首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
位场向下延拓三种迭代方法之比较   总被引:3,自引:1,他引:2  
位场向下延拓在重磁资料解释和用于位场导航的基准数据库构建中发挥着重要作用.本文针对第一类Fredholm积分方程的三种空间域迭代解法:迭代Tikhonov正则化法、Landweber正则化迭代法和积分选代法,基于算子理论和不适定问题的正则化处理方法,首先利用傅里叶变换将空间域迭代法变换到波数域,然后由数学归纳法推导得到这三种迭代法对应的波数域位场向下延拓算子;由Landweber迭代法和积分迭代法在迭代形式上的相似性,探讨了它们在位场向下延拓中的异同及各自优势.模型对比分析表明:(1)两种迭代正则化方法在正则化参数选择合适的条件下,其向下延拓的效果要明显优于积分迭代法,且当收敛到相同误差水平时,迭代Tikhonov正则化法在迭代次数上要远远小于Landweber选代法,但迭代Tikhonov正则化方法存在对正则化参数敏感的问题;(2)从实际应用上讲,由于积分迭代法不存在正则化参数的选择问题,所以该迭代法具有较强的实用性,但需考虑其波数域向下延拓算子时噪声的放大效应.  相似文献   

2.
化极是消除磁力异常斜磁化影响的关键步骤,可以在波数域(频率域)和空间域中实现.相比于空间域,在波数域(频率域)进行化极简单且高效,但在低纬度地区存在不稳定性问题,因此明确低纬度地区的范围,研究稳定、实用、精度高的低纬度地区化极方法具有重要意义.本文通过理论研究得出化极因子振幅的最大值为2时,对应的磁化倾角的值为±45°,当磁化倾角在该范围内时,引起化极不稳定.因此采用正则化思想,提出了自适应正则化滤波化极方法(ARF-RTP),该方法利用化极因子振幅构建正则化滤波函数,并以振幅值等于2作为约束计算化极方法的参数值,从而实现自适应化极处理,提高了化极方法的稳定性及实用性.同时结合迭代算法提高了此方法的精度,有效地解决了低纬度地区化极的不稳定性问题.自适应正则化滤波这一思想不但可以解决化极的不稳定性问题,而且可以解决分量转换或者磁化方向转换的不稳定性问题以及类似数据处理中的不稳定性问题,具有广阔的推广应用前景.  相似文献   

3.
位场各阶垂向导数换算的新正则化方法   总被引:3,自引:1,他引:2       下载免费PDF全文
位场垂向导数大量应用于位场数据处理与解释中.当前广泛采用的位场各阶垂向导数换算方法为基于Laplace方程并结合波数域和空间域方法的具有递推特性的ISVD(integrated second vertical derivative)算法.本文在位场垂向导数换算的正则化方法和径向平均功率谱的基础上,提出一种位场各阶垂向导数换算的新正则化方法.新正则化方法仅需通过分析位场径向平均功率谱来确定一个截止波数,即可稳定换算位场各阶垂向导数.理论模型和实测数据实验结果表明:(1)新正则化方法物理意义明确、计算简单,且各阶垂向导数换算的稳定性和精度明显优于ISVD算法;(2)在用新正则化方法求得各阶垂向导数的基础上,利用泰勒级数法可以获得大深度、高精度的位场向下延拓结果.  相似文献   

4.
向下延拓是重磁位场数据处理与解释的一项重要技术,并因其固有的不稳定性而成为研究的热点.为获得稳定向下延拓结果,波数域向下延拓一般通过附加低通滤波器或改造向下延拓因子来完成.由此,滤波器或改造因子的截止波数则是精确向下延拓的关键.本文基于分形修正径向平均功率谱的物理特性,提出一种位场向下延拓截止波数的自动确定方法.基于理论重力模型和航磁实测数据的向下延拓对比实验结果表明:(1)本文所提出的自动确定方法物理意义明确,能快速有效地确定截止波数并进而获得向下延拓正则参数;(2)基于本文方法的正则化向下延拓结果优于改进导数迭代法的向下延拓结果.  相似文献   

5.
等效源法三维随机点位场数据处理和转换   总被引:1,自引:1,他引:0       下载免费PDF全文
为了实现曲面随机点位场数据的曲面延拓和转换,以磁异常位场数据为例,采用一组磁偶极子作为等效源,置于观测面下方的一个曲面上,把观测磁异常作为这组磁偶极子所产生磁异常的边界条件,通过求解线性方程组的方法反演磁偶极子磁矩的大小,再根据反演结果正演所要计算的磁异常数据,实现了曲面随机点磁异常位场数据的向上延拓、向下延拓、求导以及化极处理.在数据量较大时,为了提高反演计算的速度,把磁异常数据和磁偶极子分成若干小块,再利用各块磁异常数据分别反演该块数据下方磁偶极子的磁矩,并通过迭代计算来逐步取得更准确的反演结果.模型试验表明,磁异常位场数据向上延拓的均方根误差小于±2nT,向下延拓和化极也可以取得较高的精度,所提出的分块处理方法提高了延拓和转换的速度,实际资料处理给出了曲面随机点航磁异常数据向下延拓和化极的一个例子.  相似文献   

6.
磁赤道处化极方法   总被引:5,自引:3,他引:2       下载免费PDF全文
骆遥  薛典军 《地球物理学报》2010,53(12):2998-3004
化向地磁极(化极)是最基本的磁测资料处理方法之一,化极能消除或减少斜磁化影响,提高对磁测资料的认识程度和解释水平,对研究地壳产生的磁异常具有重要意义.但低纬度地区特别是磁赤道处,化极处理很不稳定甚至奇异,一直是位场研究的难点.针对地磁纬度较低特别是磁赤道地区磁异常化极的困难,利用从磁北极处垂直磁化向低纬度地区水平磁化方向转换稳定的特点,提出"狭义化赤"概念,并将其与低纬度磁异常"倒相"解释方法结合,提出专门用于磁赤道处化极的方法.该方法扩展了现有的化极理论,实现了磁赤道处的稳定化极.区别于目前任何方法,专门用于(近)水平磁化条件下的化极计算,具有原理简单,实现方便,收敛速度快等特点.对理论模型和实际资料计算表明这种针对磁赤道地区磁异常的化极处理方法是稳定、可靠的.  相似文献   

7.
位场曲化平积分方程的迭代解   总被引:3,自引:2,他引:1       下载免费PDF全文
提出了位场曲化平的新方法. 给定观测曲面S上的位场、S对下方水平面P的相对高程,确定P上的位场. 利用由P向上延拓到S的积分式,建立这两个面上位场及相对高程三者所满足的方程,它是第一类Fredholm积分方程. 用Fourier逆变换式把这一空间域积分式化为波数域积分式,再由指数函数的Taylor展开进一步化为级数式. 积分方程的解采用逐次逼近法迭代计算,即用S上的位场观测值作为P上位场的初始迭代值,用导出的级数式求得S上的位场计算值、由S上的位场观测值与计算值之差校正P上的位场,多次迭代,直到满足迭代终止准则. 我们还给出该积分方程的波数域迭代计算方法. 模型算例表明,重力异常曲化平的均方差和磁异常曲化平的均方差分别为0.0008 mGal和0.0019 nT,在主频为2.26 GHz的笔记本电脑运行,2048×2048数据量,计算时间是975 s. 野外磁场实际资料处理也证实这种方法的有效性.  相似文献   

8.
位场DFT算法研究   总被引:5,自引:0,他引:5       下载免费PDF全文
本文推广了经典的抽样定理,并据此导出了函数有限离散傅里叶变换误差方程(简称DFT误差方程,下同)。该方程把有限离散傅里叶变换中固有的离散效应和有限效应表示为确切的数学形式。离散效应被表示为一个含整参变量(参变量取0,1,…,N-1)的复无穷级数;有限效应被表示为一个含整参变量(参变量取0,1,…,N-1)的复无穷级数的DFT。 基于DFT误差方程和位函数特点,作者提出了两种位场数值傅里叶变换新算法--移样法和等效源续尾叠样法。移样法可近百倍地提高位场数值傅里叶反变换的精度,等效源续尾叠样法可数十倍地提高正变换精度。两种算法都不需要增加资料长度和取样密度,因而基本不需要增加计算机时间和内存。文中给出了算例。  相似文献   

9.
李刚  李予国  韩波  段双敏 《地球物理学报》2017,60(12):4887-4900
在海洋可控源电磁法勘探中,接收站常置于海底.在进行海洋电磁场模拟时,由于海水和海底介质存在显著电性差异,这给海底接收点处场值的求取带来困难.本文提出一种新的接收点插值算法,该算法考虑到海底电场法向分量不连续性问题,用法向电流分量进行插值以准确求取海底任意接收点处电磁场值.本文利用交错网格有限差分法实现了二维介质中频率域海洋可控源法(CSEM)正演.对构造走向做傅里叶变换,将三维电磁模拟问题转换为波数域2.5维问题,即三维场源激励下针对二维地电模型的电磁模拟问题.使用交错网格有限差分法,基于一次场/二次场分离方法导出波数域二次电场离散形式,并进一步求得波数域电磁场.采用本文提出的改进的插值算法可求得海底任意接收点处波数域电磁场,采用傅里叶逆变换对波数域电磁场进行积分可得到接收点处空间域电磁场.模型算例表明,与常规的线性插值和严格插值算法相比,本文提出的改进的插值算法具有更高的精度.  相似文献   

10.
低纬度磁异常化极方法——压制因子法   总被引:11,自引:10,他引:11       下载免费PDF全文
磁异常化极转换是磁异常解释的重要基础,针对频率域磁异常化极现状,本文对低纬度化极的困难原因进行了深入分析,并提出了针对性的化极措施——压制因子法. 与已有研究比较,该方法具有简单直观、控制参数少因而便于实际操作的特点,模型计算表明了方法的有效性. 在我国南海低磁纬度地区实测磁异常的计算解释中,应用该化极方法,取得了良好的效果.  相似文献   

11.
低纬度磁异常化极方法应用效果对比   总被引:5,自引:1,他引:4       下载免费PDF全文
低纬度磁异常化极的方法很多,包括在空间域化极和在频率域化极,比较起来,频率域方法计算简单快速,目前化极主要在频率域进行.然而大部分低纬度化极方法只压制了噪声并没有针对化极因子做改动,也就没有真正达到压制南北向条带状拉长的目的.本文针对其中4种在频率域对化极因子做处理的方法(双曲正弦法,压制因子法,直接阻尼法,伪倾角法),设计模型进行对比,并用南海某地区的实测数据进行4种方法的化极效果对比,选出一种最符合南海地区实际情况的化极方法.并对原有的直接阻尼法和伪倾角法做了适当的改进.  相似文献   

12.
消除海底起伏影响的海洋地震波场正反向延拓   总被引:1,自引:0,他引:1  
为了解决海底起伏变化对地震波场的影响问题,本文提出将(x-z)域中的曲网格映射成(ξ,η)域中的矩形网格,推导出(ξ,η)域中的二维标量声波方程,根据推导出来的波动方程采用逆时有限差分法将海面上采集到的地震波场在(ξ,η)域中向下延拓至海底面,延拓时采用海水的速度,然后采用顺时有限差分法将延拓后的地震波场再反延拓到海面上,延拓时采用海底面以下地层的速度,从而消除了海底起伏带来的负面影响。模型及实际地震资料的计算分析表明该方法不但能够校正由于海底起伏所引起的海底面下地层反射波场的不连续性还能够校正由于海底起伏所引起的地震波的动力学特征的变化。对延拓前后的地震波场进行速度反演,延拓后反演的地层速度比延拓前反演的地层速度的精度提高很多,延拓前后地震波场的叠加剖面对比表明该延拓方法能够明显提高地震波场的成像质量。  相似文献   

13.
基于离散余弦变换(DCT)的化磁极方法   总被引:1,自引:1,他引:0       下载免费PDF全文
针对提高磁异常化磁极的质量问题,提出基于离散余弦变换(DCT)的化磁极方法.以位场余弦变换谱分析为基础,从理论上推导了基于DCT的二度和三度体总场磁异常化磁极转换公式.在倾斜板状体模型实验中,化磁极误差小于0.001 nT,具有较高的精度;在单球体及多球体模型实验中,采用基于DCT的化磁极方法在5.倾斜磁化时就可以取得较好的化磁极结果,15°时化磁极的效果更加明显,其等值线的形态、幅值以及所反映的磁性体的水平位置都得到较好的恢复,这说明,采用本文方法进行化磁极时,可以取得较好的效果.  相似文献   

14.
In this study, we collected 1 156 broadband vertical components records at 22 digital seismic stations in Xinjiang region, ürümqi station, and 7 stations in the adjacent regions during the period of 1999–2003. The records were firstly processed by the stacked spectral ratio method to obtain Q 0 (Q at 1 Hz) and the frequency correlation factor η corresponding to each path. Based on the results, the distribution images of Q 0 and η in 1°×1° grids for Xinjiang region were gained by the back-projection technique. The results indicate that Q 0 is high (300–450) in the Tarim platform and marginal Siberian platform, while Q 0 is low (150–250) in the southern regions as west Kunlun fold system and Songpan-Ganzi fold system. In the northern regions as Junggar fold system and Tianshan fold system, Q 0 is also low (250–300) and η varies between 0.5 and 0.9. Foundation item: National Natural Science Foundation of China (49974012) and Joint Seismological Science Foundation of China (604004).  相似文献   

15.
A key non-linear mechanism in a strong-field geodynamo is that a finite amplitude magnetic field drives a flow through the Lorentz force in the momentum equation and this flow feeds back on the field-generation process in the magnetic induction equation, equilibrating the field. We make use of a simpler non-linear?α?2-dynamo to investigate this mechanism in a rapidly rotating fluid spherical shell. Neglecting inertia, we use a pseudo-spectral time-stepping procedure to solve the induction equation and the momentum equation with no-slip velocity boundary conditions for a finitely conducting inner core and an insulating mantle. We present calculations for Ekman numbers (E) in the range 2.5× 10?3 to 5.0× 10?5, for?α?=α 0cos?θ?sin?π?(r?ri ) (which vanishes on both inner and outer boundaries). Solutions are steady except at lower E and higher values of?α?0. Then they are periodic with a reversing field and a characteristic rapid increase then equally rapid decrease in magnetic energy. We have investigated the mechanism for this and shown the influence of Taylor's constraint. We comment on the application of our findings to numerical hydrodynamic dynamos.  相似文献   

16.
FollowingDmitriev (1960) a rigorous theoretical solution for the problem of scattering by a perfectly conducting inclined half-plane buried in a uniform conductive half-space has been obtained for plane wave excitation. The resultant integral equation for the Laplace transform of scattering current in the half-plane is solved numerically by the method of successive approximation. The scattered fields at the surface of the half-space are found by integrating the half-space Green's function over the transform of the scattering current.The effects of depth of burial and inclination, of the half-plane on the scattered fields are studied in detail. An increase in the depth of burial leads to attenuation of the fields. Inclination introduces asymmetry in the field profiles beside affecting its magnitude. Depth of exploration is greater for quadrature component. An interpretation scheme based on a phasor diagram is presented for the VLF-EM method of exploration for rich vein deposits in a conductive terrain.List of symbols x, y, z Space co-ordinates - Half-space conductivity - 0 Free-space permeability - Excitation frequency (angular) - T Time - h Depth of the half-plane - a Inclination of the half-plane - E x x-Directed total electric field - E x p x-Directed primary electric field - E xo p x-Directed primary electric field atz=0 directly over the half-plane - H y y-Component of total magnetic field - H y p y-Component of primary magnetic field - H y0 p y-Component of primary magnetic field atz=0 directly over the half-plane - H z z-Component of total magnetic field - H z p z-Component of primary magnetic field - J x Surface density ofx-directed scattering current - G Green's function - k 0,K Wave numbers - u,u 0,u 1,u 2 Functions - Space co-ordinate - s Variable in transform domain - Variable of integration - Normalized scattering current - Laplace transform of - N Normalized - , 0, 1, 2 Functions - t Variable of integration - Skin depth - H Total magnetic field - H p Primary magnetic field - H 0 p Primary magnetic field atz=0 directly over the half-plane - M,Q,R,S,U,V Functions - N 1,N 2 Functions  相似文献   

17.
The mathematical formulation of an iterative procedure for the numerical implementation of an ionosphere-magnetosphere (IM) anisotropic Ohm’s law boundary condition is presented. The procedure may be used in global magnetohydrodynamic (MHD) simulations of the magnetosphere. The basic form of the boundary condition is well known, but a well-defined, simple, explicit method for implementing it in an MHD code has not been presented previously. The boundary condition relates the ionospheric electric field to the magnetic field-aligned current density driven through the ionosphere by the magnetospheric convection electric field, which is orthogonal to the magnetic field B, and maps down into the ionosphere along equipotential magnetic field lines. The source of this electric field is the flow of the solar wind orthogonal to B. The electric field and current density in the ionosphere are connected through an anisotropic conductivity tensor which involves the Hall, Pedersen, and parallel conductivities. Only the height-integrated Hall and Pedersen conductivities (conductances) appear in the final form of the boundary condition, and are assumed to be known functions of position on the spherical surface R=R1 representing the boundary between the ionosphere and magnetosphere. The implementation presented consists of an iterative mapping of the electrostatic potential , the gradient of which gives the electric field, and the field-aligned current density between the IM boundary at R=R1 and the inner boundary of an MHD code which is taken to be at R2>R1. Given the field-aligned current density on R=R2, as computed by the MHD simulation, it is mapped down to R=R1 where it is used to compute by solving the equation that is the IM Ohm’s law boundary condition. Then is mapped out to R=R2, where it is used to update the electric field and the component of velocity perpendicular to B. The updated electric field and perpendicular velocity serve as new boundary conditions for the MHD simulation which is then used to compute a new field-aligned current density. This process is iterated at each time step. The required Hall and Pedersen conductances may be determined by any method of choice, and may be specified anew at each time step. In this sense the coupling between the ionosphere and magnetosphere may be taken into account in a self-consistent manner.  相似文献   

18.
Turbulent magnetofluids appear in various geophysical and astrophysical contexts, in phenomena associated with planets, stars, galaxies and the universe itself. In many cases, large-scale magnetic fields are observed, though a better knowledge of magnetofluid turbulence is needed to more fully understand the dynamo processes that produce them. One approach is to develop the statistical mechanics of ideal (i.e. non-dissipative), incompressible, homogeneous magnetohydrodynamic (MHD) turbulence, known as “absolute equilibrium ensemble” theory, as far as possible by studying model systems with the goal of finding those aspects that survive the introduction of viscosity and resistivity. Here, we review the progress that has been made in this direction. We examine both three-dimensional (3-D) and two-dimensional (2-D) model systems based on discrete Fourier representations. The basic equations are those of incompressible MHD and may include the effects of rotation and/or a mean magnetic field B o. Statistical predictions are that Fourier coefficients of the velocity and magnetic field are zero-mean random variables. However, this is not the case, in general, for we observe non-ergodic behavior in very long time computer simulations of ideal turbulence: low wavenumber Fourier modes that have relatively large means and small standard deviations, i.e. coherent structure. In particular, ergodicity appears strongly broken when B o?=?0 and weakly broken when B o?≠?0. Broken ergodicity in MHD turbulence is explained by an eigenanalysis of modal covariance matrices. This produces a set of modal eigenvalues inversely proportional to the expected energy of their associated eigenvariables. A large disparity in eigenvalues within the same mode (identified by wavevector k ) can occur at low values of wavenumber k?=?| k |, especially when B o?=?0. This disparity breaks the ergodicity of eigenvariables with smallest eigenvalues (largest energies). This leads to coherent structure in models of ideal homogeneous MHD turbulence, which can occur at lowest values of wavenumber k for 3-D cases, and at either lowest or highest k for ideal 2-D magnetofluids. These ideal results appear relevant for unforced, decaying MHD turbulence, so that broken ergodicity effects in MHD turbulence survive dissipation. In comparison, we will also examine ideal hydrodynamic (HD) turbulence, which, in the 3-D case, will be seen to differ fundamentally from ideal MHD turbulence in that coherent structure due to broken ergodicity can only occur at maximum k in numerical simulations. However, a nonzero viscosity eliminates this ideal 3-D HD structure, so that unforced, decaying 3-D HD turbulence is expected to be ergodic. In summary, broken ergodicity in MHD turbulence leads to energetic, large-scale, quasistationary magnetic fields (coherent structures) in numerical models of bounded, turbulent magnetofluids. Thus, broken ergodicity provides a large-scale dynamo mechanism within computer models of homogeneous MHD turbulence. These results may help us to better understand the origin of global magnetic fields in astrophysical and geophysical objects.  相似文献   

19.
Hartley变换化极   总被引:1,自引:1,他引:0       下载免费PDF全文
骆遥 《地球物理学报》2013,56(9):3163-3172
本文采用一种新颖的积分变换Hartley变换,系统推导了其频率域化极方法,提出在实数空间利用Hartley变换进行磁异常化极.结合现有的低纬度化极方法,讨论了低纬度Hartley变换化极特性,实现低纬度化极.理论模型计算表明建立的Hartley变换化极方法准确、可靠,实际资料处理表明该化极方法具有实用性.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号