首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow fluctuations inside an anticyclonic eddy in summertime Funka Bay were examined using three moorings and hydrographic data. The flow pattern above a sharp pycnocline with a concave isopycnal structure during the mooring period was characterized by high mean kinetic energy and relatively low eddy kinetic energy. The ratios of eddy to mean kinetic energy were equal to or less than one, and the mean flow field and isopycnal structure indicated the existence of a stable anticyclonic eddy above the sharp pycnocline under approximate geostrophic balance. Larger flow fluctuations with periods longer than 7 days were dominant inside the eddy. The low-frequency flow fluctuations are accompanied by north to northeastward movement of the eddy with deepening of the pycnocline and spin-up of the anticyclonic circulation. The wind field over Funka Bay is characterized by bay-scale wind fluctuations. The bay-scale winds are greatly influenced by the land topography around Funka Bay, resulting in non-uniform structure with significant wind stress curl. The bay-scale wind fluctuations are termed “locally modified wind” in the present study. The locally modified wind has a negative (positive) wind stress curl in the central–northeastern (southwestern) region of Funka Bay. The north to northeastward movement of the eddy is caused by horizontal non-uniform supply of vorticity from the locally modified wind forcing by the Ekman pumping process. Through this process, the anticyclonic circulation is enhanced (weakened) in the central–northeastern (southwestern) part of the eddy, resulting in the eddy moving north to northeastward with the pycnocline deepening and spin-up of the anticyclonic circulation. The locally modified wind forcing induces low-frequency flow fluctuations through the movement of the eddy in summertime Funka Bay.  相似文献   

2.
A seasonal ice edge zone is a unique frontal system with an air-ice-sea interface. This paper is a report on the numerical results from a quasi-three dimensional, time dependent, non-linear numerical model of circulation at a continental shelf-seasonal ice edge zone. The purpose of the experiments is to model the hydrography and circulation, including upwelling, baroclinic geostrophic flow, and inertial oscillations, at the ice edge with emphasis on examining the driving forces of wind and melting ice. It is suggested that the non-linear acceleration terms and vertical density diffusion terms are negligible and that the horizontal density diffusion terms are of secondary importance within the time and space scales of the experiments. The vertical eddy viscosity terms are important in a spin-up time scale and for Ekman transport and a bottom Ekman layer. The effects of the horizontal eddy viscosity terms are observable (a long-ice jet is diffused away from the ice edge) by the end (72 h) of the model runs.Model results are compared with available oceanographic and meteorological data for verification. The observed and modeled features of melt water induced water column stability, frontal structure, and ice edge upwelling are briefly discussed relative to observed ice edge primary production. Because the model is relatively general in nature, it is readily applicable to other seasonal or marginal ice edge zones in either hemisphere.  相似文献   

3.
A 4-year simulation of the surface circulation driven by the local wind on a section of the central Chilean coast is presented. The model is shown to reproduce the major observed features of the circulation. Comparison to observations of sea-surface temperature (SST) taken within the study area suggests that the model captures well coastal upwelling processes in the region. The circulation is shown to have two distinct modes corresponding to spring/summer and autumn/winter. During spring/summer sustained strong south-westerly wind forcing drives an equatorward coastal jet consistent with the Chile Coastal Current (CCC) and coastal upwelling at previously identified locations of intense upwelling at Topocalma Point and Curaumilla Point. Weaker winds during autumn/winter produce a slower CCC and a more homogenous SST field. Upwelling/relaxation and topographic eddies provide the main sources of variability on sub-seasonal time-scales in the model. The mechanisms responsible for each of these are discussed. Upwelling at Topocalma and Curaumilla Points is shown to be produced through generation of an upwelling Ekman bottom boundary layer following acceleration of the CCC close to the coast, reinforced by secondary circulation due to flow curvature around the headlands. Additional upwelling occurs north of Curaumilla Point due to development of shallow wind-driven overturning flow. Wind-sheltering is shown to be an important factor for explaining the fact that Valparaíso Bay is typically an upwelling shadow. Flow separation and eddy formation within Valparaíso Bay is seen to occur on the order of 10 times per year during relaxation after strong wind events and may persist for a number of weeks. Shorter lived topographic eddies are also seen to occur commonly at Topocalma and Toro Points. These eddies are shown to form in response to the surface elevation minima produced at each of these locations during upwelling.  相似文献   

4.
《Marine pollution bulletin》2011,62(7-12):432-448
An outstanding characteristic of New Caledonia upwelling is that most events appear limited to the southern half of the western barrier reef. This north–south difference cannot be explained by alongshore variability of the projected wind stress and no strong evidence for alternative explanations has been proposed. A major objective of this paper is to provide the first dynamical analysis of New Caledonia upwelling and its regional environment, based on numerical simulations. Coastal upwelling around New Caledonia is shown to be modulated by a system of geostrophic currents interacting with the island mass. Upwelling velocities are weaker than expected from the two-dimensional Ekman theory, as Ekman divergence is balanced by “coastal geostrophic convergence”. The cooling effect of upwelling is also attenuated by alongshore transport of warm water by the Alis current, reminiscent of the Leeuwin current off Western Australia. Nevertheless, coastal upwelling can locally modify the large-scale surface water heat budget, dominated by meridional advection warming and surface cooling. The upwelled waters appear to be mostly of western origin and are transported below the surface by the Subtropical Counter Current before upwelling off New Caledonia. This appears in sharp contrast with the eastern barrier reef where the general warming by meridional advection of tropical surface waters is accentuated by the vigorous western boundary type Vauban current.  相似文献   

5.
An analytical solution is obtained for the wind-driven steady flow developing under the action of the Coriolis acceleration in a closed basin of elongated shape. Different from the traditional Ekman approach, which determines the velocity distribution along a water column given the free surface shear stress and pressure gradient, here the flow field is solved in the whole cross-section considering the lateral transfer of momentum due to the horizontal eddy viscosity. The solution is derived exploiting a perturbation method, whereby the inverse of the Ekman number is assumed small, and imposing a wind aligned with the main axis of the lake. In the central part of the lake a secondary circulation develops producing downwelling along the right hand side (in the northern hemisphere) and upwelling along the opposite side, whose intensity is modulated by the turbulence anisotropy. The modification of the primary flow is considered as well. The solution, which is also compared with numerical results, is obtained for simplified conditions, but the extension to more general cases is discussed.  相似文献   

6.
A three-dimensional baroclinic nonlinear numerical model is employed to investigate the summer upwelling in the northern continental shelf of the South China Sea (NCSCS) and the mechanisms of the local winds inducing the coastal upwelling, associated with the QuikSCAT wind data. First, the persistent signals of the summer upwelling are illustrated by the climatological the Advanced Very High-Resolution Radiometer (AVHRR) Sea Surface Temperature (SST) image over 1985–2006 and field observations in 2006 summer. Then, after the successful simulation of the summer upwelling in the NCSCS, four numerical experiments are conducted to explore the different effects of local winds, including the wind stress and wind stress curl, on the coastal upwelling in two typical strong summer upwelling regions of the NCSCS. The modeled results indicate that the summer upwelling is a seasonal common phenomenon during June–September in the NCSCS with the spatial extent of a basin-scale. Typical continental shelf upwelling characteristics are clearly shown in the coastal surface and subsurface water, such as low temperature, high salinity and high potential density in the east of the Hainan Island, the east of the Leizhou Peninsula and the southeast of the Zhanjiang Bay (noted as the Qiongdong-QD), and the inshore areas from the Shantou Coast to the Nanri Islands of the Fujian Coast (noted as the Yuedong-YD). The analysis of the QuikSCAT wind data and modeled upwelling index suggests that the local winds play significant roles in causing the coastal upwelling, but the alongshore wind stress and wind stress curl have different contributions to the upwelling in the Qiongdong (QDU) and the coastal upwelling in the Yuedong (YDU), respectively. Furthermore, model results from the numerical experiments show that in the YD the stable alongshore wind stress is a very important dynamic factor to induce the coastal upwelling but the wind stress curl has little contribution and even unfavorable to the YDU. However, in the QD the coastal upwelling is strongly linked to the local wind stress curl. It is also found that not only the offshore Ekman transport driven by the alongshore wind stress, the wind stress curl-induced Ekman pumping also plays a crucial effect on the QDU. Generally, the wind stress curl even has more contributions to the QDU than the alongshore wind stress.  相似文献   

7.
Sea breezes often have significant impacts on nearshore physical and biological processes. We document the effects of a diurnal sea breeze on the nearshore thermal structure and circulation of northern Monterey Bay, California, using an array of moorings during the summer upwelling season in 2006. Moorings were equipped with thermistors and Acoustic Doppler Current Profilers (ADCPs) to measure temperature and currents along the inner shelf in the bay. Temperature and current data were characteristic of traditional regional scale upwelling conditions along the central California coast during the study period. However, large diurnal fluctuations in temperature (up to 5 °C) were observed at all moorings inshore of the 60-m isobath. Examination of tidal, current, temperature, and wind records revealed that the observed temperature fluctuations were the result of local diurnal upwelling, and not a result of nearshore mixing events. Westerly diurnal sea breezes led to offshore Ekman transport of surface waters. Resulting currents in the upper mixed layer were up to 0.10 m s−1 directed offshore during the afternoon upwelling period. Surface water temperatures rapidly decreased in response to offshore advection of surface waters and upwelling of cold, subsurface water, despite occurring in the mid-afternoon during the period of highest solar heat flux. Surface waters then warmed again during the night and early morning as winds relaxed and the upwelling shadow moved back to shore due to an unbalanced onshore pressure gradient. Examination of season-long, moored time series showed that local diurnal upwelling is a common, persistent feature in this location. Local diurnal upwelling may supply nutrients to nearshore kelp beds, and transport larvae to nearshore habitats.  相似文献   

8.
Numerical simulations with the Regional Ocean Modeling System (ROMS) are used to study the initial spin-up and the evolution of a mesoscale, topographically linked eddy under steady and variable wind conditions. The development of a pool of dense water on the southern Vancouver Island shelf allows cyclonic eddies formed by coastal upwelling off Cape Flattery to spread westward, ultimately contributing to the shelf-wide circulation known as the Juan de Fuca Eddy. This dense water arises through upwelling of water present in the underlying canyon system and tidal mixing over several shallow banks to the north. Tidal mixing is critical to the separation of the eddy from the coast. Although steady upwelling winds with a seasonal mean magnitude (combined with estuarine flow and tides) produce an eddy, only fluctuating winds with timescales and magnitudes typical of the region result in an eddy with a westward extent similar to seasonal observations. With each period of upwelling-favorable winds, newly upwelled water from the coast is entrained into the eddy which grows in size and moves westward. Wind events also significantly affect the baroclinic structure of the eddy. Specifically, during typical summer wind reversals, model surface drifters continue to move cyclonically within the eddy for several days after each downwelling wind event. Under upwelling-favorable wind conditions, model drifters exit the eddy to the southeast as the eddy and coastal upwelling fronts merge into a continuous southeastward shelf break jet.  相似文献   

9.
Observational and modeling studies were conducted to investigate the Pearl River plume and its interaction with the southwesterly driven upwelling circulation in the northern South China Sea during the summer. After exiting the Pearl River Estuary, the discharged freshwater generates a nearly stationary bulge of freshwater near the entrance of the estuary. Forced by the wind-driven coastal upwelling current, the freshwater in the outer part of the bulge flows downstream at the speed of the current and forms a widening and deepening buoyant plume over the shelf. The plume axis gradually shifts offshore of the current maximum as a result of currents induced by the contrasting density at the nose of plume and by the intensified Ekman drift in the plume. In this plume–current system, the fraction of the discharged freshwater volume accumulated in the bulge reaches a steady state and the volume of newly discharged freshwater is transported downstream by the upwelling current. Enhancement of stratification by the plume thins the surface frictional layer and enhances the cross-shelf circulation in the upper water column such that the surface Ekman current and compensating flow beneath the plume are amplified while the shoaling of the deeper dense water in the upwelling region changes minimally. The pressure gradient generated between the buoyant plume and ambient seawater accelerates the wind-driven current along the inshore edge of the plume but retards it along the offshore edge. Along the plume, downward momentum advection is strong near the highly nonlinear source region and a weaker upward momentum advection occurs in the far field over the shelf. Typically, the plume is shaped by the current over the shelf while the current itself is adjusting to a new dynamic balance invoked by the plume-induced changes of vertical viscosity and the horizontal pressure gradient. The spatial variation of this new balance leads to a coherent change in the cross-isobath transport in the upper water column during upwelling.  相似文献   

10.
《Continental Shelf Research》2006,26(12-13):1448-1468
To investigate why the Red Sea water overflows less in summer and more in winter, we have developed a locally high-resolution global OGCM with transposed poles in the Arabian peninsula and India. Based on a series of sensitivity experiments with different sets of idealized atmospheric forcing, the present study shows that the summer cessation of the strait outflow is remotely induced by the monsoonal wind over the Indian Ocean, in particular that over the western Arabian Sea. During the southwest monsoon (May–September), thermocline in the Gulf of Aden shoals as a result of coastal Ekman upwelling induced by the predominantly northeastward wind in the Gulf of Aden and the Arabian Sea. Because this shoaling is maximum during the southwest summer monsoon, the Red Sea water is blocked at the Bab el Mandeb Strait by upwelling of the intermediate water of the Gulf of Aden in late summer. The simulation also shows the three-dimensional evolution of the Red Sea water tongue at the mid-depths in the Gulf of Aden. While the tongue meanders, the discharged Red Sea outflow water (RSOW) (incoming Indian Ocean intermediate water (IOIW)) is always characterized by anticyclonic (cyclonic) vorticity, as suggested from the potential vorticity difference.  相似文献   

11.
Monsoon-induced upwelling off the Vietnamese coast   总被引:1,自引:0,他引:1  
During the southwest monsoon from July 8 to 28, 2003, an interdisciplinary cruise took place in the central area of Vietnamese upwelling with “MV Nghien Cuu Bien” in the South China Sea. Physical observations in the upwelling area are analyzed with respect to local/regional wind forcing and far field forcing. Nutrients and phytoplankton measurements are discussed with respect to exchange processes between different water masses. The wind-induced coastal upwelling by local wind forcing is much weaker than in the previous years due to weaker-than-normal winds. This can be attributed to the far field forcing of the 2002/2003 El Niño event which modulates the upwelling intensity. The atmospheric conditions reflect the typical situation after an El Niño event which weakens the wind-induced coastal upwelling, reduces the latent heat flux, and results in higher-than-normal sea-surface temperatures. The general circulation pattern during SW monsoon is driven by the spatial asymmetry in the monsoon forcing. The flow pattern is characterized by an upwelling-induced northward undercurrent and a recently detected southward countercurrent. The resulting stretching deformation of this flow pattern forms an offshore jet between ~12°N and 12.5°N and causes a local enhancement of the upwelling intensity. The upwelling due to stretching deformation is a peculiarity, which makes the Vietnamese upwelling area different to other upwelling areas. A budget of the upwelling components is presented: the strongest contribution in 2003 to the Vietnamese upwelling is the dynamical upwelling due to the clockwise rotation of the northward undercurrent. The internal radius of deformation separates the upwelling area from the offshore area as well as different water masses. Mekong River and the Gulf of Thailand waters which are offshore show nutrient depletion. Therefore, high chlorophyll maxima cannot be explained by nutrient supply from river runoff. The dynamical upwelling brings in nutrient-rich Maximum Salinity Water into the euphotic zone. This causes a subsurface chlorophyll maximum between 20 and 40 m water depth along the northward undercurrent. Deflection from the Redfield ratio in the C:N ratio and negative excess nitrogen identifies the region as nitrogen-limited which may favor cyanobacteria blooms. The consequence is a unique feature in new production: in the upwelling area, new production is based on upwelled nitrate, whereas offshore in the nutrient-depleted Mekong and Gulf of Thailand water, new production is based in addition on nitrogen fixation.  相似文献   

12.
The influence of meteorological variation, i.e., typhoon and precipitation events, on the coastal upwelling off the eastern Hainan Island was studied based on observations taken during two upwelling seasons. The observations were made in August 2007 and July 2008, respectively. We found that, in principle, similar structure of sea surface temperature and bottom temperature prevailed in both observational periods, providing evidence that upwelling events occur frequently during the summer monsoon along the eastern Hainan shelf. Based on a simple momentum balance theory, we studied the balances between momentum fluxes, wind stress, and bottom stress. The results showed that the Burger number is S ≈ 1, indicating that the cross-shelf momentum flux divergence was balanced by the wind stress and the onshore return flow occurred in the interior of the water column. Hence, a conceptual model of the upwelling structure was built for further understanding of upwelling events. In addition, it was also observed that variations in the strength of upwelling are controlled by storm events, i.e., strong northerly winds change the structure of the thermocline on the shelf significantly. The strong mixing caused by wind reduces the strength of the thermocline, in particular in coastal seas. Based on our conceptual model, a frontal zone between mixed coastal water and offshore water develops which destabilizing the water column and hence decreases the upwelling strength. Freshwaters from the two main rivers in the Wenchang Bay are confined to the coastal area less than 20–30 m deep, as confirmed by our water mass analysis. Freshwater discharge stabilized the water column, inhibiting the upwelling as shown by the potential energy calculation. Consequently, estuarine water only inhibits the upwelling in the near coastal area. Therefore, it can be concluded that estuarine water does not have a significant impact on upwelling strength on the shelf.  相似文献   

13.
It has been well known by oceanographers that the World Ocean Circulation originates inNorth Atlantic near the Greenland, where in wintertime the cooled surface water descends to form North Atlantic Deep Waters (NADW). The NADW, when passing the Antarctic…  相似文献   

14.
Through a set of observations including satellite, cruise and mooring data during May-July 1997 the transition between the downwelling and upwelling regimes off Galicia has been characterized. The poleward flow, typical of downwelling, was associated with a series of mesoscale eddies and interacted with coastal freshwater inputs. The poleward flow along the continental slope was separated into an offshore branch and a nearshore branch by a well-defined equatorward flow and both associated with a prominent salinity maximum. With the onset of upwelling-favorable winds, equatorward flow was established over the entire shelf. At the same time, a buoyant, warm surface layer spread out over the shelf from the Rías as water previously forced in by southerly winds was flushed out by the upwelling winds. The completed transition to summertime coastal upwelling took place after the cruise but was evident in satellite images. A conceptual model is used to demonstrate that the coastal orientation with respect to the upwelling winds enhances offshore flow outside the Rías and displaces the poleward flow offshore after several days of upwelling.  相似文献   

15.
Recent oceanographic field measurements and high-resolution numerical modelling studies have revealed intense, transient, submesoscale motions characterised by a horizontal length scale of 100–10,000 m. This submesoscale activity increases in the fall and winter when the mixed layer (ML) depth is at its maximum. In this study, the submesoscale motions associated with a large-scale anticyclonic gyre in the central Gulf of Taranto were examined using realistic submesoscale-permitting simulations. We used realistic flow field initial conditions and multiple nesting techniques to perform realistic simulations, with very-high horizontal resolutions (> 200 m) in areas with submesoscale variability. Multiple downscaling was used to increase resolution in areas where instability was active enough to develop multi-scale interactions and produce 5-km-diameter eddies. To generate a submesoscale eddy, a 200-m resolution was required. The submesoscale eddy was formed through small-scale baroclinic instability in the rim of a large-scale anticyclonic gyre leading to large vertical velocities and rapid restratification of the ML in a time-scale of days. The submesoscale eddy was confirmed by observational data from the area and we can say that for the first time we have a proof that the model reproduces a realistic submesoscale vortex, similar in shape and location to the observed one.  相似文献   

16.
Potential upper-ocean pathways for the supply of biota from the Gulf of Maine to Georges Bank are investigated by numerically tracking particles in realistic 3-d seasonal-mean and tidal flow fields. The flow fields, obtained from a prognostic model forced by observed M2 tides and seasonal-mean wind stress and density fields, include the major known observational features of the circulation regime in winter, spring and summer — a wind-driven surface layer (in winter and early spring) overlying seasonally-evolving baroclinic and tidally-rectified topographic gyres. The surface layer in winter and early spring, with generally southward drift for typical northwesterly wind stress, can act as a conveyor belt for the transport of biota to Georges Bank, provided that the biota can spend a substantial fraction of time in the surface Ekman layer. The numerical experiments indicate that the upper-ocean drift pathways for biota in the southern Gulf of Maine are strongly sensitive to biological and/or physical processes affecting vertical position in relation to the surface Ekman layer and horizontal position in relation to topographic gyres. The seasonality and location of the identified pathways are generally consistent with observed distributional patterns of Calanus finmarchicus based on the 11-year MARMAP surveys.  相似文献   

17.
Observations of turbulence avoidance in zooplankton are compared to estimates of the wind-driven turbulence in the upper ocean. Plankton that avoid wind-driven turbulence by moving deeper are no longer transported by the wind-driven Ekman currents near the surface because they are no longer near the surface. Here, a threshold level of turbulence that triggers an avoidance response is estimated, and is used to infer the wind speed and water column stratification conditions that would lead to zooplankton leaving the Ekman layer. Turbulence avoidance is argued to lead to near-shore retention in wind-driven upwelling systems, and to a reduction of the delivery of zooplankton to Georges Bank from the deeper waters of the Gulf of Maine.  相似文献   

18.
Wave energy input into the Ekman layer   总被引:3,自引:0,他引:3  
This paper is concerned with the wave energy input into the Ekman layer, based on 3 observational facts that surface waves could significantly affect the profile of the Ekman layer. Under the assumption of constant vertical diffusivity, the analytical form of wave energy input into the Ekman layer is derived. Analysis of the energy balance shows that the energy input to the Ekman layer through the wind stress and the interaction of the Stokes-drift with planetary vorticity can be divided into two kinds. One is the wind energy input, and the other is the wave energy input which is dependent on wind speed, wave characteristics and the wind direction relative to the wave direction. Estimates of wave energy input show that wave energy input can be up to 10% in high-latitude and high-wind speed areas and higher than 20% in the Antarctic Circumpolar Current, compared with the wind energy input into the classical Ekman layer. Results of this paper are of significance to the study of wave-induced large scale effects.  相似文献   

19.
Ocean–atmosphere coupling in the Humboldt Current System (HCS) of the Southeast Pacific is studied using the Scripps Coupled Ocean–atmosphere Regional (SCOAR) model, which is used to downscale the National Center for Environmental Prediction (NCEP) Reanalysis-2 (RA2) product for the period 2000–2007 at 20-km resolution. An interactive 2-D spatial smoother within the sea-surface temperature (SST)–flux coupler is invoked in a separate run to isolate the impact of the mesoscale (~50–200 km, in the oceanic sense) SST field felt by the atmosphere in the fully coupled run. For the HCS, SCOAR produces seasonal wind stress and wind stress curl patterns that agree better with QuikSCAT winds than those from RA2. The SCOAR downscaled wind stress distribution has substantially different impacts on the magnitude and structure of wind-driven upwelling processes along the coast compared to RA2. Along coastal locations such as Arica and Taltal, SCOAR and RA2 produce seasonally opposite signs in the total wind-driven upwelling transport. At San Juan, SCOAR shows that upwelling is mainly due to coastal Ekman upwelling transport, while in RA2 upwelling is mostly attributed to Ekman pumping. Fully coupled SCOAR shows significant SST–wind stress coupling during fall and winter, while smoothed SCOAR shows insignificant coupling throughout, indicating the important role of ocean mesoscale eddies on air–sea coupling in HCS. Coupling between SST, wind speed, and latent heat flux is incoherent in large-scale coupling and full coupling mode. In contrast, coupling between these three variables is clearly identified for oceanic mesoscales, which suggests that mesoscale SST affects latent heat directly through the bulk formulation, as well as indirectly through stability changes on the overlying atmosphere, which affects surface wind speeds. The SST–wind stress and SST–heat-flux couplings, however, fail to produce a strong change in the ocean eddy statistics. No rectified effects of ocean–atmosphere coupling were identified for either the atmospheric or oceanic mean conditions, suggesting that mesoscale coupling is too weak in this region to strongly alter the basic climate state.  相似文献   

20.
A three-dimensional, prognostic, wave–tide–circulation coupled numerical model is developed to study the effects of tidal mixing on the summertime vertical circulation in the Yellow Sea (YS). The distribution and mechanisms of upwelling are investigated by numerical means. Validated by historical tide gauge data, satellite sea surface temperature (SST) data, and cruise observation data, the model shows satisfactory performances in reproducing the dominant tidal system and three-dimensional sea temperature structure. Model results suggest that strong tidal mixing plays an important role in the formation of the vertical circulation in the YS. The Yellow Sea Cold Water Mass (YSCWM) is fringed by typical tidal mixing fronts (TMFs), which separate the cold, stratified water at the offshore side from the warm, well-mixed, shallow water at the other side. Considerable baroclinic gradient across the TMF makes the frontal zone the spot where the most active vertical circulation occurs; a secondary circulation is triggered with a distinct upwelling branch occurring mainly on the mixed side of the front. The numerical model produces systematic upwelling belts surrounding the YSCWM, and the upwelling is essentially induced by the TMF over sloping topography. The relative importance of tidal mixing and wind forcing for upwelling is further examined in numerical experiments. The southerly wind enhances the upwelling off the western coasts, but its overall influences in the whole YS are less important than tidal mixing. As shown by both satellite data and numerical modeling, the summertime SST field in the YS is featured by the stable existence of several site-selective surface cold patches (SCPs), most of which scatter in the waters off convex coastlines. One of the SCPs is found off Subei Bank, and the others are located off the eastern tip of Shandong Peninsula and off the three tips of Korean Peninsula. Two processes give rise to the SCP: on the one hand, TMF-induced upwelling supplies cold water from the deep layer; on the other hand, tidal mixing itself can stir the bottom water upward and homogenize the water column vertically. In the waters around the tips of peninsula in the YS, the tidal currents are extraordinarily strong, which provides a possible explanation for the site-selectivity of the SCPs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号