首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
厦门岛城市空间扩张特征及其影响因素   总被引:1,自引:0,他引:1  
Most of the world’s cities are concentrated in coastal areas. As a special geographical component of the coastal system, island urban spatial expansion is the outcome of interactions between city development and the physical environment. This paper takes Xiamen Island, located in Southeastern China, as an example to analyze island urban spatial expansion and its determinants by combining an analysis of the literature on urban development policies, urban overall plans, population growth and industrial development, with geographical information analysis using historical maps and remote sensing photographs. Firstly, we reviewed the history of the Xiamen City development during the last 100 years, which can be divided into four periods: the embryonic modern city and early development from 1908 to 1949; administrative boundary expansion and infrastructure development from 1950 to 1979; special economic zone construction and rapid urbanization from 1980 to 2003; and Bay City construction since 2003. The dynamic changes to the coastline, island shape, built-up area, transportation, administrative division, and major land use type conversion which occurred during approximately the past 100 years were analyzed and the characteristics of the island urban spatial expansion were concluded: early expansion from a central point, followed by expansion along a section of coastline, and expansion from the coastline inland. Secondly, we discussed the potential determinants of island urban spatial expansion including administrative division adjustment, urban master planning revision, industrial development, topographical factors, coastal area reclamation, transportation expansion, and population growth. Finally, the effects of each potential determinant on island urban spatial expansion were concluded. Island urban spatial expansion is the result of a synthesis of natural and socio-economic factors which are not independent but interacting. Built-up area expansion is the major driver of island land cover and land use changes. By this paper, we hope to provide a scientific reference contributing to the rational understanding of island and coastal sustainable urbanization in China, and the world beyond.  相似文献   

2.
In this paper we adopt annual land use conditions change data, land sifting data, social, economic and population data and environment information of nine districts and four counties in Xi'an city from 1980 to 2000 to analyze its structural and degree change of land use since the 1980s, and calculate the benefits and transformation of land use type. The results show that the non-agricultural land increased rapidly, especially the urban and rural residential spots and industrial and mining (RIM) land use increased mostly rapidly, an increase of 64%. Meanwhile, the intensity of land exploitation was accelerating, land was transformed to industries with better benefit and areas experiencing faster urbanization process. By analyzing the harmonious degree of land exploitation in economic and environmental aspects, we find out that the land use imbalance mainly existed in the municipal area of Xi'an, and the imbalance index of land use based on GDP and non-agricultural population were respectively 12.37 and 14.67 in 2000, which were far higher than those in other regions. Nevertheless the environmental harmonious degree in the municipal area of Xi'an ranges between 0.6 and 0.8, which was better than that of suburban area. Some proposals addressing to the problems of harmonious level in all scales, resources utilization, projects management and feasibility analysis and intensive urbanization are also put forward.  相似文献   

3.
During the last decade of the 20th century, extensive conversion in agricultural land use took place in Northeast China. The goal of this study is to ascertain its spatial distribution and regional differentiation, determine its causes, and analyze its environmental impact, Especially we attempt to elucidate how institutional constraints have facilitated the change at a time of agrarian restructuring when newly emerging free market was hybridized with the former planned economy. Information on six categories of land use was mapped from interpretation of Landsat TM images recorded in 1990,1995 and 2000. Most of land use changes took place during the first half of the decade, coinciding with abrupt and chaotic changes in government directives. Farmland was changed mainly to woodland,water body and built-up areas while woodland and grassland were converted chiefly to farmland.Spatially, the change from farmland to woodland was restricted to the west of the study area. The change from grassland to farmland took place in the grazing and farming interlocked west. These chaotic and occasionally conflicting changes were largely caused by lack of stability and consistency in agricultural land use policies promulgated. They have exerted adverse impacts on the local environment, including land degradation, increased flooding, and modified climate regime.  相似文献   

4.
Land cover change affects surface radiation budget and energy balance by chang- ing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990-2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990-2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 WIm2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

5.
Land use/cover change has been recognized as a key component in global change and has attracted increasing attention in recent decades. Scenario simulation of land use change is an important issue in the study of land use/cover change, and plays a key role in land use prediction and policy decision. Based on the remote sensing data of Landsat TM images in 1989, 2000 and 2010, scenario simulation and landscape pattern analysis of land use change driven by socio-economic development and ecological protection policies were reported in Zhangjiakou city, a representative area of the Poverty Belt around Beijing and Tianjin. Using a CLUE-S model, along with socio-economic and geographic data, the land use simulation of four scenarios–namely, land use planning scenario, natural development scenario, ecological-oriented scenario and farmland protection scenario–were explored according to the actual conditions of Zhangjiakou city, and the landscape pattern characteristics under different land use scenarios were analyzed. The results revealed the following:(1) Farmland, grassland, water body and unused land decreased significantly during 1989–2010, with a decrease of 11.09%, 2.82%, 18.20% and 31.27%, respectively, while garden land, forestland and construction land increased over the same period, with an increase of 5.71%, 20.91% and 38.54%, respectively. The change rate and intensity of land use improved in general from 1989 to 2010. The integrated dynamic degree of land use increased from 2.21% during 1989–2000 to 3.96% during 2000–2010.(2) Land use changed significantly throughout 1989–2010. The total area that underwent land use change was 4759.14 km2, accounting for 12.53% of the study area. Land use transformation was characterized by grassland to forestland, and by farmland to forestland and grassland.(3) Under the land use planning scenario, farmland, grassland, water body and unused land shrank significantly, while garden land, forestland and construction land increased. Under the natural development scenario, construction land and forestland increased in 2020 compared with 2010, while farmland and unused land decreased. Under the ecological-oriented scenario, forestland increased dra-matically, which mainly derived from farmland, grassland and unused land. Under the farmland protection scenario, farmland was well protected and stable, while construction land expansion was restricted.(4) The landscape patterns of the four scenarios in 2020, compared with those in 2010, were more reasonable. Under the land use planning scenario, the landscape pattern tended to be more optimized. The landscape became less fragmented and heterogeneous with the natural development scenarios. However, under the ecological-oriented scenario and farmland protection scenario, landscape was characterized by fragmentation, and spatial heterogeneity of landscape was significant. Spatial differences in landscape patterns in Zhangjiakou city also existed.(5) The spatial distribution of land use could be explained, to a large extent, by the driving factors, and the simulation results tallied with the local situations, which provided useful information for decision-makers and planners to take appropriate land management measures in the area. The application of the combined Markov model, CLUE-S model and landscape metrics in Zhangjiakou city suggests that this methodology has the capacity to reflect the complex changes in land use at a scale of 300 m×300 m and can serve as a useful tool for analyzing complex land use driving factors.  相似文献   

6.
Land cover change affects surface radiation budget and energy balance by changing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990–2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990–2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 W/m2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

7.
Land use/cover change is an important theme on the impacts of human activities on the earth systems and global environmental change. National land-use changes of China during 2010–2015 were acquired by the digital interpretation method using the high-resolution remotely sensed images, e.g. the Landsat 8 OLI, GF-2 remote sensing images. The spatiotemporal characteristics of land-use changes across China during 2010–2015 were revealed by the indexes of dynamic degree model, annual land-use changes ratio etc. The results indicated that the built-up land increased by 24.6×10~3 km~2 while the cropland decreased by 4.9×10~3 km~2, and the total area of woodland and grassland decreased by 16.4×10~3 km~2. The spatial pattern of land-use changes in China during 2010–2015 was concordant with that of the period 2000–2010. Specially, new characteristics of land-use changes emerged in different regions of China in 2010–2015. The built-up land in eastern China expanded continually, and the total area of cropland decreased, both at decreasing rates. The rates of built-up land expansion and cropland shrinkage were accelerated in central China. The rates of built-up land expansion and cropland growth increased in western China, while the decreasing rate of woodland and grassland accelerated. In northeastern China, built-up land expansion slowed continually, and cropland area increased slightly accompanied by the conversions between paddy land and dry land. Besides, woodland and grassland area decreased in northeastern China. The characteristics of land-use changes in eastern China were essentially consistent with the spatial govern and control requirements of the optimal development zones and key development zones according to the Major Function-oriented Zones Planning implemented during the 12 th Five-Year Plan(2011–2015). It was a serious challenge for the central government of China to effectively protect the reasonable layout of land use types dominated with the key ecological function zones and agricultural production zones in centraland western China. Furthermore, the local governments should take effective measures to strengthen the management of territorial development in future.  相似文献   

8.
Based on four phases of TM images acquired in 1990, 1995, 2000 and 2005, this paper took Kitakyushu in Japan as a case study to analyze spatial change of land use landscape and corresponding effects on environmental issues guided by landscape ecology theory in virtue of combining technology of Remote Sensing with GIS. Firstly, land use types were divided into 6 classes (farmland, mountain, forestland, water body, urban land and unused land) according to national classification standard of land use, comprehensible ability of TM image and purpose of this study. Secondly, following the theory of landscape ecology analysis, 11 typical landscape indices were abstracted to evaluate the environmental effects and spatial feature changes of land use. Research results indicated that land use has grown more and more diversified and unbalanced, human activities have disturbed the landscape more seriously. Finally, transfer matrix of Markov was applied to forecast change process of land use in the future different periods, and then potential land use changes were also simulated from 2010 to 2050. Results showed that conversion tendency for all types of land use in Kitakyushu into urban construction land were enhanced. The study was anticipated to help local authorities better understand and address a complex land use system, and develop improved land use management strategies that could better balance urban expansion and ecological conservation.  相似文献   

9.
21世纪初中国土地利用变化的空间格局与驱动力   总被引:33,自引:15,他引:18  
Land use and land cover change as the core of coupled human-environment systems has become a potential field of land change science (LCS) in the study of global environmental change. Based on remotely sensed data of land use change with a spatial resolution of 1 km × 1 km on national scale among every 5 years, this paper designed a new dynamic regionalization according to the comprehensive characteristics of land use change including regional differentiation, physical, economic, and macro-policy factors as well. Spatial pattern of land use change and its driving forces were investigated in China in the early 21st century. To sum up, land use change pattern of this period was characterized by rapid changes in the whole country. Over the agricultural zones, e.g., Huang-Huai-Hai Plain, the southeast coastal areas and Sichuan Basin, a great proportion of fine arable land were engrossed owing to considerable expansion of the built-up and residential areas, resulting in decrease of paddy land area in southern China. The development of oasis agriculture in Northwest China and the reclamation in Northeast China led to a slight increase in arable land area in northern China. Due to the "Grain for Green" policy, forest area was significantly increased in the middle and western developing regions, where the vegetation coverage was substantially enlarged, likewise. This paper argued the main driving forces as the implementation of the strategy on land use and regional development, such as policies of "Western Development", "Revitalization of Northeast", coupled with rapidly economic development during this period.  相似文献   

10.
Potential evapotranspiration(ET_0) is vital for hydrologic cycle and water resource assessments as well as crop water requirement and irrigation demand assessments. The Beijing-Tianjin-Hebei region(Jing-Jin-Ji)–an important, large, regional, economic community in China has experienced tremendous land use and land cover changes because of urbanisation and ecological restoration, affecting the hydrologic cycle and water resources of this region. Therefore, we analysed ET_0 in this region using climate data from 22 meteorological stations for the period 1991–2015 to understand this effect. Our findings show that ET_0 increased significantly at a rate of 7.40 mm per decade for the region. Based on the major land use type surrounding them, the meteorological stations were classified as urban, farmland, and natural stations using the 2015 land use dataset. The natural stations in the northern mountainous area showed a significant increase in ET_0, whereas most urban and farmland stations in the plain area showed a decrease in ET_0, with only a few of the stations showing an increase. Based on the different ET_0 trends for different land use types, these stations can be ranked as follows: urban stations(trend value:-4.663 to-1.439) natural stations(trend value: 2.58 to 3.373) farmland stations(trend value:-2.927 to-0.248). Our results indicate that land use changes affect meteorological parameters, such as wind speed and sunshine duration, which then lead to changes in ET_0. We noted that wind speed was the dominant parameter affecting ET_0 at all the natural stations, and wind speed and sunshine duration were the dominant parameters affecting ET_0 at most of the urban stations. However, the main controlling parameters affecting ET_0 at the farmland stations varied. These results present a scope for understanding land use impact on ET_0, which can then be applied to studies on sustainable land use planning and water resource management.  相似文献   

11.
长沙城市土地扩张特征及影响因素   总被引:3,自引:2,他引:1  
This research systematically analyses land-use map of Changsha city in different periods of time. The spatial form and structural evolution was analysed by studying indices such as city land-use structure proportion, expansion intensity, economic flexibility, population flexibility, changing compactness index and so on. The dynamic mechanism of urban land expansion has been discussed by integrating the regional social economy development situation and many aspects such as the physiographical surrounding, population and economic development, traffic infrastructure, planning and regional development tactic and system innovation. The research indicates that the urban land expansion speed and intensity have steadily increased in Changsha from 1949 to 2004. The expansion form has been from a single external expansion to a combination form of external and internal expansion, from a circular or linear continuous form to a blocky or agglomeration shape. Overall, the urban land expansion of Changsha city is a phasic, diversified and complex process. And no matter what the stage is, it is an organic system containing multiple speed, pattern and shape, which are driven by multiple impetuses. The dominant feature at different stages was highlighted be- cause of the balance and fluctuation between different forces, and the existing urban land border and shape have resulted from the joint efforts of these phasic forces.  相似文献   

12.
The shapes of the urban lakes in Wuhan city have been strongly influenced by the rapid industrialization and urbanization experienced in recent decades.Based on topographic maps and remote sensing images,the temporal and spatial changes of East Lake,Wuhan city,over the past two decades were analyzed.The landscape shape index(LSI)and centroid method were applied to analyze the evolution of lake morphology and its causes.Several key results were obtained.(1)The surface area of East Lake decreased sharply by 2.13 km2 from 1995 to 2005,and slightly by 1.00 km2 from 2005 to 2015.The shoreline length of East Lake displayed a continuous trend of decline during the study period:The length reduced by 21.89 km from 1995 to 2005,and by 0.67 km from 2005 to 2015.The LSI values,7.04(1995),6.46(2005),and 6.28(2015),displayed an accelerated downward trend,indicating a reduction of complexity in East Lake and the intensification of manual interventions in the water body.(2)The changes to East Lake displayed a clear temporal and spatial heterogeneity.The centroid of East Lake moved northeast from 1995 to 2005 and southeast from 2005 to 2015.(3)The reduction in the area of East Lake was mainly affected by human activities.A lake area of about 4.8 km2 was converted to other land uses during 1995-2005,most of which was unused land,whereas from 2005 to 2015,0.43 km2 of the lake area was converted into built-up land,and 0.25 km2 was converted into other land uses.The reduction in area was caused by infrastructure construction by the government,the development of the real estate industry,illegal construction by villagers,and the development of scenic spots for tourism.The driving forces of this reduction included Wuhan's growing population,and the rapid development of the economy and urbanization between 1995 and 2015,which has resulted in a large demand for land.Finally,a formation mechanism model was constructed by analyzing the causes of East Lake's morphological evolution.  相似文献   

13.
Yu  Wanhui  Zhang  Lijuan  Zhang  Hongwen  Jiang  Lanqi  Zhang  Ankang  Pan  Tao 《地理学报(英文版)》2020,30(3):439-454
The effects of human activities on climate change are a significant area of research in the field of global environmental change. Land use and land cover change(LUCC) has a greater effect on climate than greenhouse gases, and the effect of farmland expansion on regional drought is particularly important. From the 1910 s to the 2010 s, cultivated land in Songnen Plain increased by 2.67 times, the area of cultivated land increased from 4.92×10~4 km~2 to 13.14×10~4 km~2, and its percentage of all land increased from 25% to 70%. This provides an opportunity to study the effects of the conversion of natural grassland to farmland on climate. In this study, the drought indices in Songnen Plain were evaluated from the 1910 s to the 2010 s, and the effect of farmland expansion on drought was investigated using statistical methods and the Weather Research and Forecasting Model based on UK's Climatic Research Unit data. The resulting dryness index, Palmer drought severity index, and standardized precipitation index values indicated a significant drying trend in the study area from 1981 to 2010. This trend can be attributed to increases in maximum temperature and diurnal temperature range, which increased the degree of drought. Based on statistical analysis and simulation, the maximum temperature, diurnal temperature range, and sensible heat flux increased during the growing season in Songnen Plain over the past 100 years, while the minimum temperature and latent heat flux decreased. The findings indicate that farmland expansion caused a drying trend in Songnen Plain during the study period.  相似文献   

14.
Analyses of desertified land and land use change in Naiman County of Inner-Mongolia showed that there was a fluctuated in-crease of rain-fed cropland in the period from 1951 to 1960, then decreased until the middle of the 1990's, then increased again, while irrigated cropland consistently increased. The woodland and build-up land consistently increased while grassland area de-creased. The area of water body increased from 1975 to 1995 and then decreased while river beach decreased. Wetland change fluctuated with a maximum of 303.53km2 in 1995 and a minimum of 62.08 km2 in 2002. Invasion of cropland into river beach does not only change land coverage on the beach, but also the hydrological process of the river systems and deeply influence wa-ter availability. The correlation between cropland and underground water table is negative and significant. Increase of irrigated cropland is the primary cause of water availability reduction. Water table reduction is negatively correlated to cropland. The total desertified land has decreased since 1975. A rapid increase occurred before 1959, but it is difficult to assess the change of deserti-fication due to lack of data from 1959 to 1975. Changes of different types of desertified lands were different. There is no signifi-cant correlation between land use and different types of desertified land, but there is a significant negative correlation between woodland and total desertified land. The correlation between grassland and total desertified land is positive and significant. There is a significant correlation between different land cover and key factors such as water body and annual precipitation, river beach and runoff, area of shifting dune and annual precipitation, and cropland and underground water table. Desertification reversion in Naiman County is fragile and will be even much more fragile due to population growth, rapid land use and climate change. This will lead to continued invasion of irrigated cropland into more fragile ecosystems and reduction of water availability.  相似文献   

15.
北京城市蔓延的测度与分析   总被引:5,自引:2,他引:3  
Concerning about the rapid urban growth in recent China, this study takes Beijing as a case and puts forward that urban sprawl can be measured from spatial configuration, urban growth efficiency and external impacts, and then develops a geo-spatial indices system for measuring sprawl, a total of 13 indicators. In order to calculate these indices, different sources data are selected, including land use maps, former land use planning, land price and floor-area-ratio samples, digitized map of the highways and city centers, population and GDP statistical data, etc. Various GIS spatial analysis methods are used to spatialize these indices into 100m×100m cells. Besides, an integrated urban sprawl index is calculated by weight sum of these 13 indices. The application result indicates that geo-spatial indices system can capture most of the typical features and interior differentia of urban sprawl. Construction land in Beijing has kept fast growing with large amount, low efficiency and disordered spatial configuration, indicating a typical sprawling tendency. The following specific sprawl features are identified by each indicator: (1) typical spatial configuration of sprawling: obvious fragmentation and irregularity of landscape due to unsuccessful enforcement of land use planning, unadvisable pattern of typical discontinuous development, strip development and leapfrog development; (2) low efficiency of sprawl: low development density, low population density and economic output in newly developed area; and (3) negative impacts on agriculture, environment and city life. According to the integrated sprawl index, the sprawling amount in the northern part is larger than that in the southern, but the sprawling extent is in converse case; most sprawling area include the marginal area of the near suburbs and the area between highways, etc. Four sprawling patterns are identified: randomly expansion at urban fringe, strip development along or between highways, scattered development of industrial land, leapfrog development of urban residence and industrial area.  相似文献   

16.
The Qilian mountain area was examined for using the Logistic-CA-Markov coupling model combined with GIS spatial analyst technology to research the transformation of LUCC, driving force system and simulate future tendency of variation. Results show that:(1) Woodland area decreased by 12.55%, while grassland, cultivated land, and settlement areas increased by 0.22%, 7.92%, and 0.03%, respectively, from 1986 to 2014. During the period of 1986 to 2000, forest degradation in the middle section of the mountain area decreased by 1,501.69 km~2. Vegetation cover area improved, with a net increase of grassland area of 38.12 km~2 from 2000 to 2014.(2) For constructing the system driving force, the best simulation scale was 210m×210m. Based on logistic regression analysis, the contribution(weight) of composite driving forces to land use and cover change was obtained, and the weight value was more objectively compared with AHP and MCE method.(3) In the natural scenarios, it is predicted that land use and cover distribution maps of Qilian mountain area in 2028 and 2042, and the Lee-Sallee index test was adopted. Over the next 27 years(2015–2042), farmland, woodland, grassland, settlement areas show an increasing trend, especially settlements with an obvious change of 0.56%. The area of bare land will decrease by 0.89%. Without environmental degradation, tremendous structural change of LUCC will not occur, and typical characteristic of the vertical zone of the mountain would remain. Farmland and settlement areas will increase, but only in the vicinity of Qilian and Sunan counties.  相似文献   

17.
Land expansion of mountain cities in China is not systematically studied yet.This study identified 55 major mountain cities at and above prefecture level,and analyzed the land expansion characteristics and driving forces,based on visually interpreted data from TM images in 1990,2000,2010 and 2015.From 1990 to 2015,total built-up land area of the mountain cities increased by 3.87 times,5.56%per year.The urban land growth was apparently accelerated after 2000,from 4.35%per year during 1990–2000 increased to 6.47%during 2000–2010 and 6.2%during 2010–2015.Compared to the urban population growth,the urban land expansion rate was 44% higher.As a result,the urban land area per capita increased,but it was still within the government control target,and also was much lower than the average of all cities in China.Urban development policy,changes to administrative divisions,GDP and population growth,and road construction were identified as the major driving forces of land expansion.Terrain conditions were not found a relevance to the urban land expansion rate during 1990–2015,but had a significant impact on the layout and shape,and also probably on the urban land efficiency.  相似文献   

18.
In areas with topographic heterogeneity, land use change is spatially variable and influenced by climate, soil properties, and topography. To better understand this variability in the high-sediment region of the Loess Plateau in which soil loss is most severe and sediment diameter is larger than in other regions of the plateau, this study builds some indicators to identify the characteristics of land use change and then analyze the spatial variability as it is affected by climate, soil property, and topography. We build two indicators, a land use change intensity index and a vegetation change index, to characterize the intensity of land use change, and the degree of vegetation restoration, respectively. Based on a subsection mean method, the two indicators are then used to assess the spatial variability of land use change affected by climatic, edaphic, and topographic elements. The results indicate that: 1) Land use changed significantly in the period 1998–2010. The total area experiencing land use change was 42,302 km2, accounting for 22.57%of the study area. High-coverage grassland, other woodland, and forest increased significantly, while low-coverage grassland and farmland decreased in 2010 compared with 1998. 2) Land use change occurred primarily west of the Yellow River, between 35 and 38 degrees north latitude. The four transformation types, including(a) low-coverage grassland to medium-coverage grassland,(b) medium-coverage grassland to high-coverage grassland,(c) farmland to other woodland, and(d) farmland to medium-coverage grassland, were the primary types of land use change, together constituting 60% of the area experiencing land use change. 3) The spatial variability of land use change was significantly affected by properties of dryness/wetness, soil conditions and slope gradient. In general, land use changed dramatically in semi-arid regions, remained relativelystable in arid regions, changed significantly in clay-rich soil, remained relatively stable in clay-poor soil, changed dramatically in steeper slopes, and remained relatively stable in tablelands and low-lying regions. The increase in vegetation coincided with increasing changes in land use for each physical element. These findings allow for an evaluation of the effect of the Grain to Green Program, and are applicable to the design of soil and water conservation projects on the Loess Plateau of China.  相似文献   

19.
In areas with topographic heterogeneity, land use change is spatially variable and influenced by climate, soil properties, and topography. To better understand this variability in the high-sediment region of the Loess Plateau in which soil loss is most severe and sediment diameter is larger than in other regions of the plateau, this study builds some indicators to identify the characteristics of land use change and then analyze the spatial variability as it is affected by climate, soil property, and topography. We build two indicators, a land use change intensity index and a vegetation change index, to characterize the intensity of land use change, and the degree of vegetation restoration, respectively. Based on a subsection mean method, the two indicators are then used to assess the spatial variability of land use change affected by climatic, edaphic, and topographic elements. The results indicate that: 1) Land use changed significantly in the period 1998-2010. The total area experiencing land use change was 42,302 km2, accounting for 22.57%of the study area. High-coverage grassland, other woodland, and forest increased significantly, while low-coverage grassland and farmland decreased in 2010 compared with 1998.2) Land use change occurred primarily west of the Yellow River, between 35 and 38 degrees north latitude. The four transformation types, including (a) low-coverage grassland to medium-coverage grassland, (b) medium-coverage grassland to high-coverage grassland, (c) farmland to other woodland, and (d) farmland to medium-coverage grassland, were the primary types of land use change, together constituting 60% of the area experiencing land use change. 3) The spatial variability of land use change was significantly affected by properties of dryness/wetness, soil conditions and slope gradient. In general, land use changed dramatically in semi-arid regions, remained relatively stable in arid regions, changed significantly in clay-rich soil, remained relatively stable in clay-poor soil, changed dramatically in steeper slopes, and remained relatively stable in tablelands and low-lying regions. The increase in vegetation coincided with increasing changes in land use for each physical element. These findings allow for an evaluation of the effect of the Grain to Green Program, and are applicable to the design of soil and water conservation projects on the Loess Plateau of China.  相似文献   

20.
土地利用变化对水城盆地岩溶水水质的影响   总被引:1,自引:0,他引:1  
The influence of land use and land cover on ecological environment is a focus of global change research. The paper chooses an industrial city-Shuicheng in Guizhou Province-as a study area because the karst water quality around the city is deteriorating with land use and land cover change.The natural susceptibility of karst water system is an important factor leading to karst water pollution.But land use and land cover change is also a main factor according to the chemical analysis of karst water quality and land use change. So it is a good way to protect karst water through rational planning and managing of land use and land cover.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号