首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 693 毫秒
1.
华北平原禹城市耕地变化与驱动力分析(英文)   总被引:2,自引:0,他引:2  
Taking Yucheng, a typical agricultural county in Shandong Province as a case, this study applied Logistic regression models to spatially identify factors affecting farmland changes. Using two phases of high resolution imageries in 2001 and 2009, the study obtained the land use and farmland change data in 2001-2009. It was found that the farmland was reduced by 5.14% in the period, mainly due to the farmland conversion to forest land and built-up land, although part of forest land and unused land was converted to farmland. The results of Logistic regressions indicated that location, population growth and farmer income were main factors affecting the farmland conversion, while soil types and pro-curvature were main natural factors controlling the distribution of farmland changes. Regional differences and temporal-spatial variables of farmland changes affected fitting capability of the Logistic re-gression models. The ROC fitting test indicated that the Logistic regression models gave a good explanation of the regional land-use changes. Logistic regression analysis is a good tool to identify major factors affecting land use change by quantifying the contribution of each factor.  相似文献   

2.
黄淮海平原农区土地利用转型及其动力机制(英文)   总被引:7,自引:0,他引:7  
Land use transition refers to changes in land use morphology, including dominant morphology and recessive morphology, of a particular region over a period of time driven by various factors. Recently, issues related to land use transition in China have attracted interest among a wide variety of researchers as well as government officials. This paper examines the patterns of land use transition and their dynamic mechanism in the Huang-Huai-Hai Plain during 2000–2010. First, the spatio-temporal patterns of land use transition, their characteristics and the laws governing them were analyzed. Second, based on the established conceptual framework for analyzing the dynamic mechanism of land use transition, a spatial econometric regression analysis method was used to analyze the dynamic mechanism of the five types of major land use transition in the Huang-Huai-Hai Plain at the county level. Land use pattern changes in the study area were characterized by an increase in construction land, water body and forested land, along with a decrease in farmland, unused land and grassland. The changes during 2000–2005 were much more significant than those during 2005–2010. In terms of factors affecting land use transitions, natural factors form the basis, and they have long-term effects. Socio-economic factors such as population and GDP, however, tend to determine the direction, structure, size and layout of land use transition over shorter time periods. Land law and policy factors play a mandatory guiding and restraining role in land use transitions, so as to improve the overall efficiency of land use. Land resource engineering is also an important tool to control land use transitions. In general, the five types of major land use transition were the result of the combined action of various physical, social and economic factors, of which traffic condition and location condition had the most significant effects, i.e. they were the common factors in all land use transitions. Understanding the spatio-temporal process of land use transitions and their dynamic mechanisms is an important foundation for utilizing land resources, protecting regional ecological environment and promoting sustainable regional socio-economic development.  相似文献   

3.
Land use/cover change has been recognized as a key component in global change and has attracted increasing attention in recent decades. Scenario simulation of land use change is an important issue in the study of land use/cover change, and plays a key role in land use prediction and policy decision. Based on the remote sensing data of Landsat TM images in 1989, 2000 and 2010, scenario simulation and landscape pattern analysis of land use change driven by socio-economic development and ecological protection policies were reported in Zhangjiakou city, a representative area of the Poverty Belt around Beijing and Tianjin. Using a CLUE-S model, along with socio-economic and geographic data, the land use simulation of four scenarios–namely, land use planning scenario, natural development scenario, ecological-oriented scenario and farmland protection scenario–were explored according to the actual conditions of Zhangjiakou city, and the landscape pattern characteristics under different land use scenarios were analyzed. The results revealed the following:(1) Farmland, grassland, water body and unused land decreased significantly during 1989–2010, with a decrease of 11.09%, 2.82%, 18.20% and 31.27%, respectively, while garden land, forestland and construction land increased over the same period, with an increase of 5.71%, 20.91% and 38.54%, respectively. The change rate and intensity of land use improved in general from 1989 to 2010. The integrated dynamic degree of land use increased from 2.21% during 1989–2000 to 3.96% during 2000–2010.(2) Land use changed significantly throughout 1989–2010. The total area that underwent land use change was 4759.14 km2, accounting for 12.53% of the study area. Land use transformation was characterized by grassland to forestland, and by farmland to forestland and grassland.(3) Under the land use planning scenario, farmland, grassland, water body and unused land shrank significantly, while garden land, forestland and construction land increased. Under the natural development scenario, construction land and forestland increased in 2020 compared with 2010, while farmland and unused land decreased. Under the ecological-oriented scenario, forestland increased dra-matically, which mainly derived from farmland, grassland and unused land. Under the farmland protection scenario, farmland was well protected and stable, while construction land expansion was restricted.(4) The landscape patterns of the four scenarios in 2020, compared with those in 2010, were more reasonable. Under the land use planning scenario, the landscape pattern tended to be more optimized. The landscape became less fragmented and heterogeneous with the natural development scenarios. However, under the ecological-oriented scenario and farmland protection scenario, landscape was characterized by fragmentation, and spatial heterogeneity of landscape was significant. Spatial differences in landscape patterns in Zhangjiakou city also existed.(5) The spatial distribution of land use could be explained, to a large extent, by the driving factors, and the simulation results tallied with the local situations, which provided useful information for decision-makers and planners to take appropriate land management measures in the area. The application of the combined Markov model, CLUE-S model and landscape metrics in Zhangjiakou city suggests that this methodology has the capacity to reflect the complex changes in land use at a scale of 300 m×300 m and can serve as a useful tool for analyzing complex land use driving factors.  相似文献   

4.
Based on the sand dust storms data and climatic data in 12 meteorological stations around sand dust storm originating areas of the Taklimakan Desert, we analyzed the trends of the number of dust storm days from 1960 to 2005 as well as their correlations with temperature, precipitation, wind speed and the number of days with mean wind speed 〉 5 m/s. The results show that the frequency of dust storm events in the Taklimakan region decreased with the elapse of time. Except Ruoqiang and Minfeng, in the other 10 meteorological stations, the frequency of dust storm events reduces, and in 4 meteorological stations of Kuqa, Korla, Kalpin and Hotan, the frequency of dust storm events distinctly decreases. The temperature has an increasing trend, while the average wind speed and the number of days with mean wind speed ≥ 5 m/s have decreasing trends. The correlation analysis between the number of days of dust storms and climatic parameters demonstrates that wind speed and the number of days with mean wind speed 〉 5 m/s have strong positive correlation with the number of days of dust storms, with the correlations coefficients being 0.743 and 0.720 (p〈0.01), respectively, which indicates that strong wind is the direct factor resulting in sand dust storms. Whereas precipitation has significant negative correlation with the number of days of dust storms (p〈0.01), and the prior annual precipitation has also negative correlation, which indicates that the prior precipitation restrains the occurrence of sand dust storms, but this restraining action is weaker than the same year's precipitation. Temperature has negative correlation with the number of dust storm days, with a correlations coefficient of -0.433 (p〈0.01), which means that temperature change also has impacts on the occurrence of dust storm events in the Taklimakan region.  相似文献   

5.
Land cover change affects surface radiation budget and energy balance by chang- ing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990-2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990-2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 WIm2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

6.
Land cover change affects surface radiation budget and energy balance by changing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990–2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990–2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 W/m2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

7.
Reference crop evapotranspiration (ET_0) is an important parameter in the research of farmland irrigation management,crop water demand estimation and water balance in scarce data areas,therefore,it is very important to study the factors af‐fecting the spatial variation of ET_0.In this paper,the Penman-Monteith formula was used to calculate ET_0which is the de‐pendent variable of elevation (Elev),daily maximum temperature (T_(max)),daily minimum temperature (T_(min)),daily average temperature (T_(mean)),wind speed (U_2),sunshine duration (SD) and relative humidity (RH).The sensitivity analysis of ET_0was performed using a Geodetector method based on spatial stratified heterogeneity.The applicability of Geodetector in sensitivity analysis of ET_0was verified by comparing it with existing research results.Results show that RH,T_(max),SD,and T_(mean)are the main factors affecting ET_0in Northwest China,and RH has the best explanatory power for the spatial distribu‐tion of ET_0.Geodetector has a unique advantage in sensitivity analysis,because it can analyze the synergistic effect of two factors on the change of ET_0.The interactive detector of Geodetector revealed that the synergistic effect of RH and T_(mean)on ET_0is very significant,and can explain 89%of the spatial variation of ET_0.This research provides a new method for sensitivity analysis of ET_0changes.  相似文献   

8.
According to the meteorological observation data of 72 stations from 1960 to 2010 in the Huanghe (Yellow) River Watershed, China, the long-term variations of potential evapotranspiration, calculated in the modified Penman-Monteith model of Food and Agriculture Organization of the United Nations, were presented, as well as the meteorological causes for the decrease of potential evapotranspiration were discussed. Since 1960, temperature has risen significantly and potential evapotranspiration a decreasing trend, which indicated the existence of "Evaporation paradox" in the Huanghe River Watershed. This phenomenon was not consistent spatially or temporally with the increase of temperature, potential evapotranspiration decreased in spring, summer and winter, mainly over most parts of Shanxi and Henan, and some parts of Gansu, Ningxia, Inner Mongolia, and Shaanxi. During the recent half century, the trends of temperature and potential evapotranspiration were negatively correlated at most of the stations, while precipitation and potential evapotranspiration exhibited a contrary trend. Calculated in multiple regressions, the contribution to potential evapotranspiration change of related meteorological factors was discussed, including mean pressure, maximum and minimum temperature, sunshine hours, relative humidity and average wind speed. The decrease of wind speed in the Huanghe River Watershed may be the dominating factor causing potential evapotranspiration decreasing.  相似文献   

9.
Based on four phases of TM images acquired in 1990, 1995, 2000 and 2005, this paper took Kitakyushu in Japan as a case study to analyze spatial change of land use landscape and corresponding effects on environmental issues guided by landscape ecology theory in virtue of combining technology of Remote Sensing with GIS. Firstly, land use types were divided into 6 classes (farmland, mountain, forestland, water body, urban land and unused land) according to national classification standard of land use, comprehensible ability of TM image and purpose of this study. Secondly, following the theory of landscape ecology analysis, 11 typical landscape indices were abstracted to evaluate the environmental effects and spatial feature changes of land use. Research results indicated that land use has grown more and more diversified and unbalanced, human activities have disturbed the landscape more seriously. Finally, transfer matrix of Markov was applied to forecast change process of land use in the future different periods, and then potential land use changes were also simulated from 2010 to 2050. Results showed that conversion tendency for all types of land use in Kitakyushu into urban construction land were enhanced. The study was anticipated to help local authorities better understand and address a complex land use system, and develop improved land use management strategies that could better balance urban expansion and ecological conservation.  相似文献   

10.
China's dryland region has serious wind erosion problem and is sensitive to climate change due to its fragile ecological condition. Wind erosion climatic erosivity is a measure of climatic factors influencing wind erosion, therefore, evaluation of its intensity and response to recent climate changes can contribute to the understanding of climate change effect on wind erosion risk. Using the FAO equation, GIS and statistical analysis tools, this study quantified the climatic erosivity, analyzed its spatiotemporal variations, and detected the trend and sensitivity to climate factors during 1961–2012. The results indicate that mean annual climatic erosivity was 2–166 at 292 stations and 237–471 at 6 stations, with the spatial distribution highly in accordance with wind speed(R2 = 0.94). The climatic erosivity varied greatly over time with the annual variation(CV) of 14.7%–108.9% and monthly variation(concentration degree) of 0.10–0.71 in the region. Meanwhile, annual erosivity showed a significant downward trend at an annual decreasing rate mostly above 1.0%. This significantly decreasing trend was mainly attributed to the obvious decline of wind speed during the period. The results suggest that the recent climate changes were highly possible to induce a decrease of wind erosion risk in China's dryland region.  相似文献   

11.
Landsat ETM/TM data and an artificial neural network (ANN) were applied to analyse the expansion of the city of Xi'an and land use/cover change of its surrounding area between 2000 and 2003. Supervised classification and normalized difference barren index (NDBI) were used respectively to retrieve its urban boundary. Results showed that the urban area increased by an annual rate of 12.3%, with area expansion from 253.37 km^2 in 2000 to 358.60 km^2 in 2003. Large areas of farmland in the north and southwest were converted into urban construction land. The land use/cover changes of Xi'an were mainly caused by fast development of urban economy, population immigration from countryside, great development of infrastructure such as transportation, and huge demands for urban market. In addition, affected by the government policy of “returning farmland to woodland”, some farmland was converted into economic woodland, such as Chinese goosebeerv garden, vineyard etc.  相似文献   

12.
中国耕地和农村宅基地利用转型耦合特征与机制(英文)   总被引:16,自引:5,他引:11  
Land use transition refers to the changes in land use morphology (both dominant morphology and recessive morphology) of a certain region over a certain period of time driven by socio-economic change and innovation, and it usually corresponds to the transition of socio-economic development phase. In China, farmland and rural housing land are the two major sources of land use transition. This paper analyzes the spatio-temporal coupling characteristics of farmland and rural housing land transition in China, using high-resolution Landsat TM (Thematic Mapper) data in 2000 and 2008, and the data from the Ministry of Land and Resources of China. The outcomes indicated that: (1) during 2000-2008, the cor-relation coefficient of farmland vs. rural housing land change is -0.921, and it shows that the change pattern of farmland and rural housing land is uncoordinated; (2) the result of Spear-man rank correlation analysis shows that rural housing land change has played a major role in the mutual transformation of farmland and rural housing land; and (3) it shows a high-degree spatial coupling between farmland and rural housing land change in southeast China during 2000-2008. In general, farmland and rural housing land transition in China is driven by socio-economic, bio-physical and managerial three-dimensional driving factors through the interactions among rural population, farmland and rural housing land. However, the spatio-temporal coupling phenomenon and mechanism of farmland and rural housing land transition in China are largely due to the "dual-track" structure of rural-urban develop-ment.  相似文献   

13.
Urban land intensive use is an important indicator in harmonizing the relationship between land supply and demand. The system dynamics(SD) can be used to construct the feedback loop between urban construction land supply and demand and index variable function. Based on this, this study built a supply and demand system dynamic model of urban construction land for Chang-Zhu-Tan urban agglomeration. This model can simulate the change trends of supply and demand of construction land, industrial land, and residential land in 2016–2030 by three scenarios of low, medium, and high intensity modes. The results showed that the scale of construction land of urban agglomeration is expanding, with a rapid increase rate for the urban construction land. The scale and speed of land use based on the three intensity modes existed differences. The large scale and supply of construction land in the low intensity mode caused easily the waste of land resources. In high intensity mode, the scale and supply of construction land were reduced against the healthy development of new-type urbanization. In the medium intensity mode, the scale and supply of land use adapted to the socio-economic development and at the same time reflected the concept of modern urban development. In addition, the results of this study found that the proportion of industrial land in construction land ranged from 15% to 21%, which increased year by year in the low intensity mode, and decreased slowly and stabilized in medium and high intensity modes. The proportion of residential land in construction land ranged from 27% to 35%, which decreased in the low and the medium intensity modes, and maintained a high level in the higher intensity mode. This study contributes to provide scientific reference for decision-making optimization of land supply and demand, urban planning, and land supply-side reform.  相似文献   

14.
Natural ecosystems provide human society with very important products and services. With the rapid increase in population and the over-exploitation of natural resources, humans are continually enhancing the production of some services at the expense of others. This paper estimates changes in ecosystem services, and the relationship between these services in the Guanzhong-Tianshui Economic Region of China. These ecosystem changes are of great significance to the sustainable development of this economic region. The concept of production possibility frontier(PPF) is applied to evaluate the trade-offs and synergy between carbon sequestration, water yield and soil retention. Three land use strategy scenarios – planning, exploitation and protection – are applied to evaluate potential changes in ecosystem services. This study reveals noticeable trade-offs between carbon sequestration, soil retention and water yield, with synergy between carbon sequestration and soil retention. There are synergies between carbon sequestration, water yield and soil retention in the three scenarios. The protection scenario is the most favourable land use strategy for regulating ecosystem service capacity. This scenario results in the highest carbon sequestration, water yield and soil retention. The results could have implications for natural capital and ecosystem services planning, management and land use decision-making.  相似文献   

15.
Decreasing wind speed is one aspect of global climate change as well as global warming, and has become a new research orientation in recent decades. The decrease is especially evident in places with frequent perennially high wind speeds. We simulated decreased wind speed by using a steel-sheet wind shield in a temperate grassland in Inner Mongolia to examine the changes in physical environmental variables, as well as their impacts on the photosynthesis of grass leaves and net ecosystem exchange (NEE). We then used models to calculate the variation of boundary layer conductance (BLC) and its impact on leaf photosynthesis, and this allowed us to separate the direct effects of wind speed reduction on leaf photo- synthesis (BLC) from the indirect ones (via soil moisture balance). The results showed that reduced wind speed primarily resulted in higher moisture and temperature in soil, and indirectly affected net assimilation and water use efficiency of the prevalent bunch grass Stipa krylovii. Moreover, the wind-sheltered plant community had a stronger ability to sequester carbon than did the wind-exposed community during the growing season.  相似文献   

16.
北京城市空间发展和土地利用—伦敦经验启示   总被引:3,自引:0,他引:3  
Beijing is facing a huge challenge to manage the growth of its built-up area whilst also retaining both productive arable land and land for conservation purposes in order to simultaneously realize the three aims of economic development,protecting arable land and generating environmental improvements. Meanwhile,London,as a world city with more than 200 years of industrialization and urbanization,has accumulated rich theoretical and practical experiences for land use planning in a major urban area,such as the creation of Garden Cities,a designated Green Belt and New Towns. This paper firstly analyzes the main characteristics of the spatial distribution of the built-up area,arable land and conservation land in Beijing. Then,some of the key aspects of urban fringe planning in the London region are examined. Lastly,several implications from the experience of London are provided with respect to land-use planning for Beijing,concentrating on a re-appraisal of land-use functions around Beijing,measures to improve the green belt,the development of small towns to house rural-urban migrants and urban overspill,and effective implementation of land-use planning.  相似文献   

17.
陕北地区退耕还林还草工程土壤保护效应的时空特征   总被引:1,自引:1,他引:0  
This paper looks at the Green for Grain Project in northern Shaanxi Province.Based on remote sensing monitoring data,this study analyzes the locations of arable land in northern Shaanxi in the years 2000,2010 and 2013 as well as spatio-temporal changes over that period,and then incorporates data on the distribution of terraced fields to improve the input parameters of a RUSLE model and simulate and generate raster data on soil erosion for northern Shaanxi at different stages with a accuracy verification.Finally,combined with the dataset of farmland change,compared and analyzed the characteristics of soil erosion change in the converted farmland to forest(grassland)and the unconverted farmland in northern Shaanxi,so as to determine the project’s impact on soil erosion over time across the region.The results show that between 2000 and 2010,the soil erosion modulus of repurposed farmland in northern Shaanxi decreased 22.7 t/ha,equivalent to 47.08%of the soil erosion modulus of repurposed farmland in 2000.In the same period,the soil erosion modulus of non-repurposed farmland fell 10.99 t/ha,equivalent to 28.6%of the soil erosion modulus of non-repurposed farmland in 2000.The soil erosion modulus for all types of land in northern Shaanxi decreased by an average of 14.51 t/ha between 2000 and 2010,equivalent to 41.87%of the soil erosion modulus for the entire region in 2000.This suggests that the Green for Grain Project effectively reduced the soil erosion modulus,thus helping to protect the soil.In particular,arable land that was turned into forest and grassland reduced erosion most noticeably and contributed most to soil conservation.Nevertheless,in the period 2010 to 2013,which was a period of consolidation of the Green for Grain Project,the soil erosion modulus and change in volume of soil erosion in northern Shaanxi were significantly lower than in the previous decade.  相似文献   

18.
The Yangtze River Watershed in China is a climate change hotspot featuring strong spatial and temporal variability;hence, it poses a certain threat to social development. Identifying the characteristics of and regions vulnerable to climate change is significantly important for formulating adaptive countermeasures. However, with regard to the Yangtze River Watershed, there is currently a lack of research on these aspects from the perspective of natural and anthropogenic factors. To address this issue, in this study, based on the temperature and precipitation records from 717 meteorological stations, the RClim Dex and random forest models were used to assess the spatiotemporal characteristics of climate change and identify mainly the natural and anthropogenic factors influencing climate change hotspots in the Yangtze River Watershed for the period 1958-2017. The results indicated a significant increasing trend in temperature, a trend of wet and dry polarization in the annual precipitation, and that the number of temperature indices with significant variations was 2.8 times greater than that of precipitation indices. Significant differences were also noted in the responses of the climate change characteristics of the sub-basins to anthropogenic and natural factors;the delta plain of the Yangtze River estuary exhibited the most significant climate changes, where 88.89% of the extreme climate indices varied considerably. Furthermore, the characteristics that were similar among the identified hotpots, including human activities(higher Gross Domestic Product and construction land proportions) and natural factors(high altitudes and large proportions of grassland and water bodies), were positively correlated with the rapid climate warming.  相似文献   

19.
青藏高原东部山地农牧区生计与耕地利用模式   总被引:3,自引:1,他引:2  
This study examined livelihood diversification and cropland use pattern in Keerma village, located in Jinchuan County, eastern Tibetan Plateau. Through stratified random sampling survey, participatory rural appraisal, investigation of households' plots and statistical methods, 63 households and 272 cropland plots were systemically investigated and sampled. The results show: (1) Different types of household have variety livelihood strategies, portfolio and income. Livelihood diversification and introducing and expanding off-farm activities can be the future trend, whereas, adverse natural environment, socio-economic conditions and peasants' capabilities together affect sustainable livelihood and land use. (2) Each livelihood strategy has its own impact on land use, mainly affecting land use type and land use intensi- fication level. (3) Diversification into off-farm activities could be the key of building sustainable livelihood and the essential approach of realizing sustainable land use in the region.  相似文献   

20.
Two typical provincial capitals (Nanjing and Zhengzhou) and two counties (Rugao and Yuanyang) in east (Jiangsu Province) and central (Henan Province) China were chosen respectively as the developed and less developed comparative cases for pedodiversity and land use diversity correlative analysis by borrowing the recently better developed pedodiversity methodology. Land use classification was worked out using remote sensing images in three different periods (1986-1988, 2000-2001 and 2004-2006) for these studied case areas before the calculation of the constituent diversity index and spatial distribution diversity index modified after Shannon entropy in 2 km×2 km grid scale of the soil and land use pattern were conducted and then a connection index was proposed to evaluate the relationship between soil and land use diversity. Results show that during the years from 1986 to 2006, the composition and spatial distribution of regional land use pattern had changed greatly. The agricultural land area of all the studied case areas decreased obviously in which Nanjing has the highest decrement of 895.98 km 2 mainly into urban use while the other land use type area changes show the same trend. The connection index of four typical soil family types and typical urban land use types, i.e., urban construction land, transportation land and industrial and mining area all increased in this period. In the studied case areas, there is the highest soil constituent diversity in Zhengzhou at 0.779 while the simplest soil constituent diversity in Rugao at 0.582. Meanwhile we have higher land use diversity in the more urbanized Jiangsu Province than Henan Province, Nanjing is ranking the first that has been getting higher and higher in the three periods at 0.366 in 1986-1988, 0.483 in 2000-2001 and 0.545 in 2004-2006. Finally, the connection index figures to evaluate the relationship between soil and land use diversity of the studied areas were compared to show the similar phenomenon that this figure grows fastest in Nanjing followed by Zhengzhou and other places.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号