首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
青藏高原地壳的三维密度结构和物质运动   总被引:5,自引:2,他引:3       下载免费PDF全文
应用区域重力场小波多尺度分析和反演于青藏区后,得到6个地壳等效层密度扰动图件,刻划了地壳三维密度结构,为研究地壳构造和物质运动提供了重要佐证.研究表明在青藏高原地壳内密度变化有以下三个规律.1)从上地壳到下地壳,平面分布上低密度区的分布范围逐渐扩大;在下地壳只有刚性克拉通地体才有显示高密度.2)从上地壳到下地壳,平面分布上密度扰动区的尺度逐渐扩大;到下地壳高或低的密度区不仅数量大为减少,而且边界更加清晰.3)从上地壳到下地壳,青藏高原南部的低密度带不断向北移动,反映印度陆块向欧亚大陆的向北俯冲.青藏高原下地壳密度高的克拉通地体有羌塘、柴达木和巴颜喀拉三个;而昆仑山、阿尔金山、祁连山和冈底斯地块都属于低密度的中新生代构造活动单元.拉萨地块也是低密度地块,在中下地壳它与冈底斯地块相连,应归属于中新生代构造活动单元.松潘甘孜地块在下地壳为低密度,但在上中地壳逐步变为高密度,并与巴颜喀拉克拉通地体连接.这种情况可能反映巴颜喀拉地体的上地壳随印澳板块俯冲向东南方向挤出.青藏高原低密度的物质也由下地壳向上挤出,在中上地壳体积迅速减小.由于下地壳低密度的物质向上挤出,中地壳密度高的克拉通地体会相应发生裂解,使克拉通地块的数目增加.高原北缘的下地壳低密度物质侧向挤出的枝杈有三支;其中一支从西昆仑到天山,另一支从龙门山西秦岭到银川盆地.第三支从高原南缘理塘到大理.它们可能反映下地壳管道流,宽度约180~300km.7级以上地震震中都位于下地壳低密度物质侧向挤出枝杈周围,可能与下地壳管道流位置吻合.  相似文献   

2.
滇西地壳三维密度结构及其大地构造含义   总被引:1,自引:0,他引:1       下载免费PDF全文
重力异常揭示地壳三维密度结构是地球物理的重要目标和任务,其关键技术是密度反演.本文对滇西地区重力异常进行了多尺度密度反演,首先利用小波变换对重力异常进行多尺度分解,接着利用功率谱分析方法估算各层场源的平均深度,然后利用广义密度反演方法进行各层密度反演,取得区域地壳多个深度上的密度扰动图像.滇西上地壳高密度扰动出现在扬子克拉通内部和西缘,以及澜沧江断裂带西缘,后者对应昌宁—勐连蛇绿混杂岩带及岛弧岩浆岩带.上地壳低密度异常主要反映西昌裂谷带和高黎贡—腾冲一带的岩浆房,和兰坪—思茅盆地中的坳陷带指示钾盐等沉积矿产目的层较厚的区段.滇西上地壳和中地壳出现三条低密度扰动带,与三期大陆碰撞带的吻合.大部分6级以上地震分布在低密度异常区或它们的边缘,只有在西昌—元古谋裂带才分布在高密度异常区.克拉通内部古裂谷带地震可分布在高密度异常区.在26°N线以南下地壳为高密度区,以北为低密度区.因此,26°N线的一个属性是下地壳密度差异分界线.滇西由北向南地壳加厚缩短的程度是逐渐变弱的,在26°N线以南,南北向的地壳加厚缩短就不明显了.高黎贡走滑剪切带、澜沧江走滑剪切带、红河走滑剪切带在滇西中地壳密度扰动平面图中表现为密度急变的梯度带.表明这三条主要的走滑剪切断裂带都穿过中地壳并可能延深到下地壳.  相似文献   

3.
In recent years, strong earthquakes of MS8.0 Wenchuan and MS7.0 Lushan occurred in the central-southern part of Longmenshan fault zone. The distance between the two earthquakes is less than 80 kilometers. So if we can obtain the inner structure of the crust and upper mantle, it will benefit us to understand the mechanism of the two earthquakes. Based on the high resolution dataset of Bouguer gravity anomaly data and the initial model constrained by three-dimensional tomography results of P-wave velocity in Sichuan-Yunnan region, with the help of the preconditioned conjugate gradient(PCG)inversion method, we established the three dimensional density structure model of the crust and upper mantle of the central-southern segment of Longmenshan, the spatial interval of which is 10 kilometers along the horizontal direction and 5 kilometers along the depth which is limited to 0~65km, respectively. This model also provides a new geophysical model for studying the crustal structure of western Sichuan plateau and Sichuan Basin. The results show obvious differences in the crustal density structure on both sides(Songpan-Ganzê block and Sichuan Basin)of Longmenshan fault zone which is a boundary fault and controls the inner crustal structure. In Sichuan Basin, the sedimentary layer is represented as low density structure which is about 10km thick. In contrast, the upper crust of Songpan-Ganzê block shows a thinner sedimentary layer and higher density structure where bedrock is exposed. Furthermore, there is a wide scale low density layer in the middle crust of the Songpan-Ganzê block. Based on this, we inferred that the medium intensity of the Songpan-Ganzê block is significantly lower than that of Sichuan Basin. As a result, the eastward movement of material of the Qinghai-Tibet plateau, blocked by the Sichuan Basin, is inevitably impacted, resulting in compressional deformation and uplift, forming the Longmenshan thrust-nappe tectonic belt at the same time. The result also presents that the crustal structure has a distinct segmental feature along the Longmenshan fault zone, which is characterized by obviously discontinuous changes in crustal density. Moreover, a lot of high- and low-density structures appear around the epicenters of Wenchuan and Lushan earthquakes. Combining with the projection of the precise locating earthquake results, it is found that Longmenshan fault zone in the upper crust shows obvious segmentation, both Wenchuan and Lushan earthquake occurred in the high density side of the density gradient zone. Wenchuan earthquake and its aftershocks are mainly distributed in the west of central Longmenshan fault zone. In the south of Maoxian-Beichuan, its aftershocks occurred in high density area and the majority of them are thrust earthquake. In the north of Maoxian-Beichuan, its aftershocks occurred in the low density area and the majority of them are strike-slip earthquake. The Lushan earthquake and its aftershocks are concentrated near the gradient zone of crustal density and tend to the side of the high density zone. The aftershocks of Lushan earthquake ended at the edge of low-density zone which is in EW direction in the north Baoxing. The leading edge of Sichuan Basin, which has high density in the lower crust, expands toward the Qinghai-Tibet Plateau with the increase of depth, and is close to the west of the Longmenshan fault zone at the top of upper mantle. Our results show that there are a lot of low density bodies in the middle and lower crust of Songpan-Ganzê Block. With the increase of the depth, the low density bodies are moving to the south and its direction changed. This phenomenon shows that the depth and surface structure of Songpan-Ganzê Block are not consistent, suggesting that the crust and upper mantle are decoupled. Although a certain scale of low-density bodies are distributed in the middle and lower crust of Songpan-Ganzê, their connectivity is poor. There are some low-density anomalies in the floor plan. It is hard to give clear evidence to prove whether the lower crust flow exists.  相似文献   

4.
青藏高原地壳密度变形带及构造分区   总被引:1,自引:1,他引:0       下载免费PDF全文
将区域重力场多尺度刻痕分析用于提取青藏高原地壳变形带的信息,可了解高原内地壳变形带从浅到深的变化和平面分布特征,并对青藏高原主要地体的空间分布定位,为岩石圈研究提供地表地质难以取得的新信息.多尺度脊形化系数的图像刻划不同深度平面上的地壳变形带.青藏高原地壳变形带从上到下由细密逐渐变为粗稀型,而且细密型变形区分布的范围逐渐缩小,到下地壳完全消失.从这种情况可以推测,以垂直地面方向上看,地壳变形带应该是树形的,下地壳粗稀型的变形带为树的主干,而中地壳粗稀型的变形带为树的分枝,上地壳的变形带为树枝的小枝杈.上地壳细密型变形分布区反映了与中新生代地壳缩短变形区的范围,下地壳清晰连续的变形带反映了青藏高原的构造骨架.多尺度边界刻痕系数的图像刻画不同深度平面上的地体边界,下地壳的刻痕边界系数与密度剧烈变化带位置吻合;因此,由多尺度刻痕分析划分地体时同时取得地体密度信息.青藏高原内密度较高的地体包括喜马拉雅地体、克什米亚地体、察隅河地体、柴达木地体、巴颜喀拉地体和羌塘地体.柴达木地体、巴颜喀拉地体和羌塘地体是青藏高原中有壳根的核,而密度最高的克什米亚和察隅河地体在大陆碰撞时不易碎裂,对东西两个构造结的形成起了关键作用.  相似文献   

5.
The southern segment of the North-South Seismic Belt in China is a critical region for earthquake preparedness and risk reduction efforts. However, limited by the low density of seismic stations and the use of single-parameter physical structural models, the deep tectonic features and seismogenic environment in this area remain controversial. Thus, a comprehensive analysis based on high-resolution crustal structures and multiple physical parameters is required. In this study, we applied the ambient noise tomography method to obtain the three-dimensional (3D) crustal S-wave velocity structure using continuous waveform data from 112 permanent stations and 350 densely distributed temporary stations in the southern segment of the North-South Seismic Belt. Then, we obtained the high-resolution 3D density structure through wavenumber-domain 3D gravity imaging constrained by the velocity structure. The low-velocity and low-density anomalies in the upper crust of the study area were mainly distributed in the Sichuan Basin and around Dali and Simao, while the high-velocity and high-density anomalies were primarily distributed in the Panxi region, corresponding to the surface geological features. Two prominent low-velocity and low-density anomalies were observed in the middle and lower crust: one to the west of the Songpan-Garzê block and Sichuan-Yunnan diamond-shaped block, and the other near the Anninghe-Xiaojiang fault. Combined with the spatial distribution of seismic events in the study area, we found that previous earthquakes predominantly occurred in the transition zones between high and low anomaly regions and in the low-velocity and low-density zones in the upper crust. In contrast, moderate-to-strong earthquakes mainly occurred within the transition zones between high and low anomaly regions and close to the high-velocity and high-density regions, often with low-velocity and low-density layers below their hypocenters. Fluids play a critical role in the seismogenic process by reducing fault strength and destabilizing the stress state, which may be a triggering factor for earthquakes in the study area. Additionally, the upwelling of molten materials from the mantle may lead to energy accumulation and stress concentration, providing an important seismogenic background for moderate-to-strong earthquakes in this area.  相似文献   

6.
We conduct the wave field separation of the gravity field for northern Henan Province and adjacent areas by the wavelet multi-scale decomposition method, and obtain multi-order gravity wavelet details and regional gravity field information. Then the Parker density surface inversion is used to invert the Moho interface. Based on the analysis of wavelet details in different orders and results of three seismic sounding profiles available in this area, we attempt to reveal the deep crustal structure of the study area. Research results show that the crustal structure is dominated by uneven density distribution accompanied by uplifts and depressions in the region with obvious heterogeneities of the density in horizontal and vertical directions. The gravity field characteristics in the middle-upper crust correspond to the surface topography, the lower crust is dominated by the large-scale high-low gravity anomalies, and several major depression basins show the characteristics of low velocity and low density. At the same time, the depth of the Moho interface changes greatly, which forms the block structure pattern of the regional crustal thickness. Among these features, the area with relatively large variations of the Moho is located in the transition zone of the basin to the Taihang Mountains, or exactly the Moho mutation belt. The Moho interface of the basin area as a whole is dominated by the uplift intertwined with local variations, of which the least and largest depths are 31km and 37km, respectively. Due to the gravity isostasy, the crustal thickness is larger(about 41km)in the northwest of the Taihang Mountains, with less average crustal density. In the study area, earthquakes tend to occur around the transition zone with density changes where the Moho is locally convex. The seismogenic mechanism may be associated with upwelling of upper mantle materials, low-velocity and low-density structures in the middle-lower crust and connection of deep large faults. Moreover, the deep large faults play a controlling role in the distribution of regional earthquakes.  相似文献   

7.
首都圈地区精细地壳结构——基于重力场的反演   总被引:4,自引:1,他引:3       下载免费PDF全文
本文以地质与地球物理资料作为约束条件,利用小波多尺度分析方法,对首都圈地区重力场进行了有效分离,应用Parker位场界面反演法及变密度模型对莫霍界面进行了反演分析,并构建了两条地壳密度结构剖面模型,对该区精细地壳结构进行了深入研究.研究结果表明首都圈地区受多期构造运动的改造,形成坳、隆相邻,盆、山相间,密度非均匀性,壳内结构与莫霍面埋深相差比较大的地壳分块构造格局.受华北克拉通岩石圈伸展、减薄以及岩浆的上涌底侵作用,首都圈地区莫霍面起伏比较大,莫霍面区域构造方向呈NE-NNE方向,在盆地向太行山、燕山过渡地带形成了莫霍面陡变带;盆地内部莫霍面形成东西向排列、高低起伏的框架,最大起伏约5 km,但平均地壳厚度比较小,北京、唐山地区地壳厚度最小约29 km,武清凹陷地壳厚度最大约34 km.在重力均衡调整作用下,西部太行山区地壳厚度较大,但地壳密度小于华北裂谷盆地内部;中上地壳重力场特征与地表地形及地貌特征具有很大的相关性.受新生代裂谷作用影响,首都圈中上地壳结构非常复杂,形成了NNE方向为主体的构造单元,断层多下延至中地壳;下地壳发生明显的褶曲构造,表现出高低密度异常相间排列的典型特征;首都圈地区地壳密度具有明显的非均匀性.研究认为首都圈地区地震的发生与上地幔顶部及软流层物质的上涌有一定关系.  相似文献   

8.
We present a new regional three-layer crustal model for the Central and Southern Asia and surroundings (AsCRUST-08). The model provides Moho boundary, thickness of different layers of consolidated crust and P-velocity distribution in these layers. A large volume of new data on seismic reflections and refractions as well as on surface waves generated by earthquakes or blasts was analyzed. All these data were incorporated into a unified digital 3D integrated model with 1° × 1° resolution. Results are represented as seven numerical maps imaging the distributions of the Moho depth, the thickness of the upper, middle, and lower layers of the consolidated crust, and the P-wave velocities therein.  相似文献   

9.
用于区域重力场定量解释的多尺度刻痕分析方法   总被引:6,自引:4,他引:2       下载免费PDF全文
本文介绍一个把小波多尺度分析、表面刻痕分析以及位场频率域解释理论和反演方法结合起来的数据处理、反演解释和信息提取的方法系统.这一方法系统简称为区域重力场多尺度刻痕分析方法,应用于刻画地壳分层的三维密度结构、地壳变形带分布和构造单元分区.多尺度刻痕分析包含频率域重力场场源分层、重力场小波变换多尺度分解、场源分层深度及密度扰动反演、分层刻痕分析和构造边界定位四个子系统.文中扼要地介绍这四个子系统基本原理、方法技术及应用效果.从地球物理探测到大地构造学发现,是一个多学科综合研究的探索过程.要取得重大研究成果,必须研发和组合来自不同学科的多个新方法技术,使多学科综合研究有宽厚的理论支撑.本文介绍的四个子系统组合的理论支撑分别来自应用数学、地球物理学和信息科学.  相似文献   

10.
Teleseismic P-wave receiver functions at 20 broadband seismic stations in the Longmenshan fault zone (LMFZ) and its vicinity were extracted, and the crustal thickness and the P- and S-wave velocity ratio were calculated by use of the H-k stacking algorithm. With the results as constraints, the S-wave velocity structures beneath each station were determined by the inversion of receiver functions. The crustal structure of the Rear-range zone is similar to that of the Songpan-Garze Block, whereas the velocity structure of the Fore-range zone resembles that of Sichuan Basin, implying that the Central Principal Fault of LMFZ is the boundary between the eastern Tibetan Plateau and the Yangtze Block. Lower velocity zone exists in lower crust of the Songpan-Garze Block and the central-southern segment of the Rear-range zone, which facilitates the detachment of the material in upper and middle crust. Joint analysis of the receiver functions and the Bouguer gravity anomalies supports the thesis on the detachment-thrust mode of the LMFZ. A double-detachment pattern is suggested to the tectonic setting in the Songpan-Garze Block. The upper detachment occurs at the depth of 10-15 km, and represents a high-temperature ductile shear zone. There is a lower detachment at the depth of about 30 km, below which the lower crust flow exists in the eastern Tibetan Plateau. Interpretation of the Bouguer gravity anomalies indicates that the Sichuan Basin is of higher density in upper and middle crust in comparison with that of the Songpan-Garze Block. The LMFZ with higher density is the result from the thrusting of the Songpan-Garze Block over the Sichuan Basin. In the lower crust, higher P velocity and higher density in the Sichuan Basin are related to more rigid material, while lower S velocity and lower density in the Songpan-Garze Block are related to the softened and weakened material. The higher density block beneath the Sichuan Basin obstructs the eastward flow of lower crustal material from the Tibetan Plateau, which is driven by the compression of northward movement of Indian Plate. The eastward movement of upper and middle crustal material is also obstructed by the rigid Yangtze Block, resulting in the stress concentrated and accumulated along the LMFZ. When the stress releases sharply, the Wenchuan M s8.0 earthquake occurs. Supported by the National Natural Science Foundation of China (Grant Nos. 40334041, 40774037) and Joint Foundation of Earthquake Science (Grant No. 1040062)  相似文献   

11.
To research the faults distribution and deep structures in the southern segment of Tan-Lu fault zone(TLFZ) and its adjacent area, this paper collects the Bouguer gravity data and makes separation by the multi-scale wavelet analysis method to analyze the crustal transverse structure of different depths. Meanwhile Moho interface is inversed by Parker variable density model. Research indicates that the southern segment of TLFZ behaves as a NNE-directed large-scale regional field gravity gradient zone, which separates the west North China-Dabie orogen block and the east Yangtze block, cutting the whole crust and lithosphere mantle. There are quite differences of density structures and tectonic features between both sides of this gradient belt. The sedimentary and upper crustal density structure is complex. The two east branches of TLFZ behave as linear gravity anomalous belt throughout the region, whereas the two west branches of TLFZ continue to extend after truncating the EW-trending gravity anomaly body. The lower crustal density structure is relatively simple. TLFZ behaves as a broad and gentle low abnormal belt, which reflects the Cretaceous-Paleogene extension environment caused graben structure. The two west branches of TLFZ, running through Hefei city, extend southward along the west margin of Feidong depression and pinch out in Shucheng area due to the high density trap occlusions in the south of Shucheng. The Feizhong Fault, Liu'an-Hefei Fault, and Feixi-Hanbaidu Fault intersect the two west branch faults of TLFZ without extending to the east. Recent epicenters are mainly located in conversion zones between the high-density and the low-density anomaly, especially in TLFZ and the junction of the faults, where earthquakes frequently occurred in the upper and middle crust. As strong earthquakes rarely occur in the southern segment of TLFZ, considering its deep feature of abrupt change of the Moho and intersections with many EW-trending faults, the hazard of strong earthquake cannot be ignored.  相似文献   

12.
Reservoir-forming features of abiotic origin gas in Songliao Basin   总被引:4,自引:0,他引:4  
The vertical structure of the crustal block of the Songliao Basin can be divided into upper, middle and low Earth’s crust according to density. There is an about 3-km-thick low density interval between the upper crust and the middle crust. This interval may be a magma chamber accumulated in crust by “fluid phase” which is precipitated and separated from upper mantle meltmass. The abiogenetic natural gas, other gaseous mass and hydrothermal fluids are provided to the Songliao rifted basin through crustal faults and natural earthquakes. This is a basic condition to form an abiogenetic gas reservoir in the Songliao Basin. On both flanks of the upper crust (or named basin basement) fault there are structural traps in and above the basement and unconformity surface or lateral extended sand, which contains communicated pores, as migration pathway and natural gas reservoir; up to gas reservoirs there is shale as enclosed cap rock, and the suitable arrangement of these conditions is the basic features of abiogenetic gas reservoir. Project supported by the National Natural Sc~ence Foundation of China.  相似文献   

13.
Introduction Sichuan-Yunnan region, located in the east margin of Qinghai-Xizang (Tibetean) Plateau, is a transitional zone between the rapidly upheaving Tibetean Plateau and relatively steady Yangtze Platform. Under the pressure exerted by the northward movement of Indian Plate, Sichuan-Yunnan region has been undergone strong deformation and regmagenesis, becoming one of the regions with the most intensive seismicity in the world. The research on the tectonics and seismicity there is alw…  相似文献   

14.
The results of the selection of a model of the deep density distribution in the lithosphere of Central and Southern Asia, which explains the previously revealed dependence of the free mantle surface depth on the thickness of the crust [Artemjev, 1975], are described. It is shown that this dependence can be caused by variations in the mantle’s density with depth. Models of the continental and oceanic mantles with an increase in the linear density over depth are selected for the region of Asia. The level of the free surface depth in the oceanic mantle is higher than in the continental mantle. The observed dependence on the crustal thickness can also be used for determining nonlinear density variations with depth under the assumption that lateral density variations in this dependence are of a random character.  相似文献   

15.
根据波茨坦地磁场模型(POMME6.2),研究喜马拉雅东构造结周围地区地壳磁异常的空间分布、磁异常随高度的衰减特征.利用二维小波变换方法对地表磁异常进行分解,分析小波细节组合和逼近信号的异常特点.讨论磁异常与地质构造的联系.结果表明,研究区内地壳磁异常分布相当不均匀.喜马拉雅—东构造结—龙门山—大巴山地区分布着较强的负磁异常;四川盆地为正磁异常,其他地区磁异常较弱.东构造结对周围地区磁异常有重要影响,它及其周围地区的地壳磁异常都是在负磁或弱磁异常背景上,叠加着中短波长的正负磁异常.这些中小尺度磁异常由中、上层地壳磁性物质产生,走向与地质构造基本一致.沿金沙江、红河断裂带分布着清晰的弱磁异常带.龙门山断裂带、丽江—小金河断裂带和红河断裂带是磁异常强弱过渡带.青蒇高原中部东西向的磁异常,在东构造结弧顶地区呈弧形分布.青藏高原中部和滇中地块带状、团状磁异常具有相同的衰减规律.  相似文献   

16.
帕米尔东北侧地壳结构研究   总被引:50,自引:17,他引:50  
1998年在帕米尔东北侧伽师及其周边地区完成了两条深地震宽角反射/折射剖面. 结果表明,西昆仑、塔里木和天山在地壳速度结构、构造特征上显示出较大差异. 塔里木块体具有稳定地块的地壳结构特征,地壳平均速度较高(6.5km/s). 向南进入西昆仑,地壳明显增厚,厚度可达0km左右,且地壳平均速度偏低(6.0-6.2km/s),偏低的地壳平均速度主要来源于相对低速度的下地壳结构,反映了西昆仑褶皱系下地壳介质的特征. 向北进入天山后,地壳同样明显增厚,但增厚的程度低于西昆仑下,约为50-55km. 天山地壳同样具有明显低的平均速度(6.2km/s),显示了天山地壳相对"软"的特征,但天山地壳偏低的平均速度来源于广泛分布于中地壳的低速度层和速度偏低的下地壳. 在印度块体向北强烈推挤的作用下,该区地壳遭受强烈的不均匀变形,塔里木块体向南插入西昆仑下,向北插入天山下,形成了该区强烈地震频繁发生的深部构造环境.  相似文献   

17.
渭河盆地及邻区地壳深部结构特征研究   总被引:13,自引:6,他引:7       下载免费PDF全文
利用穿越区域南段为秦岭褶皱带山区,中段为渭河断陷盆地,北段为鄂尔多斯地台南缘的宽角反射/折射地震测深剖面所获得的资料对该区地壳结构进行研究.结果表明:该区地壳呈明显的分层、分区结构;上下地壳的分界是由壳内反射波较为连续可靠的P2以及P3所确定的.鄂尔多斯地台是本区M界面最深的地区,地壳厚度大,达42 km左右,结构相对简单,结晶基底浅. 秦岭褶皱带的地壳厚度约37~38 km,结晶基底浅,甚至出露.渭河断陷盆地莫霍界面相对两侧明显且不对称的上隆,地壳结构复杂;而莫霍界面相对鄂尔多斯地块突变隆起和上地幔高速物质侵入于下地壳,是该区发生中强地震的深部构造背景.  相似文献   

18.
华北不同构造块体地壳结构及其对比研究   总被引:91,自引:44,他引:47       下载免费PDF全文
华北古大陆块体经多期构造运动的改造使地壳构造具有明显的分块特征. 利用华北地区近30条、共约两万公里的深地震测深资料及成果,进一步研究华北各次级块体内部地壳细结构,对比分析各块体的结构差异. 根据不同的地壳结构特征,华北地壳可分为三大类:西部鄂尔多斯盆地地壳结构简单,基底结构完整,为稳定古大陆地壳;华北中部隆起区太行山及北部阴山、燕山隆起区地壳结构相对简单,中部地壳和下地壳局部区域轻微速度逆转,可能与该区域地壳增厚隆升的壳内介质解耦形变有关;华北东部裂陷盆地地壳结构复杂, 基底下陷、破碎,壳内介质松散、速度低,Moho上隆、地壳减薄,横向结构差异明显,显示了新生地壳构造特征. 在此基础上,综合研究、探讨了华北地壳分块构造以及与之相关的动力学演化.  相似文献   

19.
The Deep Seismic Sounding( DSS) projects carried out from the 1970 s in the lower Yangtze region and its neighboring area were reviewed in this paper,then the basic wave group features of those wide angle reflection / refraction record sections,and of the crustal structure are summarized. It shows that there were in total five clear wave groups on the record sections,which include the first arrival Pg,the reflection P1 from the bottom interface of the upper crust,the reflection P3 from the bottom interface of the middle crust,the strong reflection Pm from the Moho boundary,and the refraction Pn from uppermost mantle. In general,these phases are easily consistently traced and compared,despite some first arrivals being delayed or arriving earlier than normal due to the shallow sedimentary cover or bedrocks. In particular,in the Dabie Mountain region the seismic events of a few gathered shots always have weak reflection energy,are twisted,or exhibit disorganized waveforms, which could be attributed to the disruption variations of reflection depth,the broken Moho,and the discontinuity of the reflection boundary within crust. The regional crustal structures are composed of the upper,middle and lower crust,of which the middle and lower layers can be divided into two weak reflection ones. The crustal thickness of the North China and Yangtze platform are 30km- 36 km,and the Moho exhibits a flat geometry despite some local uplifts. The average pressure velocity in lower crust beneath this two tectonic area is 6. 7 ± 0. 3km / s. Nevertheless,beneath the Dabieshan area the crustal thickness is 32km- 41 km,the Moho bends down sharply andtakes an abrupt 4km- 7km dislocation in the vertical direction. The average pressure velocity in the lower crust beneath the Dabieshan area is 6. 8 ± 0. 2km / s.  相似文献   

20.
华北克拉通北缘(怀来-苏尼特右旗)地壳结构   总被引:4,自引:3,他引:1       下载免费PDF全文
2009年,中国地质科学院地质研究所与美国俄克拉荷马大学合作实施了一条长453 km的深地震反射、宽角反射与折射、三分量反射地震联合探测剖面. 剖面南起怀来盆地,向北依次穿过燕山造山带西缘、内蒙地轴、白乃庙弧带、温都尔庙杂岩带,到达索伦缝合带. 其中,宽角反射与折射剖面采用8个0.5~1.5 t炸药震源激发,使用300套Texan单分量数字检波器接收,获得了高质量的地震资料. 通过资料分析和处理,识别出沉积层及结晶基底的折射波(Pg)、来自上地壳底界面的反射波(Pcp),中地壳底界面的反射波(Plp),莫霍界面的反射波(Pmp)及上地幔顶部的折射波(Pn)等5个震相. 分别采用Hole有限差分层析成像和Rayinvr算法对华北克拉通北缘及中亚造山带南部进行了上地壳P波速度结构成像和全地壳二维射线追踪反演成像. 结果显示:(1)中亚造山带地壳厚度~40 km,变化平缓,低于全球平均造山带地壳平均厚度,可能为造山后区域伸展的结果. 阴山-燕山带附近莫霍明显加深,推测其为燕山期造山过程形成的山根,但该山根很可能在后期被改造. (2)测线中部地壳上部速度较高,对应地表大面积花岗岩出露,而下地壳速度较低,速度梯度低,呈通道状,推测其可能曾为古亚洲洋向南俯冲消亡的主动陆缘,并在碰撞后演变为伸展环境下岩浆侵入的通道. (3)华北克拉通北缘与中亚造山带显示出不同速度变化特征,前者变化相对缓而后者则变化剧烈,二者的分界出现在赤峰-白云鄂博断裂附近.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号