首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
背景气候和城市化对中国东南部增温的联合效应(英文)   总被引:6,自引:1,他引:5  
Based on China homogenized land surface air temperature and the National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) Atmospheric Model Intercomparison Project (AMIP)-Ⅱ Reanalysis data (R-2), the main contributors to surface air temperature increase in Southeast China were investigated by comparing trends of urban and rural temperature series, as well as observed and R-2 data, covering two periods of 1954-2005 and 1979-2005. Results from urban-rural comparison indicate that urban heat island (UHI) effects on regional annual and autumn minimum temperature increases account for 10.5% and 12.0% since 1954, but with smaller warming attribution of 6.2% and 10.6% since 1979. The results by comparing observations with R-2 surface temperature data suggest that land use change accounts for 32.9% and 28.8% in regional annual and autumn minimum temperature increases since 1979. Accordingly, the influence of land use change on regional temperature increase in Southeast China is much more noticeable during the last 30 years. However, it indicates that UHI effect, overwhelmed by the warming change of background climate, does not play a significant role in regional warming over Southeast China during the last 50 years.  相似文献   

2.
The 1998–2012 global warming hiatus has aroused great public interest over the past several years. Based on the air temperature measurements from 622 meteorological stations in China, the temperature response to the global warming hiatus was analyzed at national and regional scales. We found that air temperature changed –0.221℃/10 a during 1998–2012, which was lower than the long-term trend for 1960–1998 by 0.427℃/10 a. Therefore, the warming hiatus in China was more pronounced than the global mean. Winter played a dominant role in the nationwide warming hiatus, contributing 74.13%, while summer contributed the least among the four seasons. Furthermore, the warming hiatus was spatial heterogeneous across different climate conditions in China. Comparing the three geographic zones, the monsoon region of eastern China, arid region of northwestern China, and high frigid region of the Tibetan Plateau, there was significant cooling in eastern and northwestern China. In eastern China, which contributed 53.79%, the trend magnitudes were 0.896℃/10 a in winter and 0.134℃/10 a in summer. In the Tibetan Plateau, air temperature increased by 0.204℃/10 a, indicating a lack of a significant warming hiatus. More broadly, the warming hiatus in China may have been associated with the negative phase of PDO and reduction in sunspot numbers and total solar radiation. Finally, although a warming hiatus occurred in China from 1998 to 2012, air temperature rapidly increased after 2012 and will likely to continuously warm in the next few years.  相似文献   

3.
长江三角洲城市带扩展对区域温度变化的影响   总被引:7,自引:0,他引:7  
Based on non-radiance-calibrated DMSP/OLS nighttime light imagery from 1992 to 2003, urban land area statistical data, meteorological data and land surface temperature data retrieved by MODIS and NOAA/AVHRR data, the influence of urbanization on regional cli- matic trend of temperature in the Yangtze River Delta (YRD) was analyzed. Conclusions are as follows: 1) There is a significant urbanization process from 1992 to 2003 in the YRD. Four city clusters of Nanjing–Zhenjiang–Yangzhou, Suzhou–Wuxi–Changzhou, Shanghai and Hangzhou Bay form a zigzag city belt. The increase rate of annual mean air temperature in city-belt is 0.28–0.44℃/10a from 1991 to 2005, which is far larger than that of non-city-belt. 2) The urban heat island (UHI) effect on regional mean air temperature in different seasons is summer>autumn>spring>winter. 3) The UHI intensity and the urban total population logarithm are creditably correlated. 4) The UHI effect made the regional annual mean air temperature increased 0.072℃ from 1961 to 2005, of which 0.047℃ from 1991 to 2005, and the annual maximum air temperature increased 0.162℃, of which 0.083℃ from 1991 to 2005. All these indicating that the urban expansion in the YRD from 1991 to 2005 may be regarded as a serious climate signal.  相似文献   

4.
Permafrost temperatures from the surface down to about 9 m from 3 boreholes distributed around Kangiqsualujjuaq village on the coast of Hudson Strait were recorded and analyzed for the period 1989 1998. The results indicate that the permafrost is getting warm along the southern shore of Hudson Strait from 1993 to 1998 though it became cooling for the past 40 a or more. The observed trend in the order of 0.098℃/a at the 9 m depth is consistent with the long term regional warming observed in air temperatures. It also coincides with that all the global circulation models predict an enhanced warming in polar regions associated with the increase in concentration of greenhouse gases in the atmosphere.  相似文献   

5.
Changes in regional moisture patterns under the impact of climate change are an important focus for science. Based on the five global climate models(GCMs) participating in the Coupled Model Intercomparison Project Phase 5(CMIP5), this paper projects trends in the area of arid/humid climate regions of China over the next 100 years. It also identifies the regions of arid/humid patterns change and analyzes their temperature sensitivity of responses. Results show that future change will be characterized by a significant contraction in the humid region and an expansion of arid/humid transition zones. In particular, the sub-humid region will expand by 28.69% in the long term(2070–2099) relative to the baseline period(1981–2010). Under 2℃ and 4℃ warming, the area of the arid/humid transition zones is projected to increase from 10.17% to 13.72% of the total of China. The humid region south of the Huaihe River Basin, which is affected mainly by a future increase in evapotranspiration, will retreat southward and change to a sub-humid region. In general, the sensitivity of responses of arid/humid patterns to climate change in China will intensify with accelerating global warming.  相似文献   

6.
Based on monthly mean, maximum, and minimum air temperature and monthly mean precipitation data from 10 meteorological stations on the southern slope of the Mt. Qomolangma region in Nepal between 1971 and 2009, the spatial and temporal characteristics of climatic change in this region were analyzed using climatic linear trend, Sen's Slope Estimates and Mann-Kendall Test analysis methods. This paper focuses only on the southern slope and attempts to compare the results with those from the northern slope to clarify the characteristics and trends of climatic change in the Mt. Qomolangma region. The results showed that: (1) between 1971 and 2009, the annual mean temperature in the study area was 20.0℃, the rising rate of annual mean temperature was 0.25℃/10a, and the temperature increases were highly influenced by the maximum temperature in this region. On the other hand, the temperature increases on the northern slope of Mt. Qomolangma region were highly influenced by the minimum temperature. In 1974 and 1992, the temperature rose noticeably in February and September in the southern region when the increment passed 0.9℃. (2) Precipitation had an asymmetric distribution; between 1971 and 2009, the annual precipitation was 1729.01 mm. In this region, precipitation showed an increasing trend of 4.27 mm/a, but this was not statistically significant. In addition, the increase in rainfall was mainly concentrated in the period from April to October, including the entire monsoon period (from June to September) when precipitation accounts for about 78.9% of the annual total. (3) The influence of altitude on climate warming was not clear in the southern region, whereas the trend of climate warming was obvious on the northern slope of Mt. Qomolangma. The annual mean precipitation in the southern region was much higher than that of the northern slope of the Mt. Qomolangma region. This shows the barrier effect of the Himalayas as a whole and Mt. Qomolangma in particular.  相似文献   

7.
Land cover change affects surface radiation budget and energy balance by changing surface albedo and further impacts the regional and global climate. In this article, high spatial and temporal resolution satellite products were used to analyze the driving mechanism for surface albedo change caused by land cover change during 1990–2010. In addition, the annual-scale radiative forcing caused by surface albedo changes in China's 50 ecological regions were calculated to reveal the biophysical mechanisms of land cover change affecting climate change at regional scale. Our results showed that the national land cover changes were mainly caused by land reclamation, grassland desertification and urbanization in past 20 years, which were almost induced by anthropogenic activities. Grassland and forest area decreased by 0.60% and 0.11%, respectively. The area of urban and farmland increased by 0.60% and 0.19%, respectively. The mean radiative forcing caused by land cover changes during 1990–2010 was 0.062 W/m2 in China, indicating a warming climate effect. However, spatial heterogeneity of radiative forcing was huge among different ecological regions. Farmland conversing to urban construction land, the main type of land cover change for the urban and suburban agricultural ecological region in Beijing-Tianjin-Tangshan region, caused an albedo reduction by 0.00456 and a maximum positive radiative forcing of 0.863 W/m2, which was presented as warming climate effects. Grassland and forest conversing to farmland, the main type of land cover change for the temperate humid agricultural and wetland ecological region in Sanjiang Plain, caused an albedo increase by 0.00152 and a maximum negative radiative forcing of 0.184 W/m2, implying cooling climate effects.  相似文献   

8.
In this study, a monthly dataset of temperature time series (1961-2010) from 12 meteorological stations across the Three-River Headwater Region of Qinghai Province (THRHR) was used to analyze the climate change. The temperature variation and abrupt change analysis were examined by using moving average, linear regression, Spline interpo-lation, Mann-Kendall test and so on. Some important conclusions were obtained from this research, which mainly contained four aspects as follows. (1) There were several cold and warm fluctuations for the annual and seasonal average temperature in the THRHR and its three sub-headwater regions, but the temperature in these regions all had an obviously rising trend at the statistical significance level, especially after 2001. The spring, summer, autumn and annual average temperature increased evidently after the 1990s, and the winter average temperature exhibited an obvious upward trend after entering the 21st century. Except the standard value of spring temperature, the annual and seasonal temperature standard value in the THRHR and its three sub-headwater regions increased gradually, and the upward trend for the standard value of winter average temperature indicated significantly. (2) The tendency rate of annual average temperature in the THRHR was 0.36℃10a?1, while the tendency rates in the Yellow River Headwater Region (YERHR), Lancangjiang River Headwater Region (LARHR) and Yangtze River Headwater Region (YARHR) were 0.37℃10a?1, 0.37℃10a?1 and 0.34℃10a?1 respectively. The temperature increased significantly in the south of Yushu County and the north of Nangqian County. The rising trends of temperature in winter and autumn were higher than the upward trends in spring and summer. (3) The abrupt changes of annual, summer, autumn and winter average temperature were found in the THRHR, LARHR and YARHR, and were detected for the summer and autumn average temperature in the YERHR. The abrupt changes of annual and summer average temperatures were mainly in the late 1990s, while the abrupt changes of autumn and winter average temperatures ap-peared primarily in the early 1990s and the early 21st century respectively. (4) With the global warming, the diversities of altitude and underlying surface in different parts of the Tibetan Plateau were possibly the main reasons for the high increasing rate of temperature in the THRHR.  相似文献   

9.
Changes in ground surface thermal regimes play a vital role in surface and subsurface hydrology, ecosystem diversity and productivity, and global thermal, water and carbon budgets as well as climate change. Estimating spring, summer, autumn and winter air temperatures and mean annual air temperature(MAAT) from 1960 through 2008 over the Heihe River Basin reveals a statistically significant trend of 0.31 °C/decade, 0.28 °C/decade, 0.37 °C/decade, 0.50 °C/decade, and 0.37 °C /decade, respectively. The averaged time series of mean annual ground surface temperature(MAGST) and maximum annual ground surface temperature(MaxAGST) for 1972–2006 over the basin indicates a statistically significant trend of 0.58 °C/decade and 1.27 °C/decade, respectively. The minimum annual ground surface temperature(MinAGST) in the same period remains unchanged as a whole. Estimating surface freezing/thawing index as well as the ratio of freezing index to thawing index(RFT) in the period between 1959 and 2006 over the basin indicates a statistically significant trend of-42.5 °C-day/decade, 85.4 °C-day/decade and-0.018/decade, respectively.  相似文献   

10.
In this paper we analyze daily mean, minimum, and maximum temperature data collected at 119 meteorological stations over five regions of China during the period 1951-2010. The series of minimum, maximum, and mean temperatures from each climatic region have similar signatures, but there are differences among the five regions and the countrywide average. The results indicate that the periods of faster warming were not synchronous across the regions studied: warming in northeast China and Tibet began in 1986, while in central-east, southeast, and northwest China the warming emerged in 1995. Furthermore, central-east and northwest China, and Tibet, have warmed continuously since 2000, but the temperature has decreased during this period in southeast China. We evaluated the evolution of these temperature series using a novel nonlinear filtering technique based on the concept of the lifetime of temperature curves. The decadal to secular evolution of solar activity and temperature variation had similar signatures in the northeast, southeast, and northwest re- gions and the average across the whole country, indicating that solar activity is a significant control on climate change over secular time scales in these regions. In comparison with these regions, the signatures were different in central-east China and Tibet because of regional differences (e.g., landforms and elevation) and indirect effects (e.g., cloud cover influencing the radiation balance, thereby inducing climate change). Furthermore, the results of wavelet analysis indicated that the El Nino Southem Oscillation (ENSO) has had a significant impact on climate change, but at different times among the regions, and these changes were most probably induced by differing responses of the atmospheric system to solar forcing.  相似文献   

11.
1981-2019年全球气温变化特征   总被引:2,自引:0,他引:2  
1981—2019年全球气温变化特征是揭示全球气温变化的空间差异性以及实现全球共同应对气候变化的关键。本文基于7套再分析数据,采用气候变化速率及空间插值等分析方法,分析了1981—2019年全球气温变化时空特征及主要国家气温变化。结果表明:1981—2019年全球陆地气温以0.320 ℃/10a的速率呈极显著升高趋势,年平均气温增加了0.835 ℃;南、北半球陆地气温变化速率分别为0.147 ℃/10a、0.362 ℃/10a,均呈极显著增加趋势,分别增加了0.874 ℃、0.828 ℃。全球陆地80%面积上气温呈现显著增加趋势,年平均气温升高速率最大的区域位于80°N~90°N,其次是70°N~80°N、60°N~70°N,高纬大于中、低纬,格陵兰地区、乌克兰、俄罗斯等中高纬度国家或地区增温速率较快,尤以格陵兰地区增加速率最快,气温变化速率为0.654 ℃/10a;增温最慢的地区主要位于新西兰和赤道附近的南美洲、东南亚、非洲南部等地,气温变化速率不足0.15 ℃/10a。本文统计的146个国家中,年平均气温呈显著增加趋势的国家136个,占93%;气温无显著变化的国家10个,占6.849%。1981—2019年全球增温2.0 ℃以上、1.5 ℃以上、1.0 ℃以上的国家分别为4个、34个、68个,分别约占统计国家的2.740%、23.288%、46.575%。本文认为1998年以来全球并没有出现气温变暖停滞的现象。  相似文献   

12.
中国南方不同土地利用/覆被类型对气温升温的影响   总被引:2,自引:0,他引:2  
基于我国南方六省国家气象台站历史气象资料、1:10万土地利用/覆被数据和NCEP再分析气温资料,通过比较气温变化在不同观测环境气象站之间的差异,分析中国南方三种主要土地利用/覆被类型对气温趋势的影响。结果显示:土地利用/覆被类型对气温趋势具有稳定的影响,建设用地的年均温、年均最高和最低气温的升温幅度均最高,耕地次之,林地最小。进一步利用再分析资料剔除区域大尺度气候背景影响后,建设用地的年均温升温趋势仍最大(0.105℃/10a),其次是耕地(0.056℃/10a),林地的升温趋势最小(-0.025℃/10a),且为负。这表明对于研究区气温的升温趋势,林地具有抑制作用,建设用地具有增强作用,且增强作用较耕地强。林地的各季节平均气温的变化幅度同样低于非林地。  相似文献   

13.
基于印度河流域及周围54个地面气象站气温、降水资料,结合CRU气温和GPCC降水全球格点化陆面再分析资料,通过插值构建了一套0.5°×0.5°分辨率1980—2016年逐月格点数据集。采用Thornthwaite方法计算了潜在蒸散发,基于标准化降水蒸散指数(SPEI),探讨了印度河流域气候变化及干旱演变特征。结果表明:(1)1980—2016年,印度河流域年平均气温以0.30℃·(10 a)-1的速率呈显著上升趋势,21世纪初增温幅度最大;干季(11月~次年4月)升温速率较快,达0.36℃·(10 a)-1,湿季(5~10月)增速0.25℃·(10 a)-1。年降水量呈现少雨—多雨—少雨—多雨年代际振荡。伴随着持续升温,年和各季的潜在蒸发量增加显著。干季干旱频率较多,但湿季干旱强度高,各季干旱频率与降水呈现较一致的年代际波动;干旱的影响面积在干季呈现微弱地增加趋势,湿季却略有减少趋势。(2)空间上,除西北局部,流域其他区域的年和季平均气温、潜在蒸发量增加趋势显著,均达到95%置信水平。其中南部平原和东北山区升温幅度较高,南部平原区潜在蒸发量增加也较大。新德里到喀布尔的东南至西北带状区域的年和湿季降水量,以及喀布尔周围地区的干季降水量呈显著增加趋势。东南平原区和东北局部山区的干季,以及东北和西南局部山区的湿季呈现显著的干旱化态势,需要加强防灾减灾的意识并采取相应措施,以规避干旱增多带来的不利影响。  相似文献   

14.
三江平原气温降水变化分析——以建三江垦区为例   总被引:2,自引:0,他引:2  
苏晓丹  栾兆擎  张雪萍 《地理研究》2012,31(7):1248-1256
气温及降水与人类生产生活密切联系,其变化必然会对生态系统和社会经济等产生重大影响。利用三江平原建三江垦区15个农场气象站1965~2002年气温和降水资料,运用气候趋势系数和一元回归分析法进行气候变化分析。结果表明:近40年来本区气温呈显著上升趋势,平均气温以0.50℃/10a幅度升高,不同季节平均气温均呈上升趋势,且冬季增幅最大,达0.82℃/10a。气温升高存在显著的区域差异,最大的增温中心位于南部边缘,气温倾向率大于0.60℃/10a。降水趋势性变化不显著,但仍呈弱减少趋势,年降水量倾向率为-1.90mm/10a,四季降水量以秋季减少最为显著。在此基础上进行气候突变分析,结果表明气温突变出现在1987年,降水突变出现在1980年和1997年,但降水突变不明显。研究三江平原建三江垦区的气候变化对于保障区域粮食安全具有重要的指导意义。  相似文献   

15.
中国西北近50 a来气温变化特征的进一步研究   总被引:42,自引:14,他引:28  
王劲松  费晓玲  魏锋 《中国沙漠》2008,28(4):724-732
 利用国家气象信息中心最新整编的西北地区135站1960—2005年逐月资料,通过对该地区温度变化特征的分析,在前人研究成果的基础上,进一步揭示出了近50 a来西北地区气温变化的一些新特征: ①西北地区的年和各季节均表现为一致的增温趋势,但陕西南部在夏季出现降温的趋势。冬季和秋季,从塔里木盆地西侧到河套地区,在35°—40°N的带状区域内是增温趋势最强的区域。西北区域整体年平均气温的变化幅度达0.37℃/10a,冬季增温可达0.56℃/10a。无论是年或四季平均的增温率,西北地区都比全国平均的要高。②西北地区冬季和年的平均气温在20世纪80年代中期以后开始表现为明显上升趋势;但春季、夏季和秋季均到了20世纪90年代中期以后,才开始出现气温明显上升的趋势。③西北地区年气温异常首先表现为全区一致的变化型,然后依次为南北相反变化型和陕南气温变化与其他地区不同的独特性。且整体一致型变化近50 a来呈加强态势,而陕南与西北其他地区气温非同步变化的趋势在逐渐缩小。④西北地区近50 a来年气温可分为南疆-高原区、北疆区、西北东部区3个主要空间异常气候区。且从长期倾向来看,南疆-高原区和北疆区有明显的上升变化倾向,西北东部区则表现为波动式的上升趋势。  相似文献   

16.
以江河源区12个气象台站1971-2008年间的逐月气温、风速和降水资料为基础,对该区气候变化特征进行了分析,结果表明:近40年来,江河源区气候持续变暖,年均气温的增温率为0.37℃/(10 a),1987年和1998年气温由低向高突变;年均风速显著降低,每10 a降幅为0.24 m/s,1981年和1992年风速由高向低突变,年均风速与年均气温间呈负相关关系;1980年代降水偏多,1970和1990年代偏少,21世纪以来降水量有所回升,增幅因区域而异;年陆面蒸发量整体显著增加.结合前人研究,探讨了气候变化对环境的影响:持续升温导致江河源区内冰川退缩、多年冻土退化;1980年代气候相对暖湿,水资源量较丰;气候暖干化、水资源量减少、生态环境恶化是该区在1990年代和21世纪最初几年的显著特征;2004年左右以来,江河源区气候转湿,水资源量增加,生态环境有所好转.  相似文献   

17.
RCPs情景下未来青海高原气候变化趋势预估   总被引:2,自引:1,他引:1  
刘彩红  余锦华  李红梅 《中国沙漠》2015,35(5):1353-1361
利用 CMIP5(Coupled Model Intercomparison Project Phase 5)耦合模式结果对 RCPs(Representative Concentration Pathways)情景下的青海高原气温、降水变化趋势及极端气候事件2011-2100年演变特征进行了预估。结果表明:在21世纪,青海高原年平均气温显著升高,RCP2.6、RCP4.5 和 RCP8.5排放情景下增温速率分别为0.06 ℃/10a、0.24 ℃/10a和0.61 ℃/10a。年降水量将明显增加,幅度1.4~7.0 mm/10a。青海高原21世纪与气温、降水有关的事件都有趋于极端化的趋势,极端冷指标下降,极端暖指标均明显上升。极端降水频次增加,强度加重,且变化幅度与排放强度成正比。  相似文献   

18.
根据河西走廊地区深层地温观测时间最长、资料完整的酒泉、张掖及武威3个地面气象站1980年1月~2011年2月的逐月80、160、320 cm地温资料,运用线性拟合、滑动平均和Mann-Kendall方法进行趋势和突变分析。研究表明:近31 a来河西走廊地区80、160、320 cm深层地温均呈显著的波动上升趋势,其中各深层地温夏季增温速率最大,春季次之,冬季最小,各季各深层地温均发生了暖突变。各深层地温年时间序列中存在3 a波动周期,且表现为前期冷,后期暖的演变趋势,线性增温速率显著,80 cm地温增温速率0.55 ℃/10 a,暖突变出现在1994年;160 cm地温增温速率0.59 ℃/10 a,暖突变出现在1995年;320 cm地温增温速率0.60 ℃/10 a,暖突变出现在1996年。说明年深层地温随着深度的增加,暖突变出现时间存在滞后现象。气温对深层地温的影响作用明显,深层地温受气温升高的影响也呈升高趋势。但随着深度的增加气温与地温的相关性略有降低,这是由于深层地温的变化存在滞后性所致。  相似文献   

19.
1960—2019年西北地区气候变化中的Hiatus现象及特征   总被引:3,自引:0,他引:3  
1998—2012年全球地表平均温度发生变暖停滞(Hiatus),然而Hiatus现象是否在全球各地均存在尚有争议,其在西北地区的表现及特征缺乏深入研究。本文基于1960—2019年气温地面观测数据,利用累积距平曲线、Mann-Kendall突变检验、滑动t检验及Yamamoto检验进行气候突变分析,结合线性倾向估计进行气候变化趋势分析,对西北地区气候变化中的Hiatus现象及其特征进行了探讨。结果表明:① 西北地区年均气温在1986年、1996年和2012年分别突变,1996年突变升温后在1998—2012年间保持高位震荡;② 1998—2012年间西北地区年均温变化率为-0.20 ℃/10a,呈现明显Hiatus现象,分季节看,冬季降温幅度最大,夏季仍保持升温,春季均温比秋、冬季提前1年开始和结束停滞期,从空间上看,西北地区东南部降温最显著,青藏高原不存在Hiatus;③ 2012年Hiatus结束后西北地区气温普遍快速升高,季节上以冬季升温最快,空间上以南疆升温最快。综合来看,1998—2012年的Hiatus现象在除青藏高原外的西北地区表现明显,停滞后的快速升温值得高度关注。  相似文献   

20.
本文利用1906-2015年武汉月平均最高与最低气温资料,重建了过去110年武汉市年平均气温距平序列,分析了其年代际尺度的变化特征。主要结论为:①过去110年武汉市经历了“暖—冷—暖”3个多年代际波动,其中1906-1946年与1994-2015年气候相对温暖,1947-1993年则气候相对寒冷;②在多年代尺度上,武汉市存在多次显著增温和降温过程,其中增温速率最快的30年和50年分别出现在1980-2009年和1960-2009年;最快降温速率则出现在1928-1957年和1925-1974年;③过去110年武汉市年均温发生了3次跃变,其中由冷转暖的跃变出现在20世纪20年代初和90年代中后期,而由暖转冷的跃变则出现在40年代;④武汉市年均温变化与全球/北半球和中国的变化趋势基本一致,但变幅偏大。此外,全球增暖停滞现象在武汉市最近十几年也有所体现。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号