首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 125 毫秒
1.
李程  庄大方  何剑锋  文可戈 《地理学报》2021,76(7):1634-1648
物候变化是气候变化的重要指示器,通过对植被物候时空变化的研究可以为进一步分析全球气候变化提供依据。基于2000—2017年MODIS-NDVI时间序列数据,利用不对称高斯函数和动态阈值法,提取、分析了东西伯利亚苔原—泰加林过渡带植被生长季起始期(SOS)、结束期(EOS)、中期(MOS)和长度(LOS)4种植被遥感物候参数的时空变化格局。同时结合同期CRU(Climate Research Unit)气温观测数据,分析了4种物候参数对气温变化的响应关系。结果表明:遥感物候参数可以直接、有效地反映气温的变化:研究区64°N以南区域4—5月气温升高,对应区域SOS提前5~15 d;64°N~72°N之间5—6月气温升高,对应区域SOS提前10~25 d;最北端北冰洋沿岸6月气温升高幅度较小且7月气温降低,对应区域SOS推后15~25 d;西北部8月、西南部9月气温降低,对应地区EOS提前15~30 d;67°N以南区域9—10月气温升高,对应区域EOS推后5~30 d;EOS的变化对气温变化较SOS更为敏感,较小的气温波动即引起EOS较大的变动;研究区内植被生长季整体呈前移趋势,且西北部LOS缩短,中部、南部LOS延长。  相似文献   

2.
青藏高原是全球气候变化的敏感区,气温和降水量的空间分布及变化趋势是气候变化研究的核心和基础,为开展生态环境变化评估提供基础资料。基于2000—2018年青海湖流域及其周边气象站观测数据,以高程为协变量,结合专业气象插值软件ANUSPLIN对气温和降水量进行空间插值。利用线性回归法分析了青海湖流域2000—2018年气温和降水量的变化趋势;利用双变量空间自相关分析法分析了青海湖流域气温和降水量空间匹配关系。结果表明:(1) 2000—2018年青海湖流域年平均气温呈显著增加趋势,平均增速为0.30 ℃·(10a)-1,春季增温显著。(2) 降水量呈显著增加趋势,平均增速为73.20 mm·(10a)-1,春夏季增速显著、秋季变化不明显、冬季趋于变干。(3) 青海湖流域气温和降水量空间匹配差异显著。从年尺度来看,气温和降水量莫兰指数(Moran’s I)为-0.66,表现为显著的负相关,面积比为67.56%,水热组合空间匹配不佳。从季节尺度来看,青海湖流域春季、夏季、秋季和冬季的气温和降水量Moran’s I分别为-0.49、-0.80、-0.32和-0.14,均为空间负相关。春夏季,流域低海拔区域气温逐渐升高,高海拔区域降水量逐渐增多,气温和降水量空间负相关面积逐渐增大,水热组合空间匹配不佳。值得强调的是青海湖巨大水体对环湖区局地气温的调节作用明显,是青海湖流域的“气候调节器”。  相似文献   

3.
了解植被生长对气候变化的响应是厘清生态系统动态关系的重点。基于1990—2018年气象数据和归一化植被指数(NDVI),应用偏相关分析与地理探测器等方法,分析了在生长季,毛乌素沙地东南缘不同类型植被年均NDVI的变化趋势,探讨了年均气温与年总降水量对各类型植被的影响。结果表明:(1) 1990—2018年生长季研究区植被年均NDVI显著与极显著增加面积达97.9%,整体生态环境质量大幅度改善。2005年之前植被年均NDVI增速缓慢,此后以0.011·a-1的速率发生了突变增加,其中灌丛类植被年均NDVI增长幅度最大。(2) 2000年为年总降水量与年均气温的趋势突变点,突变前年总降水量以-5.510 mm·a-1的速率减少,此后以5.541 mm·a-1的速率增加,且主要依赖于大雨雨量的增加;年均高温与年均低温在突变前上升速率分别为0.122 ℃·a-1与0.230 ℃·a-1,突变后,年均高温下降速率为-0.014 ℃·a-1,而年均低温上升速率为0.022 ℃·a-1。(3) 在植被年均NDVI缓慢增长阶段(1990—2005年),年均低温对植被影响较大,与不同类型植被年均NDVI多呈显著正相关;在植被年均NDVI快速增长阶段(2006—2018年),年总降水量与不同类型植被年均NDVI呈显著正相关,大降雨事件的频发使得降水量对于植被的生长起主导作用。年总降水量与年均气温尤其是年均低温的交互作用是促进植被生长的关键。  相似文献   

4.
滇中城市群不透水表面时空变化与反常气候现象研究   总被引:1,自引:0,他引:1  
人类活动对全球气候变化的影响是学科前沿也是热点和难点,其中城市不透水表面(IS)的热岛、雨岛等气候现象是研究重点,但有关其他气候要素的研究尚有待开展。本文以全球30 m IS数据集(GAIA)和中国区0.1°地面气象要素数据集为数据源,通过Mann-Kendall(M-K)突变检验法和贝叶斯模型等方法,对滇中高原湖滨城市群在1985—2018年间IS的时空变化特征、气象要素变化与IS的关系,以及反常气候现象进行了刻画。结果表明,相较1985年滇中城市群的IS面积增加了227.56%,2007—2018年增长速度达到最快(89.85 km2/a),主要在S、NE、SE、W 4个方向扩张;34 a滇中城市群气候整体经历冷湿(1985—1995年)、暖湿(1996—2006年)、暖干(2007—2018年)3个快速转化阶段;IS具有显著的“热岛现象(气温+0.63 ℃,长波+4.49 W m²)”“雨岛现象(降水+38.27 mm)”“湿岛现象(比湿+0.51 g/kg)”“风速低岛现象(风速-0.025 m/s)”和“气压高岛现象(气压+602.64 Pa)”;滇中城市群的长波辐射主要分布在313~329 W m²、比湿8.9~9.9 g/kg、气压76235~79946 Pa、短波186~194 W m²、降水840~876 mm和876~998 mm、风速2.08~2.38 m/s、气温13.85~15.85 ℃区间内,且显著受IS分布影响。IS对气压和湿度的影响具有“气压反温度现象”和“湿度反常现象”,这可能与副热带高压带控制、海拔和大型湖泊(湖陆风)影响有关。  相似文献   

5.
基于中国绿洲喜温作物分布区67个地面气象站1960—2016年逐日平均气温数据,运用线性趋势法、反距离加权(IDW)、Morlet小波分析法、Mann-Kendall检验等方法,分析了中国绿洲喜温作物气候生长期生长初、终日及生长期的时空变化对全球变暖停滞(globe warming hiatus)的响应。结果表明:1998—2012年中国绿洲喜温作物气候生长期生长初、终日及生长期变化倾向率分别为:-2.15 d·(10 a)–1、2.76 d·(10 a)–1、4.91 d·(10 a)–1,与1960—2016年和1960—1998年相比呈现出初日提前、终日推迟、生长期延长的态势,没有出现对全球变暖停滞的响应;空间变化方面,仅有超过22%的站点有对全球变暖停滞的响应,整体响应不显著;但各绿洲对全球变暖停滞的响应却不尽相同,柴达木绿洲喜温作物气候生长期对全球变暖停滞的响应最为显著,其余绿洲则反之,也反映了青藏高原是气候变化的驱动器与放大镜。突变分析显示,研究区喜温作物生长初日、终日及生长期分别在2008年、2001年、2006年发生突变,突变年份多集中于变暖停滞期,之后的变化趋势显示对全球变暖停滞没有响应。Morlet小波分析表明其周期存在2.4~3.8 a的优势短周期,与2~4 a大气环流和厄尔尼诺事件2~7 a的周期相吻合,表明喜温作物气候生长期主要受大气环流与厄尔尼诺活动的影响。  相似文献   

6.
武汉区域百年地表气温变化趋势研究   总被引:2,自引:0,他引:2  
考虑气温序列的非均一性,并对缺测数据进行合理插补,建立武汉区域1905~2005年、季3项气温序列。序列结果表明,100a来年均气温、年均最低气温均呈上升趋势,增温速率分别为0.014℃/10a和0.026℃/10a;年平均最高气温变化呈现微弱的下降趋势,变化速率为-0.003℃/10a,表明百年来武汉区域夜间增温趋势比较明显,白天气温变化不大;年平均最高气温与最低气温的变化具有不对称性。年平均气温、年平均最高气温存在两个暖期,时段为1920~1940年、1990~2005年,第一个暖期主要是夏、秋季气温偏高,冬、春季不明显,热在白天;第二个暖期则四季气温均偏高,冬、春季最明显,夏季较弱,暖在夜间。  相似文献   

7.
基于1961—2020年9个国家气象观测站逐日资料,采用气候统计学方法分析了塔城地区不同相态降水的时空分布及变化规律,探讨了降水相态的变化成因及其可能影响。结果表明:(1) 近60 a塔城地区年平均降水日数88.1 d,其中降雨日数最多,降雪日数次之,雨夹雪日数最少;3种相态降水在空间上呈现地区西北部多、中东部少的分布格局。(2) 从不同相态降水日数的月际分布来看,降雨主要出现在4—9月,降雪在11月—翌年3月较多,3—4月和10—11月期间3种相态降水共存。(3) 近60 a塔城地区各站不同相态降水的变化趋势存在一定的差异,总体呈现降雨日数增加而降雪日数减少的变化趋势,且降雨量的增速高于降雪量增速,其结果导致雪雨比率以-0.33%·(10a)-1的速率减小。(4) 气温增暖是塔城地区降水相态向多雨化转变的主要原因,同时北极涛动指数(Arctic oscillation index,AO)、北大西洋涛动指数(North Atlantic oscillation index,NAO)以及北半球极涡指数对降水相态的变化也有一定的影响。  相似文献   

8.
流域生态基流是河流生态系统健康稳定的关键,以新疆尼雅河流域为研究区域,根据民丰县气象站1958—2018年的气象数据与尼雅河4个水文监测断面1978—2018年的水文数据,运用趋势拟合、Tennant法、相关性分析和回归模型等分析流域气候变化、确定生态基流并探究其时空分异与保证率变化,揭示生态基流对气候变化的响应。结果表明:61 a来流域气温以0.22 ℃·(10a)-1的速度增加,年降水量以3.8 mm·(10a)-1的速度增加;尼雅水库、八一八渠首、尼雅水文站和尼雅渠首的年生态基流推荐值分别为:1.989 m3·s-1、2.188 m3·s-1、1.755 m3·s-1、1.702 m3·s-1;生态基流年际最大值出现在2010年,最小值在1980年,年内最大值在7月,最小值在1月或12月;空间上表现为上游高下游低,以八一八渠首处最高,尼雅渠首处最低;各站多年平均生态基流保证率分别为:50%、45%、50%、45%,且表现出汛期明显高于非汛期;逐年、逐月生态基流与气温、降水量均在0.01水平上显著相关,但在春夏季对气温敏感,秋冬季对降水量敏感,各水文监测断面的回归模型耦合效果相似,流域整体回归方程R2=0.365,且生态基流对气候变化响应具有整体性和衰减性。研究结果可为尼雅河流域生态调水和水生态修复提供参考。  相似文献   

9.
中国气温变化对全球变暖停滞的响应   总被引:4,自引:3,他引:1  
1998-2012年出现的全球变暖停滞(global warming hiatus)现象,近年来受到各界的广泛关注。基于中国622个气象站的气温数据,研究了全国及三大自然区气温变化对全球变暖停滞的响应。结果表明:① 1998-2012年间,中国气温变化率为-0.221 ℃/10 a,较1960-1998年增温率下降0.427 ℃/10 a,存在同全球变暖停滞类似的增温减缓现象,且减缓程度更明显,其中冬季对中国增温减缓的贡献最大,贡献率为74.13%,夏季最小;② 中国气温变化对全球变暖停滞的响应存在显著的区域差异,从不同自然区看,1998-2012年东部季风区和西北干旱区降温显著,其中东部季风区为中国最强降温区,为全国增温减缓贡献了53.79%,并且具有显著的季节依赖性,减缓期冬季气温下降了0.896 ℃/10 a,而夏季上升了0.134 ℃/10 a。青藏高寒区1998-2012年增温率达0.204 ℃/10 a,对全球变暖停滞的响应并不显著;③ 中国增温减缓可能受太平洋年代际振荡(PDO)负相位、太阳黑子数与太阳总辐照减小等因素的影响;④ 1998-2012年中国虽出现增温减缓现象,但2012年之后气温快速升高,且从周期变化看,未来几年可能持续升温。  相似文献   

10.
基于黑河流域径流、气象和土地利用类型等资料,采用弹性系数等方法研究了黑河径流变化特征及影响因素。结果表明:(1) 1990年后黑河流域径流量增加趋势明显加速,并且在黑河干流表现最为明显,1957—1990年莺落峡站径流量增加速率为0.75×108 m3·(10a)-1,而1991—2020年其增加速率为2.60×108 m3·(10a)-1,后者是前者的3.47倍,并且黑河全流域1990年后径流量增加主要发生在夏季和秋季,较1990年前分别增加了7.07%和26.58%。(2) 径流对气候变化的响应在夏季最为敏感,并且降水是导致径流增多的主要气候因素,夏季降水量增多1.000%,同期径流量平均增多0.741%(P<0.01)。(3) 2020年较1980年黑河流域耕地和建设用地面积相对增幅分别为24.20%和71.43%;草地和未利用土地面积相对降幅分别为1.30%和5.28%。径流量与林地面积、建设用地面积呈正相关,而径流量与草地面积呈负相关。研究结果可以为黑河流域水资源的科学管理、优化配置和后续生态工程的实施提供参考。  相似文献   

11.
The study of temperature change in major countries of the world since the 1980 s is a key scientific issue given that such data give insights into the spatial differences of global temperature change and can assist in combating climate change. Based on the reanalysis of seven widely accepted datasets, which include trends in climate change and spatial interpolation of the land air temperature data, the changes in the temperature of major countries from 1981 to 2019 and the spatial-temporal characteristics of global temperature change have been assessed. The results revealed that the global land air temperature from the 1980 s to 2019 varied at a rate of 0.320℃/10 a, and exhibited a significantly increasing trend, with a cumulative increase of 0.835℃. The mean annual land air temperature in the northern and southern hemispheres varied at rates of 0.362℃/10 a and 0.147℃/10 a, respectively, displaying significantly increasing trends with cumulative increases of 0.828℃ and 0.874℃, respectively. Across the globe, the rates of change of the mean annual temperature were higher at high latitudes than at middle and low latitudes, with the highest rates of change occurring in regions at latitudes of 80°–90°N, followed by regions from 70°–80°N, then from 60°–70°N. The global land surface air temperature displayed an increasing trend, with more than 80% of the land surface showing a significant increase. Greenland, Ukraine, and Russia had the highest rates of increase in the mean annual temperature;in particular, Greenland experienced a rate of 0.654℃/10 a. The regions with the lowest rates of increase of mean annual temperature were mainly in New Zealand and the equatorial regions of South America, Southeast Asia, and Southern Africa, where the rates were <0.15℃/10 a. Overall, 136 countries(93%), out of the 146 countries surveyed, exhibited a significant warming, while 10 countries(6.849%) exhibited no significant change in temperature, of which 3 exhibited a downward trend. Since the 1980 s, there have been 4, 34 and 68 countries with levels of global warming above 2.0℃, 1.5℃ and 1.0℃, respectively, accounting statistically for 2.740%, 23.288% and 46.575% of the countries examined. This paper takes the view that there was no global warming hiatus over the period 1998–2019.  相似文献   

12.
量化湖泊与邻近陆地的表面温度差异,拆分生物物理因子对其贡献是明确湖泊气候效应的基础。本文基于耦合CLM4.5的CESM模式模拟的1991—2010年全球气候数据,分析了全球湖泊表面温度效应(湖泊与邻近陆地的表面温度差异)的时空格局,利用IBPM因子拆分理论量化了生物物理因子对其贡献。结果表明:① 湖泊表面温度效应的季节变化明显,但年际变化不显著,北半球湖泊最强增温(4.37 K)和降温效应(-0.99 K)分别出现在9月和4月。② 除干旱区湖泊呈降温效应外,其他气候区的湖泊以增温效应为主,热带湖泊增温效应最强。③ 湖泊表面温度效应的生物物理主控因子随气候区改变,湖陆之间的蒸发差异是干旱区湖泊呈降温效应的主控因子,较低的对流散热效率是热带和温带湖泊呈增温效应的主控因子,反照率差异和冰雪融化潜热分别对寒带、极地湖泊表面温度效应的正贡献和负贡献最大。全球尺度上,湖陆之间的对流效率差异(3.77±0.13 K)和蒸发差异(-2.01±0.1 K)对湖泊表面温度效应的正、负贡献最大。  相似文献   

13.
The spatial distribution patterns of climatic changes in Yakutia are considered. For 26 meteorological stations of Yakutia we calculated the linear trend coefficients of climatic characteristics: air temperature (mean annual, January and July temperatures) and the mean annual amount of atmospheric precipitation from 1966 to 2016. Maps of climate change trends were compiled from linear trend coefficients. A spatial analysis of the zonal (regional) peculiarities of the climate of Yakutia has been carried out. An increase in air temperature was established for the 50-year period under consideration. It was found that the annual values of the air temperature trend are positive and, on average, a characteristic trend change interval is 0.3 to 0.6 °C/10 yr. Most of the meteorological stations recorded trends of air temperature with maximum values in winter and minimum values in summer. It was determined that the values of the trends in annual precipitation show different directions, and positive trends occur on more than 70% of the territory of Yakutia. Their maximum corresponds to the mountain-taiga regions of Southern Yakutia. Negative trends in precipitation with values of up to–15 mm/10 yr. are observed in tundra landscapes. The findings show that different regions of Yakutia respond differently to climate change. The trend of an increase in mean annual temperature is largely due to the rise in temperatures during the winter months. The rise in air temperature in Yakutia may be part of global warming. Over the last 50 years there has been an increase in the amount of precipitation in Yakutia as a whole.  相似文献   

14.
中国西北近50 a来气温变化特征的进一步研究   总被引:42,自引:14,他引:28  
王劲松  费晓玲  魏锋 《中国沙漠》2008,28(4):724-732
 利用国家气象信息中心最新整编的西北地区135站1960—2005年逐月资料,通过对该地区温度变化特征的分析,在前人研究成果的基础上,进一步揭示出了近50 a来西北地区气温变化的一些新特征: ①西北地区的年和各季节均表现为一致的增温趋势,但陕西南部在夏季出现降温的趋势。冬季和秋季,从塔里木盆地西侧到河套地区,在35°—40°N的带状区域内是增温趋势最强的区域。西北区域整体年平均气温的变化幅度达0.37℃/10a,冬季增温可达0.56℃/10a。无论是年或四季平均的增温率,西北地区都比全国平均的要高。②西北地区冬季和年的平均气温在20世纪80年代中期以后开始表现为明显上升趋势;但春季、夏季和秋季均到了20世纪90年代中期以后,才开始出现气温明显上升的趋势。③西北地区年气温异常首先表现为全区一致的变化型,然后依次为南北相反变化型和陕南气温变化与其他地区不同的独特性。且整体一致型变化近50 a来呈加强态势,而陕南与西北其他地区气温非同步变化的趋势在逐渐缩小。④西北地区近50 a来年气温可分为南疆-高原区、北疆区、西北东部区3个主要空间异常气候区。且从长期倾向来看,南疆-高原区和北疆区有明显的上升变化倾向,西北东部区则表现为波动式的上升趋势。  相似文献   

15.
基于高分辨率格点数据的1961-2013年青藏高原雪雨比变化   总被引:1,自引:0,他引:1  
基于国家气象信息中心发布的1961-2013年全国0.5° × 0.5°逐日降水量和日平均气温格点数据集以及气象站点日降水量和日平均气温实测资料,采用森斜率,M-K突变分析,IDW空间插值以及小波分析等方法,对近53年来青藏高原的降水量,降雨量,降雪量以及雪雨比的时空变化,突变和周期等特征进行了分析.结果表明:① 从时间尺度上看,青藏高原的降水量和降雨量总体呈增加趋势,增加幅度分别为0.6 mm·a-1(p < 0.05)和1.3 mm·a-1(p < 0.001);而降雪量和雪雨比均呈下降趋势,下降幅度分别为0.6 mm·a-1(p < 0.01)和0.5% a-1(p < 0.001).② 从空间分布上看,青藏高原的大部分地区降水量和降雨量呈增加趋势,而降雪量却呈现减少趋势.因此,雪雨比在青藏高原相应呈现减少趋势.③ 突变和周期分析表明,青藏高原降水量,降雨量,降雪量和雪雨比的突变时间分别出现在2005,2004,1996和1998年左右,而周期变化集中为5年,10年,16年,20年左右.④ 青藏高原降水量倾向率和降雨量倾向率均随海拔的升高呈现出先降低后升高的变化趋势,降雪量倾向率随海拔的升高而降低,雪雨比倾向率随海拔的升高呈微弱的下降趋势.  相似文献   

16.
全球变暖背景下的南极地区气候变化   总被引:1,自引:0,他引:1  
龚道溢 《地理科学》1999,19(2):102-107
南极地区气温冬季,春季和秋季都有上升趋势,而夏季则有下降趋势,年平均气温也趋上升,气温上升趋势最强烈的是冬季,其次是春季;降水各季和全年都有增加趋势。在年际尺度上,年均气温和降水与南极涛动指数是负相关,南极极涛动对不同区域影响的方向和程度也有区别。  相似文献   

17.
京津冀地区低空环境复杂多变,低空飞行安全受到雷暴、风切变、能见度、温度和湿度等气象因子的影响,准确地模拟和预报无人机低空航路上的气象要素是一个难题。基于中尺度天气预报模式(WRF)及其先进的三维变分同化系统(3D-Var),论文以2016年华北“7·20”特大暴雨作为研究案例,对京津冀地区无人机低空航路上的温度场、湿度场和风场进行资料同化与数值模拟,对比地面观测资料和数值模拟结果,分析其结构及特征,以期为京津冀地区无人机航路飞行安全保障提供参考。结果表明:WRF模式能够较好地模拟出该地区近地面温度、湿度和风速的日变化趋势。平原站点(天津和密云)模拟值与观测值的均方根误差(RMSE)和偏差(Bias)较小,风速在山区的模拟值偏大,平原地区的模拟效果优于北部和西部山区。强降水发生时,平原地区和山区的温度相差15 ℃左右,相对湿度达95%以上,边界层高度低于500 m,强烈的温差、较高的湿度和较低的边界层都会影响无人机的飞行安全。900 hPa高空,沿117°E经线在河北省廊坊—衡水一线出现超过10 m·s-1的风速值,形成强劲的东北风,区域北部(39°N~40.5°N)出现了明显的上升气流,1000 m高度处垂直风速也超过2 m·s-1。强烈的上升气流极不利于无人机的飞行,会对无人机飞行姿态和飞行高度产生重大影响,造成安全隐患。  相似文献   

18.
背景气候和城市化对中国东南部增温的联合效应(英文)   总被引:6,自引:1,他引:5  
Based on China homogenized land surface air temperature and the National Centers for Environmental Prediction/Department of Energy (NCEP/DOE) Atmospheric Model Intercomparison Project (AMIP)-Ⅱ Reanalysis data (R-2), the main contributors to surface air temperature increase in Southeast China were investigated by comparing trends of urban and rural temperature series, as well as observed and R-2 data, covering two periods of 1954-2005 and 1979-2005. Results from urban-rural comparison indicate that urban heat island (UHI) effects on regional annual and autumn minimum temperature increases account for 10.5% and 12.0% since 1954, but with smaller warming attribution of 6.2% and 10.6% since 1979. The results by comparing observations with R-2 surface temperature data suggest that land use change accounts for 32.9% and 28.8% in regional annual and autumn minimum temperature increases since 1979. Accordingly, the influence of land use change on regional temperature increase in Southeast China is much more noticeable during the last 30 years. However, it indicates that UHI effect, overwhelmed by the warming change of background climate, does not play a significant role in regional warming over Southeast China during the last 50 years.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号