during the transition period of summer monsoon to winter monsoon, and generally, the BTI of Kuroshio intrusion contributes more than the direct wind stress work to the increase of the eddy kinetic energy for the generation and growth of the AEs.  相似文献   

11.
The three-dimensional structure of mesoscale eddies in the western tropical Pacific(6°S–20°N, 120°E–150°E)is investigated using a high-resolution ocean model simulation. Eddy detection and eddy tracking algorithms are applied to simulated horizontal velocity vectors, and the anticyclonic and cyclonic eddies identified are composited to obtain their three-dimensional structures. The mean lifetime of all long-lived eddies is about 52 days, and their mean diameter is 147 km. Two typical characteristics of mesoscale eddies are revealed and possible dynamic explanations are analyzed. One typical characteristic is that surface eddies are generally separated from subthermocline eddies along the bifurcation latitude(~13°N) of the North Equatorial Current in the western tropical Pacific, which may be associated with different eddy energy sources and vertical eddy energy fluxes in subtropical and tropical gyres. Surface eddies have maximum swirl velocities of 8–9 cm s~(-1) and can extend to about 1500 m depth. Subthermocline eddies occur below 200 m, with their cores at about 400–600 m depth, and their maximum swirl velocities can reach 10 cm s~(-1). The other typical characteristic is that the meridional velocity component of the eddy is much larger than the zonal component. This characteristic might be due to more zonal eddy pairs(two eddies at the same latitude),which is also supported by the zonal wavelength(about 200 km) in the high-frequency meridional velocity component of the horizontal velocity.  相似文献   

12.
Using Lagrangian methods, we analyze a 20-year-long estimate of water flux through the Kamchatka Strait in the northern North Pacific based on AVISO velocity field. It sheds new light on the flux pattern and its variability on annual and monthly time scales. Strong seasonality in surface outflow through the strait could be explained by temporal changes in the wind stress over the northern and western Bering Sea slopes. Interannual changes in a surface outflow through the Kamchatka Strait correlate significantly with the Near Strait inflow and Bering Strait outflow. Enhanced westward surface flow of the Alaskan Stream across the 174°E section in the northern North Pacific is accompanied by an increased inflow into the Bering Sea through the Near Strait. In summer, the surface flow pattern in the Kamchatka Strait is determined by the passage of anticyclonic and cyclonic mesoscale eddies. The wind stress over the Bering basin in winter–spring is responsible for eddy generation in the region.  相似文献   

13.
It is demonstrated that nonlinear Rossby modes, such as modons and IG eddies, can be excited in planetary fluids by a sufficiently strong forcing of potential vorticity. When a weak forcing is balanced with a weak dissipation, two (linear and nonlinear) equilibrium states can be produced, depending on the initial condition. When the fluid is inviscid, a sufficiently strong steady forcing may generate a sequence of propagating nonlinear eddies. A weak forcing, by contrast, only generates linear Rossby waves. The criterion which divides the high amplitude nonlinear state and the low amplitude linear state may be interpreted in terms of a ratio of a time necessary to force the eddy to a time for a fluid particle to circulate about the nonlinear eddy once.  相似文献   

14.
A 4-year simulation of the surface circulation driven by the local wind on a section of the central Chilean coast is presented. The model is shown to reproduce the major observed features of the circulation. Comparison to observations of sea-surface temperature (SST) taken within the study area suggests that the model captures well coastal upwelling processes in the region. The circulation is shown to have two distinct modes corresponding to spring/summer and autumn/winter. During spring/summer sustained strong south-westerly wind forcing drives an equatorward coastal jet consistent with the Chile Coastal Current (CCC) and coastal upwelling at previously identified locations of intense upwelling at Topocalma Point and Curaumilla Point. Weaker winds during autumn/winter produce a slower CCC and a more homogenous SST field. Upwelling/relaxation and topographic eddies provide the main sources of variability on sub-seasonal time-scales in the model. The mechanisms responsible for each of these are discussed. Upwelling at Topocalma and Curaumilla Points is shown to be produced through generation of an upwelling Ekman bottom boundary layer following acceleration of the CCC close to the coast, reinforced by secondary circulation due to flow curvature around the headlands. Additional upwelling occurs north of Curaumilla Point due to development of shallow wind-driven overturning flow. Wind-sheltering is shown to be an important factor for explaining the fact that Valparaíso Bay is typically an upwelling shadow. Flow separation and eddy formation within Valparaíso Bay is seen to occur on the order of 10 times per year during relaxation after strong wind events and may persist for a number of weeks. Shorter lived topographic eddies are also seen to occur commonly at Topocalma and Toro Points. These eddies are shown to form in response to the surface elevation minima produced at each of these locations during upwelling.  相似文献   

15.
Jouanneau  Nicolas  Sentchev  Alexei  Dumas  Franck 《Ocean Dynamics》2013,63(11):1321-1340

The MARS-3D model in conjunction with the particle tracking module Ichthyop is used to study circulation and tracer dynamics under a variety of forcing conditions in the eastern English Channel, and in the Boulogne-sur-Mer harbour (referred to hereafter as BLH). Results of hydrodynamic modelling are validated against the tidal gauge data, VHF radar surface velocities and ADCP measurements. Lagrangian tracking experiments are performed with passive particles to study tracer dispersal along the northern French coast, with special emphasis on the BLH. Simulations revealed an anticyclonic eddy generated in the harbour at rising tide. Tracers, released during flood tide at the Liane river mouth, move northward with powerful clockwise rotating current. After the high water, the current direction changes to westward, and tracers leave the harbour through the open boundary. During ebb tide, currents convergence along the western open boundary but no eddy is formed, surface currents inside the harbour are much weaker and the tracer excursion length is small. After the current reversal at low water, particles are advected shoreward resulting in a significant increase of the residence time of tracers released during ebb tide. The effect of wind on particle dispersion was found to be particularly strong. Under strong SW wind, the residence time of particles released during flood tide increases from 1.5 to 6 days. For release during ebb tide, SW wind weakens the southward tidally induced drift and thus the residence time decreases. Similar effects are observed when the freshwater inflow to the harbour is increased from 2 to 10 m3/s during the ebb tide flow. For flood tide conditions, the effect of freshwater inflow is less significant. We also demonstrate an example of innovative coastal management targeted at the reduction of the residence time of the pathogenic material accidentally released in the harbour.

  相似文献   

16.
《Continental Shelf Research》1998,18(10):1157-1177
The spatial and temporal variability of water entering and leaving the Chesapeake Bay estuary was determined with a spatial resolution of 75 m. The four cruises during which the observations were made took place under different conditions of freshwater discharge, tidal phase, and wind forcing. The tidal variability of the flows was dominated by the semidiurnal constituents that displayed greatest amplitudes and phase lags near the surface and in the channels that lie at the north and south sides of the entrance. The subtidal variability of the flows was classified into two general scenarios. The first scenario occurred during variable or persistently non-southwesterly winds. Under these conditions there was surface outflow and bottom inflow in the two channels, inflow over the shoal between the two channels, and possible anticyclonic gyre formation over the shoal. The flow pattern in the channels was produced by gravitational circulation and wind forcing. Over the shoal it was caused by tidal rectification and wind forcing. The second scenario occurred during persistently southwesterly winds. The anticyclonic gyre over the shoal vanished suggesting that wind forcing dominated the tidal rectification mechanism over the shoal, while gravitational circulation and wind forcing continued to cause the flows in the channels. In both scenarios, most of the volume exchange took place in the channels.  相似文献   

17.
The MARS-3D model in conjunction with the particle tracking module Ichthyop is used to study circulation and tracer dynamics under a variety of forcing conditions in the eastern English Channel, and in the Boulogne-sur-Mer harbour (referred to hereafter as BLH). Results of hydrodynamic modelling are validated against the tidal gauge data, VHF radar surface velocities and ADCP measurements. Lagrangian tracking experiments are performed with passive particles to study tracer dispersal along the northern French coast, with special emphasis on the BLH. Simulations revealed an anticyclonic eddy generated in the harbour at rising tide. Tracers, released during flood tide at the Liane river mouth, move northward with powerful clockwise rotating current. After the high water, the current direction changes to westward, and tracers leave the harbour through the open boundary. During ebb tide, currents convergence along the western open boundary but no eddy is formed, surface currents inside the harbour are much weaker and the tracer excursion length is small. After the current reversal at low water, particles are advected shoreward resulting in a significant increase of the residence time of tracers released during ebb tide. The effect of wind on particle dispersion was found to be particularly strong. Under strong SW wind, the residence time of particles released during flood tide increases from 1.5 to 6 days. For release during ebb tide, SW wind weakens the southward tidally induced drift and thus the residence time decreases. Similar effects are observed when the freshwater inflow to the harbour is increased from 2 to 10 m3/s during the ebb tide flow. For flood tide conditions, the effect of freshwater inflow is less significant. We also demonstrate an example of innovative coastal management targeted at the reduction of the residence time of the pathogenic material accidentally released in the harbour.  相似文献   

18.
Based on an eddy-permitting numerical model, the mesoscale variability in the East-Sakhalin Current is investigated during the winter-spring period. Analysis of necessary conditions for the development of baroclinic instability showed that the nearshore component of the East-Sakhalin Current is potentially baroclinic unstable in the first half-year. The simulated circulation uncovered a generation of anticyclonic eddies on the eastern Sakhalin shelf. It was established that a spatial scale of these eddies and the first baroclinic Rossby radius of deformation are values of the same order; a lifetime of these eddies varies from 4 to 6 weeks, given the Rossby number varies from 0.05 to 0.2. Analysis of the rate of eddy energy conversion on the eastern Sakhalin shelf showed that the generation of the revealed mesoscale eddies results from, mainly, baroclinic instability, whereas barotropic instability can be both favoring and preventing to the generation of these eddies.  相似文献   

19.
The transport of the Antarctic Circumpolar Current (ACC) is influenced by a variety of processes and parameters. A proper implementation of basin geometry, ocean topography and baroclinicity is known to be a fundamental requisite for a realistic simulation of the circulation and transport. Other, more subtle parameters are those of eddy-induced transports and diapycnal mixing of thermohaline tracers or buoyancy, either treated by eddy resolution or by a proper parameterization. Quite a number of realistic numerical simulations of the circulation in the Southern Ocean have recently been published. Many concepts on relations of the ACC transport to model parameters and forcing function are in discussion, however, without much generality and little success. We present a series of numerical simulations of circumpolar flow with a simplified numerical model, ranging from flat-bottom wind-driven flow to baroclinic flow with realistic topography and wind and buoyancy forcing. Analysis of the balances of momentum, vorticity, and baroclinic potential energy enables us to develop a new transport theory, which combines the most important mechanisms driving the circulation of the ACC and determining its zonal transport. The theory is based on the importance of the bottom vertical velocity in generating vorticity and shaping the baroclinic potential energy of the ACC. It explains the breaking of the -constraint by baroclinicity and brings together in one equation the wind and buoyancy forcing of the current. The theory emphasizes the role of Ekman pumping and eddy diffusion of buoyancy to determine the transport. It also demonstrates that eddy viscosity effects are irrelevant in the barotropic vorticity balance and that friction arises via eddy diffusion of density. In this regime, the classical Stommel model of vorticity balance is revived where the bottom friction coefficient is replaced by (with the Gent–McWilliams coefficient and the baroclinic Rossby radius ) and a modified wind curl forcing appears.  相似文献   

20.
Greater Cook Strait (GCS) lies between the North and the South Islands of New Zealand. Its location at the convergence of the Pacific and Indo-Australian tectonic plates leads to interesting bathymetry with an adjacent shallow shelf and deep ocean trench as well as numerous crossing faults and complex shoreline geometry. Our purpose in this study is to examine tides and currents in GCS and, in particular, identify the major forcing mechanisms for the residual currents. Toward this end, we use an unstructured-grid numerical model to reproduce the tides and currents, verify these results with observations and then use the model to separate the various forcing mechanisms. The physical forcing includes nonlinear generation from tides and tidal currents, differences in sea level between the Pacific Ocean and Tasman Sea boundaries, density variations, wind stress and river discharge into GCS. Each of these mechanisms is important in different areas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号