首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 46 毫秒
1.
李欢  吴经华  蒋维诚  任涛  刘飚 《地质学报》2021,95(12):3926-3936
锡同位素是一种新兴的非传统稳定同位素,其在考古学及天体化学中的运用显示出非常大的示踪潜力和价值,然而目前其在地质学(尤其是矿床学)中的研究和应用前景缺乏系统介绍.本文总结分析了世界上目前所发表的主要天然及人工样品的锡同位素数据,发现天然样品中锡同位素组成有较大差异,其中玻璃陨石最富重锡(其δ122/118 Sn值可达2.53‰),而黝锡矿(黄锡矿)最富轻锡(其δ120/116Sn值可达-1.71‰).其中,含锡矿物(如锡石和黝锡矿)中的锡同位素组成变化范围要远远大于全岩样品.地幔及地壳来源的不同岩性或地质体的全岩锡同位素组成有明显差别;锡同位素在一定条件下可以发生分馏,且分馏程度可能远远大于锡同位素的初始值差异.锡石锡同位素对成矿环境非常敏感,其形成时的流体成分、化学反应速率以及物化条件(如温度、盐度、氧逸度、pH值等)等因素均能影响其锡同位素的组成.深部流体(如岩浆来源)结晶的锡石富重锡,而浅部流体(如地层流体)的加入将使锡石富轻锡,因此锡石的锡同位素具有判别不同矿床成因类型的潜力.展望未来,锡同位素的研究有望在以下三方面取得突破:①各地球圈层锡同位素储库数据的精确测定;②矿物原位微区锡同位素的准确快速分析;③热液矿床锡同位素分馏机制的建立.聚焦岩浆-热液演化过程中含锡矿物的锡同位素组成变化,有望揭示含锡流体性质及物化环境,从成矿流体来源、演化、沉淀等角度探讨成矿过程中锡同位素分馏的控制因素及其示踪机制,建立复杂锡成矿系统中的锡同位素演化模型.系统的锡同位素研究可为深入认识多类型锡矿化的"源"、"运""储"过程提供新的思路,为判别有争议锡矿床的成因类型及成矿物质来源提供关键的锡同位素证据,进而为研究大规模锡多金属成矿作用提供全新的视角,具有重要的理论价值及现实意义.  相似文献   

2.
随着实验技术的进步以及多接收电感耦合等离子体质谱仪(MC-ICP-MS)和热电离质谱仪(TIMS)的发展,近年来Ba 同位素的分析方法取得了显著进展。分析精度(δ138/134Ba,2SD)从之前的1 ‰ 提高到好于0.05 ‰。文章综述了近年来高精度Ba 同位素分析方法(溶液法)的发展历程,总结了国内外实验室关于不同类型样品的消解、Ba 元素化学纯化流程以及Ba 同位素质谱测定等方法,并对国内外多个实验室已发表的各类标准物质的Ba 同位素组成进行统计。研究结果可为Ba 同位素激光原位分析提供参考,为后续分馏机理解析和应用研究提供技术支撑。  相似文献   

3.
近年来多接收杯电感耦合等离子体质谱仪(MC-ICP-MS)的广泛应用,大大提高了Mo同位素分析方法的精度和效率,使Mo同位素地球化学成为当前地学研究领域中的一个前沿方向.本文综述了Mo稳定同位素的最新研究进展及其地质应用.自然界中的Mo同位素(δ98/95Mo)的一般变化范围是-1.35‰~2.60‰.Mo同位素分馏在充氧环境下取决于Mn氧化物的吸附或共沉淀,贫氧一缺氧环境下受控于水溶液中的[H2S].沉积物中的Mo同位素既能指示古沉积环境的氧化还原条件,也能够指示与之相关的古海洋地理环境,因此,Mo同位素是了解局域至区域沉积环境的氧化还原条件、硫和碳地球化学循环及古海洋化学演化等的强有力工具.随着其分馏机理的进一步阐明和应用范围的拓展,Mo同位素将在地球与环境科学研究中得到广泛的应用.  相似文献   

4.
多接收电感耦合等离子体质谱仪以及色谱分离和纯化方法的应用,大大提高了碲(Te)同位素的分析精度和效率,推动了碲同位素研究。本文综述了Te同位素研究的最新进展及其地质应用。碲具有亲硫和亲氧双重属性,同时具有一定的挥发性。自然界(包括陨石)中碲同位素( δ 130/125Te)的变化范围为-4. 12‰~2. 15‰。其同位素分馏受到不同过程的控制,其中球粒陨石碲同位素分馏主要受陨石形成过程中碲的蒸发和冷凝过程的控制,该过程中可引起高达6. 9‰的分馏;自然界中氧化还原反应也可以引起较大的碲同位素分馏(4‰),因此碲同位素可能成为反应成岩成矿过程中氧化 还原条件变化的指标;此外,有机溶剂(如石油)参与的萃取作用可引起1. 8‰的碲同位素分馏效应,这一效应在重稳定同位素研究过程中需要引起足够的重视。随着碲同位素分馏机制的进一步明晰,碲可能在示踪成矿物质来源、限定成矿时间以及指导矿产勘查等方面得到更为广泛的应用。  相似文献   

5.
多接收电感耦合等离子体质谱(MC-ICP-MS)的广泛应用使过渡金属元素同位素地球化学的研究近年来获得蓬勃发展.利用元素双稀释剂法对钼同位素值进行校正,目前可以获得±0.1‰(2σ)的测试精度.自然界中钼同位素分馏δ98/95Mo可达~3‰,其分馏机制与环境的氧化-还原状态有关.在氧化环境下钼以MoO2/4-的形式与锰...  相似文献   

6.
过渡族金属元素同位素分析方法及其地质应用   总被引:21,自引:0,他引:21  
蒋少涌 《地学前缘》2003,10(2):269-278
由于同位素分析方法的改进和多接收电感耦合等离子体质谱仪 (MC ICP MS)的应用 ,近年来过渡族金属元素 (Cu ,Zn和Fe)同位素地球化学有了长足进步 ,成为国际地学领域的一个前沿研究方向。Cu同位素在自然界中的变化最大 ,δ65Cu值为 - 3.70‰~ +2 .0 5‰ ;Zn和Fe同位素变化比Cu同位素变化小 ,δ66Zn值为 - 0 .6 4‰~ +1.16‰ ,而δ56Fe值为 - 1.6 2‰~ +0 .91‰。自然界中各种无机过程 (从高温到低温 )和生物有机过程均能使Cu ,Zn和Fe同位素发生分馏。Cu、Zn和Fe在自然界中广泛分布于各类矿物、岩石、流体和生物体中 ,并广泛参与成岩成矿作用、热液活动和生命活动过程。因此 ,这些过渡族金属元素同位素已在陨石和宇宙化学、矿床学 ,海洋学和生物学等领域的研究中取得了显著成效 ,并将成为地球科学中具有巨大应用前景的一种新的地球化学手段。  相似文献   

7.
基于碱熔法的改进和多接收电感耦合等离子质谱仪(MC-ICP-MS)的发展,近年来高精度Si同位素组成(δ30Si)分析方法取得了长足进步,分析精度(2SD)自气体质谱仪(GS-MS)时代的±0.15‰~±0.30‰ 提高到优于±0.10‰,足以辨析高温过程中Si同位素发生的微小分馏,并且避免了实验流程中使用含氟等危险化学品。二次离子质谱(SIMS)和飞秒激光剥蚀(fs LA)的发展使得原位Si同位素组成分析精度近期也优化到±0.10‰~±0.22‰。文章对近年来Si同位素分析方法的发展沿革进行综述,探讨建立溶液法MC-ICP-MS的高精度Si同位素分析方法的进展与局限,并比对了国内外各个实验室已发表国际国内Si同位素标准物质测定值,最后总结了硅酸盐地球(BSE)、地壳和陨石等主要地质储库的δ30Si组成范围。  相似文献   

8.
由于同位素分析方法的改进及表面热离子质谱(TIMS)和多接收电感耦合等离子体质谱(MC-ICP-MS)的应用,近年来氧化还原敏感元素(Se、Cr、Mo)同位素地球化学得以快速发展,成为国际地学领域的一个前沿。Se同位素在自然界中的变化最大,δ82/76SeNIST为-12.77‰~3.04‰;Cr和Mo同位素变化较小,δ53/52CrNIST值为-0.07‰~0.37‰,δ97/95MoJMC值为-0.27‰~2.65‰。自然界中各种无机过程(氧化还原)和生物有机过程均能使Se、Cr、Mo产生同位素分馏。因此,这些氧化还原敏感元素同位素可以示踪环境污染源、矿床流体来源;解释古海洋与现代海洋中元素的自身循环,从而示踪古氧化还原环境的演化;解释地外撞击事件及宇宙行星演化;甚至在生物学等领域研究中取得了显著成效。虽然还存在一些问题但它们将可能成为地球科学中有巨大应用前景的一种新兴的地球化学工具。  相似文献   

9.
喀斯特高原湖泊生物地球化学过程中的锌同位素特征   总被引:1,自引:0,他引:1  
采用多接收电感耦合等离子体质谱仪(MC-ICP-MS)对喀斯特高原湖泊红枫湖、阿哈湖水体及其主要支流水体悬浮物和一些生物样品中的锌同位素进行了测定,测试精度小于0.11‰(2SD).结果显示,红枫湖水体与其主要支流水体悬浮物中的δ66Zn变化范围分别为-0.29‰~0.26‰和-0.04‰~0.48‰,阿哈湖水体与其主要支流水体悬浮物中的δ66Zn变化范围分别为-0.18‰~0.27‰和-0.179‰~0.46‰,均表现出支流中的锌同位素组成较重的特点.两湖生物样品中的δ66Zn变化范围较大,为-0.35‰~0.57‰,说明湖泊生态系统中各端员的锌同位素组成存在一定差异.根据同位素组成分析,湖泊主要入湖河流及所携带的陆源物质是阿哈湖泊水体中锌的主要来源,锌同位素是一种较好的物源示踪工具.红枫湖夏季δ66zn与Chla(叶绿素)呈显著的正相关(R=0.97),主要是藻类对锌的有机吸附和吸收过程导致锌同位素组成发生变化.此外,湖泊水体悬浮物中的锌同位素组成均在夏季较轻,表明大气的干湿沉降可能是一个较负的锌同位素源.水体悬浮物中的δ66Zn变化范围小于生物样品中的δ66Zn变化范围,说明由于生物作用过程导致的锌同位素分馏大于非生物过程.  相似文献   

10.
向蜜  龚迎莉  刘涛  田世洪 《地质学报》2021,95(12):3937-3960
作为"非传统稳定同位素"家族成员,钙同位素正受到国际地学界日益广泛的关注.钙是主要的造岩元素,也是生物必需的元素.钙在地球各圈层广泛分布,研究钙同位素的地球化学行为将有助于提高我们对各种生物过程和地质过程的认识.钙同位素测定主要采用热电离质谱仪(TIMS)和多接收电感耦合等离子体质谱仪(MC-ICP-MS),分别表示为δ44/40 Ca和δ44/42Ca.目前自然界可观测到的δ44/40Ca变化范围为-2.0‰~6.75‰,约8.7‰.本文系统介绍了近年来钙同位素分析中样品溶解、化学分离、质谱测定以及高温地质过程中的钙同位素分馏及其地质应用等方面的研究成果,尤其对钙同位素在碳酸岩-共生硅酸盐岩研究中的意义、钙同位素组成以及取得的主要认识作了较为全面的介绍.阐述了放射成因40 Ca、部分熔融作用/分离结晶作用、地壳同化作用、古俯冲碳酸盐循环、热液蚀变作用、岩浆起源深度等对碳酸岩、硅酸盐岩的钙同位素组成造成的影响.最后,通过系统对比碳酸岩-共生硅酸盐岩的锂、镁、钙同位素研究成果,认为应该开展多元同位素体系的联合示踪.由于不同同位素体系存在相似性和差异性,而多元同位索体系相结合能有效地加强优势互补,将是同位素地球化学研究发展的一种必然趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号