首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
使用AGMP-1氯化物型阴离子交换树脂(100--200目)对夏季贵州阿哈湖流域水体悬浮颗粒物等样品进行了化学分离,并在多接收电感耦合等离子体质谱仪(MC-ICP-MS)上进行了铁同位素分析.分析结果表明,夏季阿哈湖湖水分层期间湖水悬浮颗粒物及各端员环境样品的铁同位素组成变化较大:湖水悬浮颗粒物的δ56Fe为负值,分布范围为-1.36‰~-0.10‰之间;各支流河水悬浮颗粒物的铁同位素组成在-0.88‰~-0.16‰之间;大气颗粒物的平均铁同位素组成为 0.06‰±0.02‰;而未经化学清洗的浮游藻类的铁同位素组成为 0.08‰.对比研究表明,湖水悬浮颗粒物的铁同位素组成不仅受各输入端员的影响,湖泊内部复杂的生物地球化学过程也对颗粒物的铁同位素组成产生了重要影响.陆源输入的颗粒有机结合态铁使得湖泊表层悬浮颗粒物的铁同位素组成偏低,而大气沉降颗粒物和湖泊表层的浮游藻类整体上对铁同位素组成的影响并不显著."ferrous wheel"铁循环对于氧化还原界面附近水层中铁同位素的重分配起到了主要的控制和影响作用.δ56Fe值与Fe/A1呈现良好的负相关关系,也显示出活性铁的循环迁移是造成氧化还原界面附近水层中悬浮颗粒物的铁同位素组成变化的重要原因,表明铁同位素与Fe/A1可能可以作为表征水体生物地球化学环境的良好指标.  相似文献   

2.
红枫湖是云贵高原上一个中等富营养化的季节性厌氧湖泊。对红枫湖流域湖水及其入湖河流河水一年内四个季节的水体硫酸盐硫同位素组成进行了系统研究,结果表明,红枫湖湖水硫酸盐的δ^34S值介于-8.7‰-4.9‰之间,平均-6.8‰,入湖河流的δ^34S值变化范围为-14.7‰-+0.8‰。湖水的硫同位素组成主要受煤以及大气降水的控制,硫化物和蒸发岩的贡献较小。全年内湖水的δ^34S值季节性变化明显,表现为夏季〉秋季〉冬季、春季的特征,反映了大气降水对湖水硫酸盐贡献的季节性差异。此外,湖水垂直剖面上呈现出明显的季节性差异,冬季、春季湖水的剖面上下δ^34S值几乎没有变化,而夏季、秋季湖水表层和底层相对较高,呈规律性变化,这与湖水冬季混合、夏季分层的特点有关;夏季湖水分层期间雨水在湖泊表层的滞留,以及湖泊底层的硫酸盐细菌还原等相关生物地球化学过程是水体垂直剖面上δ^34S值规律性变化的主要原因。  相似文献   

3.
对不同离子交换柱、淋洗体积、盐度、分离次数等一系列影响铜、锌纯化分离效果的条件进行了探讨,确定了环境样品(湖泊沉积物、植物和颗粒物)中铜、锌同位素测定时化学分离的最佳条件。采用AGMP-1(100~200目)阴离子交换树脂,以7mol/LHCl+0.001%H2O2、2mol/LHCl+0.001%H2O2、0.5mol/LHNO3作为淋洗液,分别在适当的体积接收淋洗液,可以有效地分离沉积物、植物和悬浮物等样品中的铜和锌。化学分离过程中Cu和Zn的回收率接近100%,同位素分馏在测试误差范围以内。将此方法应用于对红枫湖和阿哈湖水体悬浮物、植物和鱼类等样品中Cu、Zn的分离,经MC-ICP-MS测试后,准确获得了这些样品的Cu、Zn同位素组成。  相似文献   

4.
四川天宝山铅锌矿床的锌-硫同位素组成及成矿物质来源   总被引:5,自引:4,他引:1  
四川天宝山铅锌矿床位于扬子板块西南缘,赋矿地层为上震旦统灯影组白云岩。尽管这个地区已有大量的科研工作,但其成矿物质来源仍然存在争议。本文主要测定了闪锌矿微区样品的锌和硫同位素组成,以及三个中段的闪锌矿单矿物、上震旦统灯影组白云岩和会理群天宝山组砂岩的锌同位素组成。闪锌矿微区样品的δ~(66)Zn值介于0.39‰~0.52‰之间,平均值为0.46‰,δ~(34)SCDT值介于4.24‰~4.87‰之间,平均值为4.59‰。同一块手标本上闪锌矿微区样品具有均一的锌同位素组成表明小尺度上(10×10cm~2)热液流体具有均一的锌同位素组成。在大尺度上(矿体),三个中段的闪锌矿的锌同位素组成范围变化较大,其δ~(66)Zn值介于0.15‰~0.73‰之间。同一块手标本上早期阶段的闪锌矿具有更重的锌同位素组成表明早期阶段的成矿流体可能具有更重的锌同位素组成。三个中段闪锌矿的锌同位素组成变化主要受成矿流体中锌同位素组成和成矿流体的迁移就位途径控制。上震旦统灯影组白云岩的δ~(66)Zn值介于0.06‰~0.35‰之间,平均值为0.21‰,暗示热液淋滤控制了灯影组白云岩的锌同位素组成。会理群天宝山组砂岩的δ~(66)Zn值为0.62‰,可能代表了未经热液淋滤的沉积端元的锌同位素组成。本次研究表明天宝山铅锌矿床的锌主要来源于上震旦统灯影组白云岩,但不能排除白云岩之上的沉积盖层、基底和更深物质的贡献;硫主要来源于上震旦统灯影组地层中的蒸发岩(主要通过热化学还原作用形成还原硫)。  相似文献   

5.
利用自然界中广泛分布的环境同位素进行湖泊水体演化过程分析已经成为现代湖泊科学的重要研究方向.通过采集内蒙古达里诺尔湖(简称"达里湖") 2013年1月份的湖冰、湖水, 2012年夏季湖水与湖区大气降水等, 共分析了77个样品中稳定氢(H)、氧(O)同位素值的变化情况, 在此基础上对达里湖水体稳定H、O同位素组成变化及其对结冰过程的响应进行了详细分析, 结果显示: (1)伴随结冰过程的完成, 各站点深层冰体(厚度~65 cm)中δD、δ18O值比表层冰体(厚度~15 cm)中的值出现不同幅度的偏重.而冰下水体中δD、δ18O平均值则比冰体中的平均值分别偏轻约13.85‰、2.23‰.在冰层形成的快速与稳定阶段, δD、δ18O值的变化幅度也存在差异.同时, 冬季外源水体的输入对各站点间同位素值差异的影响比夏季更明显; (2)夏季湖水、冬季湖水与湖冰的同位素值均落在全球大气降水线与湖区大气降水线之外, 显示湖泊冰封之前, 蒸发对湖泊水体同位素偏移存在一定程度的影响; 而冬季湖水与湖冰的同位素值基本位于同一斜率区间, 且全部落在夏季湖水同位素值的右侧, 显示两者之间并不存在明显的蒸发分馏作用, 造成上述现象的因素只能归结于结冰过程.   相似文献   

6.
氢氧同位素可以识别水体来源,示踪水循环,自20世纪50年代以来已被广泛应用于水文地球化学领域。已有学者开展了新疆大气降水及部分河流湖泊的稳定同位素研究,而关于阿勒泰地区大气降水之外的地表水体稳定同位素研究尚需加强。本文采用液体水激光同位素分析法开展了新疆阿勒泰地区地表河水、湖泊、山泉水、雪水、锂矿坑裂隙水五类水体的氢氧同位素组成研究。结果表明:阿勒泰地区各种类型水体氢氧同位素组成差异明显,地表河流的δ~(18)O及δD值变化范围分别为-15.4‰~-11.5‰及-114‰~-100‰,氘过量参数(d值)变化范围为-12.4‰~12.4‰;乌伦古湖湖水的δ~(18)O及δD值均远高于地表河流,平均值分别为-5.95‰及-78.5‰,氘过量参数远低于地表河流,均值为-30.9‰。地表河流与全球及乌鲁木齐大气降水线相比差异很大,河水除了大气降水外还受到冰川融水的补给,且在水循环过程中经历了蒸发分馏作用,地表河流之间的氢氧同位素组成差异主要受水体补给来源及蒸发程度强弱的控制。由于氢氧同位素温度效应、纬度效应等的存在,阿勒泰地区水体δD及δ~(18)O与水温(T)、总溶解性固体(TDS)及主要离子Na~+、K~+、Ca~(2+)、Cl~-、SO■摩尔浓度呈显著正相关关系,而与采样点纬度及溶解氧含量(DO)呈显著负相关关系(P0.05,n=32)。本研究获得的氢氧同位素组成特征为阿勒泰地区各类型水体稳定同位素研究提供了基础数据。  相似文献   

7.
长江流域河水和悬浮物的锂同位素地球化学研究   总被引:9,自引:1,他引:8  
深入理解流域侵蚀过程中的锂同位素分馏对于运用锂同位素来示踪化学循环和气候变化是十分必要的。研究集中在长江干流和主要支流的水体和悬浮物的锂及锂同位素组成。长江流域水体的锂及锂同位素组成(δ7Li)分别为150~4 570 nmol/L和+7.6‰~+28.1‰,两者沿上游至下游的变化趋势相反。悬浮物锂同位素组成(δ7Li)变化比较稳定,分别为41~92 μg/g和-4.7‰~+0.7‰,而且总是低于相应水体的锂同位素组成。悬浮物和流体之间的锂同位素分馏系数在0.977和0.992之间,与悬浮物的量及组成存在明显相关性,反映了粘土矿物的吸附和化学风化的程度。锂含量与锂同位素组成之间良好的负相关性表明流域水体的锂来自2个端元混合:其一可能是蒸发盐岩,并伴有深部热泉水;其二可能是硅酸岩。  相似文献   

8.
<正>铜(Cu)和锌(Zn)属于第一过渡族金属元素,分别有2种(63Cu、65Cu)和5种(64Zn、66Zn、67Zn、68Zn、70Zn)稳定同位素。Cu-Zn都属于生命元素,它们在海洋中的地球化学循环对海洋生产率发挥着重要作用。现有研究表明,海水的δ65Cu和δ66Zn分别为ca.0.9‰和ca.0.5‰,显著重于河水的Cu-Zn同位素组成(δ65Cu=ca.0.6‰和δ66Zn=ca.0.3‰);说明海洋中至少存在一个具有轻Cu-Zn同位素组成的储库。海底Fe-Mn结壳和碳酸盐岩石海洋Cu-Zn输出的重要渠道。已有研究表明,三大洋中的Fe-Mn结壳的δ65Cu和δ66Zn分别为0.44±0.23‰和1.04  相似文献   

9.
利用碳氧同位素组成可以很好地判别其形成的沉积环境.以内蒙古大井矿床为例,对该矿床16个菱铁矿样品进行碳、氧同位素分析,δ13CPDB变化范围为-1.8‰~-6.6‰,δ18OVPDB变化范围为-23.1‰~-17.3‰.根据矿物δ13C与δ18O值投影到δ13C-δ18O图解中,样品数据在图中的投点落入热水沉积区,说明其形成过程中具有热水沉积作用的发生.古温度可以通过T=16.998-4.52(δ18cO-δ18wO)+0.03(δ18cO-δ18wO)2计算,其形成时的温度平均值为117℃,比海底和湖底的温度要高得多,主要原因在于热水流体参与成矿.碳酸盐的成矿环境可以通过公式Z=2.048(δ13C+50)+0.498(δ18O+50)计算:Z值大于120,表示成矿环境为海水;如果Z值小于120,表示成矿环境为淡水或湖水.内蒙古大井矿床菱铁矿的Z值为100~114,结合区域地质背景,大井矿床形成的古环境为深水湖泊环境.通过对碳氧同位素的分析,结合成矿地质背景、矿床地质特征以及微量元素组成,认为在大井矿床成矿的早期阶段曾经发生过热液沉积作用,本次研究不仅有利于全面理解和认识大井矿床成矿过程的全貌,而且有益于对古湖相环境热液事件的探索.  相似文献   

10.
以往对于土壤碳酸盐根茎体(CR)的形态和碳同位素分析表明其具有纯的生物成因源的特征,被用于指示不同大陆的高分辨率气候变化.为此,本研究选取了位于黄土高原中部的西峰和洛川黄土-古土壤序列,分别采集65个和22个样品.通过湿筛法(80目)分离后,在显微镜下通过细针挑选出根茎体样品进行碳同位素(δ13CCR)的分析,并将结果与总有机质碳同位素(δ13CTOC)、总无机碳酸盐碳同位素(δ13CTIC)、总有机碳含量(TOC%)和磁化率(MS)等多指标进行对比分析.结果表明:西峰剖面的土壤碳酸盐根茎体δ13CCR值的变化范围为-8.6‰~-3.7‰,δ13CTOC值的变化范围为-23.68‰-19.47‰,δ13CTIC值的变化范围为-8.65‰~-4.95‰;洛川剖面的土壤δ13CCR值的变化范围为-8.30‰-3.58‰,δ13CTOC值的变化范围为-23.28‰~-18.72‰,δ13CTIC值的变化范围为-8.50‰ ~-3.78‰;两个剖面末次冰期以来的δ13CCR均没有完全响应MS,TOC和δ13CTOC的变化趋势,表现为在So呈现相反的变化趋势,在L1呈现相似的变化趋势;而与δ13CTIC值在冰期-间冰期尺度上呈现一致的变化趋势和幅度.该结果表明西峰、洛川剖面碳酸盐根茎体碳同位素类似于总无机碳酸盐碳同位素,其影响因素可能较为复杂(如碳酸盐的淋溶迁移、植被的影响、原生碳酸盐等复杂因素的影响),特别是淋滤深度的不确定性.因此,在独立使用黄土碳酸盐根茎体δ13CCR值来重建该地区的古植被(C4/C3)变化信息时要慎重.  相似文献   

11.
Lithostratigraphy, physicochemical stratigraphy, biostratigraphy, and geochronology of the 77–70 Ma old series bracketing the Campanian–Maastrichtian boundary have been investigated by 70 experts. For the first time, direct relationships between macro- and microfossils have been established, as well as direct and indirect relationships between chemo-physical and biostratigraphical tools. A combination of criteria for selecting the boundary level, duration estimates, uncertainties on durations and on the location of biohorizons have been considered; new chronostratigraphic units are proposed. The geological site at Tercis is accepted by the Commission on Stratigraphy as the international reference for the stratigraphy of the studied interval. To cite this article: G.S. Odin, C. R. Geoscience 334 (2002) 409–414.  相似文献   

12.
13.
GEOPHYSICS     
正20140634 Cao Lingmin(Key Laboratory of Marine Geology and Environment,Institute of Oceanology,Chinese Academy of Sciences,Qingdao 266071,China);Xu Yi Finite Difference Tomography of the Crustal Velocity Structure in Tengchong,Yunnan Province(Chinese Journal of Geophysics,ISSN0001-5733,CN11-2074/P,56(4),2013,p.1159-1167,6illus.,35refs.,with English abstract)  相似文献   

14.
PALEOBOTANY     
正20140965Jia Gaowen(School of Earth Sciences,Lanzhou University,Lanzhou 730000,China);Liu Kenan Pod and Leaflet Fossils of Dalbergia(Leguminosae)from the Upper Miocene of Lincang,Yunnan Province(Acta Palaeontologica Sinica,ISSN0001-6616,CN32-1188/Q,52(2),2013,p.213-222,6  相似文献   

15.
正20141520 Bo Ying(Key Laboratory of Metallogeny and Mineral Assessment,MLR,Beijing 100037,China);Liu Chenglin Saline Spring Hydrochemical Characteristics and Indicators for Potassium Exploration in Southwestern and Northern Tarim Basin,Xinjiang(Acta Geoscientica Sinica,ISSN1006-3021,CN11-3474/P,34(5),2013,p.594-602,5 illus.,3 tables,28 refs.)  相似文献   

16.
正20142599Chen Sanming(Guangxi Key Laboratory of Concealed Deposits Exploration,Guilin University of Technology,Guilin541004,China);He Yuzhou Block Model and Reserves Estimation of Panzhihua Iron Deposit Based on 3D Geological Modeling(Journal of Guilin University of Technology,ISSN1674-9057,CN45-1375/N,33(4),2013,p.610-615,9illus.,1table,15refs.)  相似文献   

17.
正20140594 Bai Daoyuan(Hunan Institute of Geology Survey,Changsha 410016,China);Zhong Xiang Faults in the Jingzhou Basin and Their Tectonic Settings(Geotectonica et Metallogenia,ISSN1001-1552,CN44-1595/P,37(2),2013,p.173-183,6illus.,59refs.)Key words:basin evolution,tectonic setting,South China In the Upper Paleozoic and Jurassic se-  相似文献   

18.
正20141243Chen Ge(Hangzhou Research Institute of Petroleum Geology,PetroChina,Hangzhou 310023,China);Si Chunsong Study on Sedimentary Numerical Simulation Method of Fan Delta Sand Body(Journal of Geology,  相似文献   

19.
正20141664 Abudoukerimu Abasi(Kashi Meteorological Bureau of Xinjiang,Kashi 844000,China);Wang Rongmei The Relationship with Woody Plants Phonological Variation Characters and Climatic Change from 1982to 2010in Kashi(Quaternary Sciences,ISSN1001-7410,CN11-2708/P,33(5),2013,p.927-935,8illus.,3 tables,48 refs.,with English abstract)  相似文献   

20.
正20140958 Mei Huicheng(No.915GeologicalBrigade,Jiangxi Bureau of Geology and Mineral Resources,Nanchang 330002,China);Li Zhongshe Geological Features and Causes of the Huihuang Geotherm in Xiushui,Jiangxi Province(Journal of Geological Hazards and  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号