首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
华北克拉通北缘—西伯利亚板块南缘(张家口—中蒙边界)的深地震测深剖面长600 km,跨越华北板块、内蒙造山带和西伯利亚板块.沿测线采用8个1.5t的爆炸震源激发地震波,使用300套数字地震仪接收,取得了高质量的地震资料.通过资料分析和处理,识别出沉积层及结晶基底的折射波(Pg)、上地壳底面的反射波(P2)、中地壳内的反射波(P3)、中地壳底面的反射波(P4)、下地壳内的反射波(P5,仅在镶黄旗—苏尼特右旗下方出现)和莫霍面的反射波(Pm)等6个震相.采用地震动力学射线方法(seis88)得到的地壳速度结构表明:(1)在华北板块与内蒙造山带之间,内蒙造山带与西伯利亚板块之间,上地壳中存在明显的高速度局部变化,在地表发育大量的古生代花岗岩体、超基性岩体.(2)在中下地壳华北板块南缘的地震波速度大,为6.3~6.7 km/s,西伯利亚板块北缘的速度小,为6.1~6.7 km/s,且界面比较平缓.原因是在内蒙造山带内地壳的缩短和隆升造山引起了中下地壳界面的剧烈起伏,不同海陆块的拼合和物质交换导致了不同区域速度的不均匀性.(3)莫霍面在赤峰断裂带(F2)以南和索伦敖包—阿鲁科尔沁旗断裂带(F4)以北较为平缓,平均深度为40~42 km.在F2—F4之间呈双莫霍面,莫霍面1明显上隆,深度为33.5 km,层速度为6.6~6.7 km/s.莫霍面2明显下凹,在西拉木伦河断裂带(F3)下方,最深达到47 km,速度达到最大为6.8~6.9 km/s,这可能是由壳幔物质混合引起的.依据莫霍面的特点,本文认为双莫霍面以南为华北板块北缘,以北为西伯利亚板块南缘,拼合位置在赤峰断裂带(F2)与索伦敖包—阿鲁科尔沁旗断裂带(F4)之间的区域.  相似文献   

2.
位于中国云南省的三江地区的断裂主要包括金沙江-红河断裂、澜沧江断裂和怒江断裂(三江断裂带). 通过解释跨过滇西构造域中腾冲与保山地块的遮放-宾川宽角反射/折射地震剖面, 文中以地震波旅行时层析成像方法获得了地壳纵波速度结构, 以地震散射成像方法获得地壳反射结构, 从而重建了研究地区的地壳、上地幔反射结构. 给出的研究区地震P波速度和反射结构图像表明:该剖面的地壳结构可以划分为3个块体, 各块体间地壳速度与反射图像具有明显差异, 保山段地壳速度较东西两段为低, 莫霍界面反射强. 该地区地壳厚度为40 km左右, 并具有从西向东增厚的趋势. 腾冲南, 即剖面上80~115 km地段, 在8~10 km深处存在一组亮点形式的强反射带, 莫霍界面反射波场在横向变化明显. 对三江断裂地带地壳增厚的方式, 地震孕育的构造环境及腾冲、保山地块、潞西海槽之间的接触关系等问题进行了讨论.  相似文献   

3.
文中基于长100km的深地震反射剖面,揭示了秦岭造山带北缘和华北地块南缘交接部位的地壳精细结构和断裂的深、浅构造特征。结果显示,研究区地壳具有双层反射结构特征,莫霍面由一系列叠层状的弧形强反射构成,地壳厚约32~35km。上地壳内一系列方向不同、形态各异的反射波组分别对应秦岭北缘的逆冲推覆体及伸展构造环境下形成的沉积盆地。下地壳以错断莫霍面的地壳深断裂为界,具有南、北2段明显不同的反射结构。剖面南段以弧状强反射为主,北段由产状近水平或S倾的叠层状反射构成,暗示该区曾经历强烈、复杂的构造运动。剖面揭示的上地壳断裂控制了该区盆山构造的形成和地层沉积,错断莫霍面的地壳深断裂为深部物质的上涌和能量交换创造了条件,从而调节了地壳内部的物质构成和能量分配。  相似文献   

4.
跨越东、西秦岭造山带的深地震测深剖面沿近东-西向布设长约560km.沿测线采用6个1.5~2.0吨的爆炸震源激发地震波,使用260套数字地震仪接收,取得了较高质量的地震资料.通过资料分析和处理,识别出沉积层及结晶基底的折射波(Pg)、上地壳底面的反射波(P2)、中地壳底面的反射波(P3)、下地壳内的反射波(P4)、莫霍面的反射波(Pm)和首波(Pn)六个震相.采用地震动力学射线方法(seis88)得到的地壳速度结构表明:(1)在秦岭造山带内反射界面起伏剧烈,西部在略阳-勉县以西明显抬升,断差约3~4km.东部在旬阳-白河县以东呈斜坡状抬升,总体特征呈中间深,两侧浅的态势.东部的速度大于西部,速度差为0.02~0.05km/s.(2)上地壳在略阳-白河县段、中地壳在西乡东-白河县段的速度等值线明显起伏上隆,说明在深度25km之上的区域速度极不均匀,地表上略阳、西乡东对应于勉-略缝合带、大巴山弧的位置.下地壳的速度等值线变化形态与反射界面形态基本一致.(3)莫霍面与地表高程呈镜像,深度为42~54km,地壳平均速度较大为6.44~6.48km/s.东、西秦岭的地壳厚度变化较大,分界位置大致在勉县-略阳和西乡东-石泉西.勉略带以西为西秦岭造山带,莫霍面深度为52~54km,最深处在略阳-勉县地区为54km.西乡东-石泉西以东为东秦岭造山带,莫霍面深度为42~49km,西乡-石泉附近为49~49.5km,安康附近为44.7km,最浅处在十堰附近为42km.东、西秦岭造山带之间是扬子板块的北部边缘带,莫霍面深度为48~49km.莫霍面整体形态呈现起伏的向西倾斜台阶式的增深特点,东西深度相差10~12km.(4)勉-略缝合带以西的地壳增厚,可能是由青藏高原隆升及向东北缘的扩张引起的.总之,沿秦岭造山带的东-西方向的地壳结构比较复杂,它不同于板块碰撞作用形成的盆山结构.莫霍面首波(Pn)在210km之后出现,速度为7.85~8.0km/s.  相似文献   

5.
中国东部地区的壳-幔过渡带结构   总被引:2,自引:0,他引:2       下载免费PDF全文
莫霍面是地壳和上地幔的边界,但莫霍面并不是一个简单的"面",而是一个反映地壳和地幔物质交换、相互作用等动力学意义的"过渡带".本文综合深地震反射、宽角地震折射和高温高压岩石物理实验结果,确定壳-幔过渡带的地震P波速度变化范围为6.8~7.5 km·s-1.在克拉通等构造活动稳定地区壳-幔过渡带内的速度梯度强且壳-幔过渡带厚度薄,而在造山带等构造活动区域壳-幔过渡带内的速度梯度弱且壳-幔过渡带厚.中国东部地区的壳-幔过渡带的平均厚度约为5~10 km,在四川盆地下方最薄(<5 km),而在华北克拉通中部造山带下方的壳-幔过渡带最厚(~30 km).综合地球化学结果,华北中部巨厚壳-幔过渡带主要是幔源岩浆的底侵作用和堆晶作用而形成.  相似文献   

6.
基于在鄂尔多斯盆地与其北部造山带地域,即沿延川—包头—满都拉地带进行的地震宽角反射和折射波场探测,取得了高分辨率的Pg波震相.通过走时差分层析成像方法进行Pg波波场走时反演,给出了沿剖面辖区的上地壳速度分布,求得了沉积建造和结晶基底折射界面的起伏变化,并给予了解释.研究结果表明,鄂尔多斯盆地上地壳为双层结构,上下层之间存在明显的折射界面,上层速度低,纵向变化梯度大;下层速度高,变化较为均匀.基于沿剖面辖区上地壳的速度分布特征提出自南向北应分为:榆林南凹陷、榆林—刀兔隆起、刀兔北至鄂尔多斯北缘断裂为箕形凹陷及其内部的次级构造、呼包凹陷以及伴随的断裂等沉积建造和结晶基底的起伏变化.阴山造山带上地壳速度明显比两侧地区高,速度呈纵向条带状展布,故呈现出结晶基底结构的分布特征和乌拉山、色尔腾山、和教岩体及白云鄂博群陆壳拼合及增生现象.内蒙造山带上地壳亦为双层结构,但基底折射界面不如鄂尔多斯块体明显.本文基于对该区沉积建造和结晶基底的起伏,讨论了沿剖面各有关凹陷的沉积特征与油气前景.  相似文献   

7.
位于南北构造带北段的贺兰山和银川盆地是华北克拉通西部的一个板内构造变形带和活动构造带,有着复杂的形成和演化历史,对该区复杂的地质构造和现代地震活动有着重要的控制作用.2014年初,跨银川盆地和贺兰山完成的长度135km的深地震反射剖面揭示了该区的岩石圈层结构和断裂的深浅构造特征.研究结果表明,沿剖面莫霍面埋深自东向西逐渐加深,地壳厚度40~48km,且不同构造部位的地壳反射结构图像、速度分布、壳内界面形态和莫霍面起伏存在着明显差异.深地震反射剖面揭示,贺兰山两侧有着不同的断裂构造特征,在贺兰山东侧,黄河断裂、贺兰山东麓断裂以及银川盆地内的多条隐伏断裂均为第四纪以来仍在活动的正断层,控制了银川盆地的新生代沉积,在剖面上呈"负花状"构造展布;在贺兰山西侧,巴彦浩特断裂和贺兰山西麓断裂在剖面上表现为东倾的逆冲断层,使得贺兰山隆起区的中生代地层发生褶皱、冲断和结构变形;地壳深断裂位于银川盆地的西侧,该断裂倾角陡直,向下错断中-下地壳和莫霍面,向上可能与两组上地壳断裂相联系;这套不同时期形成的走滑、逆冲和正断并存的深浅断裂系统是该区盆山耦合、地壳结构变形和壳幔结构变化的构造条件.深地震反射剖面揭示的另外一个重要现象是,在贺兰山和银川盆地之下还存在有一组强能量的上地幔反射波组(UMR),其界面深度约为82~92km,暗示该区上地幔中存在有速度跃变层或速度间断面,反映了该区上地幔结构的纵向不均匀性.探测结果为进一步分析研究华北克拉通西部复杂的深部结构、不同地块的结构差异和深浅构造关系等提供了地震学证据.  相似文献   

8.
基于2009年和2011年采集的海底地震仪数据,辅以多道地震数据,对南海西南次海盆北缘的地壳结构进行了探索.利用二维射线追踪的反演方法建立测线上的模型.利用声学基底面的反射波,下地壳顶界面的反射波和莫霍面的反射波走时的反演勾绘了地层中的不连续界面,利用自声学基底面下的折射波和来自上地幔的首波来反演整条测线的P波速度结构...  相似文献   

9.
秦岭—桐柏—大别复合造山带(以下称为秦岭大别造山带)属于中国中央造山带的一部分,由华北克拉通与扬子克拉通汇聚形成.对于秦岭大别造山带及其周缘地区的研究,可以为这一大陆碰撞造山带的形成与演化过程提供重要信息.本文整合研究区域的接收函数与背景噪声数据,采用H-κ叠加分析、接收函数与背景噪声联合反演、克希霍夫偏移成像等方法,得到了沿秦岭东西方向具有高分辨率的地壳及上地幔结构.研究结果显示:(1)莫霍面深度由西向东逐步抬升,由剖面西侧最深约55 km上升至剖面东侧最浅约30 km;莫霍面于东西秦岭之间起伏明显;桐柏以及东大别下方莫霍面局部加深.(2)西秦岭中下地壳观测到的高速异常阻隔了青藏高原东北缘地壳低速异常的向东扩张,反映了青藏高原东北缘的中下地壳流没有通过西秦岭继续向东流动.(3)西秦岭岩石圈地幔顶部高速异常延伸至100 km深度(剖面底部),桐柏—西大别岩石圈地幔顶部高速延伸至70 km深度,东大别、东秦岭岩石圈地幔顶部未见较大深度范围的高速异常.  相似文献   

10.
白志明  吴庆举  徐涛  王晓 《中国地震》2016,32(2):180-192
系统回顾了20世纪70年代以来在中国大陆下扬子及其邻区开展的深地震测深工程,总结了相关宽角反射/折射地震资料的波组特征及地壳结构的基本特征。下扬子及邻区深地震测深资料普遍具有较清晰的初至震波Pg、上地壳底界面反射波P1、中地壳底界面反射波P3、莫霍界面反射波Pm及上地幔顶部首波Pn,震相连续,易追踪对比。受浅表沉积盖层或基岩等的影响,Pg波常出现局部延迟滞后或走时超前现象。尤其是大别造山带个别炮点的反射能量较弱或同相轴扭曲、波形紊乱等,均与地壳内界面和莫霍面的深度突变或破碎有关。该区域地壳结构大致分为上、中、下3层,但视资料情况中地壳和下地壳又可进一步划分为2个亚层。华北地台和扬子地台地壳厚度30~36km,莫霍界面形态变化较缓,存在局部隆起,下地壳平均速度6.7±0.3km/s。但大别造山带下方地壳厚度32~41km,莫霍界面下凹且出现4~7km垂向错断,下地壳平均速度6.8±0.2km/s。  相似文献   

11.
本文使用时间域迭代反褶积算法,从张家口(怀来)—巴音温多尔一线布设的41个宽频地震台站、1年期间记录的连续三分量数据中提取到高质量的P波接收函数1844个.用H-κ扫描方法获得了测线下方Moho深度与波速比值(VP/VS)进而计算出泊松比,用共转换点(CCP)叠加方法获得了沿测线Moho面起伏图像.结果显示:(1)测线下方Moho深度平均40km,仅各块体边界处出现Moho深度小尺度急剧变化.整体上,Moho面产状相对于索伦缝合带大致对称,在缝合带南侧的温都尔庙带和白乃庙带下方呈南倾趋势,在缝合带北侧的宝力道带、贺根山杂岩带下方呈北倾趋势.(2)华北克拉通北缘泊松比总体较高,兴蒙造山带整体较低;各次级块体内部泊松比分布相对稳定,块体分界带附近往往存在泊松比值的升降扰动.(3)整条测线地壳厚度和泊松比之间存在弱的负相关关系,表明存在构造作用的影响.(4)整条测线泊松比呈现以索伦缝合带南缘为对称轴的非线性分布.本文所获得的地壳上地幔结构以及泊松比分布特征,支持古亚洲(索伦)洋(南北)双向俯冲,最终沿林西断裂闭合的动力学模式.  相似文献   

12.
Magnetotelluric data are collected along a NW-SE trending and about 900km long profile within northeastern boundary areas of the North China craton(NCC). This profile extends from the Hegenshan belt within the Central Asian orogenic belt(CAOB), across the Baolidao arc, Solonker-Linxi suture zone, Ondor Sum accretion complex, Bainaimiao arc, Inner Mongolia paleo-uplift, Yanshan belt, and ends on the Liaohe depression of the NCC. Impedance tensor decomposition methods are used to study the dimensionality and geo-electric strike of MT data of the region. Two-dimension (2D) analysis is appropriate for this profile. The 2-D subsurface electrical resistivity structure along profile is obtained using the non-linear conjugate gradient (NLCG) algorithm. The electrical resistivity structure is characterized by lateral segmentation, and divided into high resistive, low resistive, and high resistive areas; The lateral variation of electrical resistivity is significant within the CAOB, but it is smooth in the NCC; The extensive high conductive body(HRB)is observed in the mid-low crust beneath the Solonker-Linxi suture zone and Inner Mongolia paleo-uplift, respectively; The low resistivity could be due to the partial melts and crustal flows. Based on our electrical resistivity structure and other geological, geophysical observations, we speculate that (1)the final suturing of the Siberian craton to the NCC could be along the areas between Xilinhot Fault and Xar Moron Fault; (2)the relatively thick high resistive body beneath the Yanshan belt may serve as a tectonic barrier separating the on-craton and off-craton regions into different upper mantle convection system, and lower the effect of tectonic evolution of CAOB on the destruction to NCC.  相似文献   

13.
根据西秦岭构造带及其周边地区117个宽频带地震台站的高质量波形数据, 利用远震P波接收函数的H-k叠加方法, 求得地壳厚度和平均波速比. 通过分析地壳厚度、 波速比及其关系和接收函数CCP叠加剖面, 研究了该区域的地壳结构特征. 结果表明, 研究区域内地壳结构差异大, 呈过渡带特征. 地壳厚度总体上呈北北西向分布, 自西南向东北逐渐减小. 羌塘块体地壳厚度为72 km, 渭河盆地附近为39 km. 西秦岭构造带的地壳厚度为42—56 km, 南北向莫霍界面平坦. 研究区域P波与S波波速比平均为1.74, 其中西秦岭构造带平均为1.72. 较低的波速比主要分布在西秦岭构造带、 祁连山块体、 松潘—甘孜地块北部以及香山—天景山断裂区域, 这可能是由于含长英质酸性岩组分的上地壳叠置增厚而导致的. 该区域缺少超高波速比, 表明这一区域发生岩浆底侵或上地壳熔融的可能性很小. 综合分析表明, 西秦岭构造带及邻区的地壳结构主要是由于青藏高原隆升并在向东北向扩张中受到周边块体的阻挡而引起的地壳构造变形所致. 西秦岭构造带的莫霍界面变化和波速比分布与该构造带经历碰撞地壳增厚后的伸展走滑运动有关.   相似文献   

14.
The Sanjiang area in southwest China is considered as a tectonic intersection belt between the Tethys-Alps and the western Pacific, and has endured three-phase evolution processes: Proto-Tethys,Paleo-Tethys and Meso-Tethys[1―4]. In this area, its tectonics and struc- ture are extremely complicated, and intensively extru-sive deformation and faults are widely developed[1―3]. For that, the area is considered as the ideal na- ture-laboratory to study the evolution of Paleo-Tethys and also …  相似文献   

15.
西伯利亚板块与华北克拉通碰撞导致古亚洲洋闭合,形成了幅员辽阔的中亚造山带,该带内记录了丰富的板块碰撞信息,揭示深部缝合边界对于研究洋-陆俯冲到陆-陆碰撞的深部动力学过程具有重要的科学意义.本文对查干敖包—化德410km大地电磁测深(MT)剖面数据进行反演,获得二维电性结构,为研究西伯利亚板块与华北克拉通碰撞带深部构造形迹、碰撞边界问题提供地电结构的依据.结合人工反射地震及地质资料获得以下认识:(1)西伯利亚板块与华北克拉通碰撞带地壳存在多组"U"型低阻异常,多对应弧型、倾斜或"鳄鱼嘴"状反射界面.莫霍面存在两处错断现象,并与深部电性梯度带对应.岩石圈地幔除白乃庙岛弧呈低阻块体外,均为高阻块体,这些电性结构特征反映了南北汇聚所形成的构造形迹.(2)碰撞带可分为二连—贺根山和索伦—西拉木伦河两个不同时期的汇聚体系,晚泥盆世—晚石炭世早期形成的二连—贺根山汇聚体系由二连—贺根山增生杂岩带、宝力岛弧地体及断裂带组成,深部缝合边界位于二连浩特.而晚二叠—早三叠的索伦—西拉木伦河汇聚体系由二道井子增生杂岩带和温都尔庙增生杂岩带及断裂带组成,深部缝合边界位于苏尼特右旗.(3)在锡林浩特地区软流圈内部存在高阻异常,可能为俯冲消失的洋壳或碰撞造山后拆离的岩石圈残片.  相似文献   

16.
Introduction The Tengchong volcanic-geothermal area is located on the northeast edge of the collision zone between Indian and Eurasian plates, and belongs to Eurasian volcanic zone (the MediterraneanHimalayanSoutheast Asia volcanic zone). In Tengchong area, the Quaternary volcanic, geothermal and seismic activities are all intensive. These phenomena have been drawing the attention of many geoscientists in the world. Their studies are concerned with geology, geophysics, geochemistry, and cr…  相似文献   

17.
A teleseismic profile consisting of 26 stations was deployed along 30°N latitude in the eastern Tibetan Plateau. By use of the inversion of P-wave receiver function, the S-wave velocity structures at depth from surface to 80 km beneath the profile have been determined. The inversion results reveal that there is significant lateral variation of the crustal structure between the tectonic blocks on the profile. From Linzhi north of the eastern Himalayan Syntaxis, the crust is gradually thickened in NE direction; the crustal thickness reaches to the maximum value (∼72 km) at the Bangong-Nujiang suture, and then decreased to 65 km in the Qiangtang block, to 57–64 km in the Bayan Har block, and to 40–45 km in the Sichuan Basin. The eastern segment of the teleseismic profile (to the east of Batang) coincides geographically with the Zhubalong-Zizhong deep seismic sounding profile carried out in 2000, and the S-wave velocity structure determined from receiver functions is consistent with the P-wave velocity structure obtained by deep seismic sounding in respect of the depths of Moho and major crustal interfaces. In the Qiangtang and the Bayan Har blocks, the lower velocity layer is widespread in the lower crust (at depth of 30–60 km) along the profile, while there is a normal velocity distribution in lower crust in the Sichuan Basin. On an average, the crustal velocity ratio (Poisson ratio) in tectonic blocks on the profile is 1.73 (σ = 0.247) in the Lhasa block, 1.78 (σ = 0.269) in the Banggong-Nujiang suture, 1.80 (σ = 0.275) in the Qiangtang block, 1.86 (σ = 0.294) in the Bayan Har blocks, and 1.77 (σ = 0.265) in the Yangtze block, respectively. The Qiangtang and the Bayan Har blocks are characterized by lower S-wave velocity anomaly in lower crust, complicated Moho transition, and higher crustal Poisson ratio, indicating that there is a hot and weak medium in lower crust. These are considered as the deep environment of lower crustal flow in the eastern Tibetan Plateau. Flowage of the ductile material in lower crust may be attributable to the variation of the gravitational potential energy in upper crust from higher on the plateau to lower off plateau. Supported by the National Natural Science Foundation of China (Grants No. 40334041 and 40774037) and the International Cooperation Program of the Ministry of Science and Technology of China (Grant No. 2003DF000011)  相似文献   

18.
陈洁  陈永顺  郭震  杨挺 《地球物理学报》2020,63(7):2592-2604
鄂尔多斯地块紧邻青藏高原东北缘,位于华北克拉通的西部,在我国中生代、新生代以来东部地区的构造活动中起到了重要作用.对鄂尔多斯及其周缘地区的研究可以提供有关华北克拉通的形成、演化和破坏过程的重要信息.本文选取了纵贯鄂尔多斯的107.6°E附近南北剖面上的44个流动地震台站进行分析,采用接收函数方法,进行Kirchhoff偏移成像,并且结合在该区域内前人的地震面波频散进行联合反演,获得剖面下方的地壳内部精细结构.研究结果显示:(1)莫霍面在鄂尔多斯北部较平缓,约45km深;在鄂尔多斯南部有所加深,达到50km;其北边的河套盆地的地壳厚度约为50km;南边的渭河盆地到秦岭地区及四川盆地的地壳厚度从约为40km增厚到47~50km.(2)河套盆地下方存在大规模的低速异常,最深可达25km,反映了其显著的拉张构造和沉积历史.(3)秦岭造山带下方的低速异常对应于其主要为长英质的地壳组分,可能是由于中生代的拆沉作用导致的地壳下部基性岩石层的缺失.(4)以38°N为界的鄂尔多斯地块,南北部地壳速度结构存在差异,可能表明了这两部分经历的构造历史不同.  相似文献   

19.
在青藏高原东北缘,穿过阿尼玛卿缝合带东端完成了一条637 km的近南北向深地震宽角反射/折射剖面.获得的地壳结构剖面表明,该地区Moho界面埋深48~51 km,北浅南深,横向变化不大,而地壳内部构造在不同的地质构造块体差异明显.在下地壳内出现的两组能量较强的P3、P4波组,反映了研究区下地壳的反射性质和多层结构特征.阿坝弧形断裂以南和阿尼玛卿缝合带附近壳内界面变形强烈,壳内低速异常结构明显,特别是在缝合带下方20 km以下的中下地壳异常的低速结构可以解释为存在延伸至中下地壳的破碎带构造特征.在剖面南段反映西秦岭褶皱带至松甘块体相应的地震记录出现复杂、强烈的中下地壳反射和相对较弱的Moho反射震相是该地区地壳结构的明显特征.  相似文献   

20.
AbstractThe Benzilan-Tangke deep seismic sounding profile in the western Sichuan region passes through the Song-pan-Garze orogenic belt with trend of NNE.Based on the travel times and the related amplitudes of phases in therecord sections,the 2-D P-wave crustal structure was ascertained in this paper. The velocity structure has quitestrong lateral variation along the profile.The crust is divided into 5 layers,where the first,second and third layerbelong to the upper crust,the forth and fifth layer belong to the lower crust.The low velocity anomaly zone gener-ally exists in the central part of the upper crust on the profile,and it integrates into the overlying low velocitybasement in the area to the north of Ma’erkang.The crustal structure in the section can be divided into 4 parts:inthe south of Garze-Litang fault,between Garze-Litang fault and Xiashuihe fault,between Xianshuihe fault andLongriba fault and in the north of Longriba fault,which are basically coincided with the regional tectonics division  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号