首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 171 毫秒
1.
<正>铜(Cu)和锌(Zn)属于第一过渡族金属元素,分别有2种(63Cu、65Cu)和5种(64Zn、66Zn、67Zn、68Zn、70Zn)稳定同位素。Cu-Zn都属于生命元素,它们在海洋中的地球化学循环对海洋生产率发挥着重要作用。现有研究表明,海水的δ65Cu和δ66Zn分别为ca.0.9‰和ca.0.5‰,显著重于河水的Cu-Zn同位素组成(δ65Cu=ca.0.6‰和δ66Zn=ca.0.3‰);说明海洋中至少存在一个具有轻Cu-Zn同位素组成的储库。海底Fe-Mn结壳和碳酸盐岩石海洋Cu-Zn输出的重要渠道。已有研究表明,三大洋中的Fe-Mn结壳的δ65Cu和δ66Zn分别为0.44±0.23‰和1.04  相似文献   

2.
壳-幔演化和板块俯冲作用过程中的硼同位素示踪   总被引:2,自引:0,他引:2  
蒋少涌 《地学前缘》2000,7(2):391-399
硼同位素是近年来发展起来的一门新兴的稳定同位素地球化学方法。硼有两个稳定同位素 :10 B和11B。硼同位素组成自然界变化十分大 ,δ11B值为 - 37‰~ +58‰。对地幔岩石的硼同位素研究表明 ,原始地幔的δ11B值为 - 10‰± 2‰ ,B的质量分数估算为 (0 2 5± 0 1)×10 -6。相对而言 ,地壳岩石的B含量和δ11B值均较高。由于壳、幔岩石具有不同的B含量和δ11B值 ,硼同位素已被广泛应用于研究壳幔演化和板块俯冲作用过程 ,用于示踪俯冲板块中大洋沉积物和蚀变洋壳在地幔中的循环。  相似文献   

3.
海洋沉积物的铁和锌同位素测定   总被引:2,自引:0,他引:2  
介绍海洋沉积物Fe和Zn同位素化学前处理及测定方法,报道南海西部夏季上升流区两个沉积物柱样的Fe和Zn同位素组成。样品采用HF+HNO3+HClO4常压消解,经脱盐后,转化为氯化物形式并经离子交换柱分离纯化后,用多接收器等离子体质谱法测定Fe和Zn同位素比值。该前处理方法可以快捷地实现海洋沉积物的消解、有机质的去除和海盐脱离;结合相关测试流程,可获得较高的δ56Fe(0.10‰,2SD)和δ66Zn分析精度(0.11‰,2SD)。两个沉积物柱样的δ56Fe值(相对于IRMM-014)和δ66Zn值(相对于JMC3-0749C)随深度变化不明显,两柱之间也无明显差异。总体上,南海西部上升流区1~2 ka以来的沉积物δ56Fe值(0.04‰~0.20‰)和δ66Zn值(0.12‰~0.30‰)与已报道的黄土和气溶胶、火成岩以及大部分海洋沉积物接近,明显高于静海相海洋沉积物的δ56Fe值。  相似文献   

4.
西藏甲玛铜多金属矿硫同位素地球化学研究   总被引:1,自引:0,他引:1  
西藏墨竹工卡县甲玛铜多金属矿床位于冈底斯成矿带东段,Cu、Mo、Pb+Zn、Au、Ag均达大型规模,并伴生Co、Bi、W、Ni等多金属矿化。黄铜矿、斑铜矿、辉钼矿、方铅矿、闪锌矿、黝铜矿、辉铜矿等硫化物为主要的矿石矿物,硫酸盐矿物以硬石膏为主,含矿岩浆岩以花岗斑岩、二长花岗斑岩和花岗闪长斑岩为主。通过对甲玛矿区主要硫化物和硬石膏的硫同位素分析,并结合前人研究,甲玛矿区硫化物的硫同位素δ34S值变化于13.6‰~+12.5‰,平均值1.33‰(样品数86)、硬石膏δ34S值+0.5‰~+1.8‰,平均值+1.13‰(样品数3)、岩浆岩δ34S值0.7‰~0.2‰,平均值0.5‰(样品数3),与岩浆硫δ34S值0±3‰一致。闪锌矿-方铅矿-黄铜矿矿物对的硫同位素地质温度计,显示成矿温度为408~433℃,说明其形成时硫同位素处于平衡状态。冈底斯成矿带上的驱龙等斑岩型矿床中硫化物和岩浆岩硫同位素,均具有δ34S值变化范围小,平均值接近0值,与岩浆硫特征一致的特点,反映了甲玛铜多金属矿床具有矽卡岩-斑岩型矿床硫同位素地球化学特征,硫以岩浆来源为主。  相似文献   

5.
由于同位素分析方法的改进及表面热离子质谱(TIMS)和多接收电感耦合等离子体质谱(MC-ICP-MS)的应用,近年来氧化还原敏感元素(Se、Cr、Mo)同位素地球化学得以快速发展,成为国际地学领域的一个前沿。Se同位素在自然界中的变化最大,δ82/76SeNIST为-12.77‰~3.04‰;Cr和Mo同位素变化较小,δ53/52CrNIST值为-0.07‰~0.37‰,δ97/95MoJMC值为-0.27‰~2.65‰。自然界中各种无机过程(氧化还原)和生物有机过程均能使Se、Cr、Mo产生同位素分馏。因此,这些氧化还原敏感元素同位素可以示踪环境污染源、矿床流体来源;解释古海洋与现代海洋中元素的自身循环,从而示踪古氧化还原环境的演化;解释地外撞击事件及宇宙行星演化;甚至在生物学等领域研究中取得了显著成效。虽然还存在一些问题但它们将可能成为地球科学中有巨大应用前景的一种新兴的地球化学工具。  相似文献   

6.
花岗质岩石中铜铁锌的化学分离方法   总被引:2,自引:1,他引:2  
过渡族元素同位素研究是近几年才发展起来的研究领域,随着研究的范围日趋广泛,问题日渐深入,需要对更多的地质样品进行同位素组成测定和研究.尽管文献报道的有关用于多接收器等离子体质谱过渡族元素同位素分析的化学分离方法能将Cu、Fe、Zn等元素很好地分离开来,但并未对地质样品中复杂地质基体元素的分离情况进行报道.因此,笔者对花岗岩中Cu、Fe、Zn分离进行了研究.  相似文献   

7.
李艳平  蒋少涌 《地球学报》2005,26(Z1):10-11
抓有两个稳定同位素35Cl和37Cl,在自然界中的丰度分别为24.23%和75.77%。自然界中氯同位素的组成变化很小,氯同位素组成的表示方法一般用δ37C1值表示:37C1=[(37Cl/35C1)sample-1 (37Cl/35C1)Std]×1000 δ37C1在自然界的变化范围约为15‰(-8.0‰~+7.5‰)。由于海水中的氯同位素组成非常均一,Kaufman等(1984)调查发现世界大洋海水中氯同位素组成相同,因此建议采用标准海水(SMOC)作为氯同位素标准。氯同位素的分析方法主要包括气体同位素质谱法和热电离质谱法,目前的分析精度可达0.2‰。 对于大部分同位素而言,由扩散引起的同位素分馏主要与化学和生物过程有关。研究表明沉积物间隙水中造成氯同位素分馏的原因主要3个:①矿物在海水中沉淀的过程中优先富集37C1(Magenheim等,1994,1995);②扩散过程,35C1的扩散速度高于37C1(Desaulnier等,1986;Eggenkomip等,1994);③沉积物的离子隔膜过滤作用,当流体通过粘土矿物时,由于沉积物表层负电荷的排斥,35Cl受到的排斥作用大于37Cl,因此流体中会富集37C1,此机制被Campbell(1985)通过实验得到了证实。 氯是上地壳流体中主要的阴离子,在矿物岩石和矿床的形成过程中起着重要的作用,因此研究自然界中抓的分布和运移对于地球科学各个研究领域而言有着重要的意义。目前已对大气圈、水圈和岩石圈的氯同位素组成进行过分析,大气气溶液中δ37C1的变化范围为+0.42‰-2.53‰;河水中的δ37C1较高为+0.74‰-+2.85‰,盐湖卤水δ37C1则相对较低,为-2.06‰~+1.01‰,地下水中δ37C1变化范围较小为-0.50‰~+0.69‰;俯冲间隙水氯同位素组成最低,变化范围为-7.5‰~-2.2‰;新鲜的洋中脊玄武岩( MORB)玻璃体中δ37C1的变化范围为+3.0‰~+7.2‰,去气地幔中δ37C1值为+4.7%;而富集地幔中δ37C1落在0.4‰~3.4‰之间;麻粒岩δ37C1的变化范围很小,其中大部分的岩石和矿物δ37C1都集中在-0.3‰~+0.11‰之间,平均值为-0.15‰,而角闪石和黑云母δ37C1分别为-1.12‰和+0.79‰;岩盐中δ37C1的变化范围为-0.6‰~+1.2‰。 氯同位素地球化学的研究工作在总体上仍处于起步阶段,但该方法在地球科学各个领域已经显示了极好的应用前景。氯同位素组成可以用于示踪板块俯冲和壳幔物质循环过程、热液成矿过程中成矿流体的起源和演化以及盐湖和岩石中卤水的起源和演化。  相似文献   

8.
作为一种重要的成矿元素,铜广泛分布于不同地质体中,并广泛参与成岩成矿作用。近年来,由于同位素分析方法的改进和新一代多接收等离子质谱仪(MC-ICPMS)的应用,使得铜同位素的高精度测试成为现实,并已成为国际地学领域的一个前沿研究方向。铜同位素在自然界中具有较大的变化范围,δ65Cu值介于-3.03‰~5.74‰之间。本文介绍和评述了铜同位素的分析方法和可能的分馏机制,并根据已发表数据,重点讨论了铜同位素组成与成矿温度、矿化阶段和成矿物质来源的关系。认为铜同位素有可能作为一种灵敏的地球化学示踪剂,对指示成矿物质来源、成矿作用过程和矿床形成机理具有重要作用。  相似文献   

9.
MC-ICP-MS高精度Cu、Zn同位素测试技术   总被引:4,自引:1,他引:3  
过渡族元素同位素是国际上同位素地球化学研究的热点。测试技术的限制是制约过渡元素同位素研究发展的关键。笔者利用Neptune型多接收等离子质谱(MC-ICP-MS),采用Cu、Zn互为内标的方法对仪器的质量歧视进行了校正,对基质效应和测试方法的重现性进行了检验,建立了高精度的Cu、Zn同位素测试技术。在5个月内对实验室标准IMRCu和IMRZn进行了测量,结果分别为δ65CuNIST976=(0.34±0.08)‰(2SD,n=32),δ66ZnJMCZn=(-9.64±0.05)‰(2SD,n=26),δ67ZnJMCZn=(-14.37±0.16)‰(2SD,n=26),δ68ZnJMCZn=(-19.01±0.08)‰(2SD,n=26),分析精度达到国际同类实验室先进水平。对Cu、Zn同位素参考物质进行了对比测量,分析结果与报道值在误差范围内完全一致。  相似文献   

10.
<正>作为重要的过渡族金属元素和营养元素,Cu的地球化学循环对海洋生命演化非常重要[1]。而海洋中的Cu大多来自大陆风化输入,因此研究风化过程的Cu同位素分馏行为至关重要。岩石风化过程会释放金属离子进入水体,进而影响金属离子在水圈和岩石圈的地球化学循环过程,研究风化过程Cu同位素分馏情况能够更好地应用Cu同位素解释自然环境中Cu同位素变化及其循环过程。前人主要集中研究酸性条件下的含Cu硫化物淋洗过程中Cu同位素变化[2-5],但含Cu硫化物中的Cu只占硅酸岩总Cu中的  相似文献   

11.
依据阿西金矿床H、O同位素组成特点对成矿流体的来源进行了示踪研究,并且研究了矿床的水岩交换作用,讨论了水-岩作用与金成矿的关系.根据矿床中典型热液矿物和岩矿石的稀土元素地球化学特征对成矿流体作用过程进行了示踪研究,与同位素地球化学示踪研究取得了基本一致的结果.根据成矿流体活动踪迹建立找矿标志,是进行矿产资源预测的新思路.  相似文献   

12.
孙剑  朱祥坤  陈岳龙  房楠 《地质学报》2012,86(5):819-828
白云鄂博Fe-REE-Nb矿床是世界著名的巨型多金属矿床,它的成因一直是个激烈争论的问题,观点主要集中在沉积成因和岩浆成因上,而铁的物质来源问题是争论的焦点之一。近年来Fe同位素的快速发展为解决白云鄂博铁矿的成因提供了新思路。对白云鄂博地区发育的白云鄂博群尖山组铁质板岩、宽沟北沉积型铁矿、腮林忽洞微晶丘、灰绿岩墙这些相关地质单元的Fe同位素组成特征进行了研究,为白云鄂博矿床成因研究提供了最直接的参考。结果表明,尖山组铁质板岩的δ56Fe值为-0.49‰~0.48‰,平均值为-0.03‰±0.84‰,2SD,n=5;宽沟北沉积型铁矿的δ56Fe值为-0.68‰~0.23‰,平均值为-0.10‰±0.78‰,2SD,n=5;腮林忽洞微晶丘δ56Fe值为-0.64‰~0.12‰,平均值为-0.28‰±0.57‰,2SD,n=6;辉绿岩的Fe同位素组成δ56Fe值集中在0.11‰~0.16‰。腮林忽洞微晶丘总体上比白云鄂博赋矿白云岩富集Fe的轻同位素,Fe同位素组成变化也相对更大,表明两者可能有不同的成因。白云鄂博地区尖山组铁质板岩、宽沟北沉积型铁矿与世界其他地区含铁沉积建造的Fe同位素组成类似,其共同特征是,Fe同位素变化较大,总体上δ56Fe大于0‰。这一特征与白云鄂博铁矿的Fe同位素组成差别较大。白云鄂博矿床的δ56Fe集中在0‰附近,与白云鄂博地区灰绿岩、世界不同地区火成岩和岩浆型铁矿的Fe同位素组成特征一致。表明白云鄂博铁矿可能不是沉积成因的,更有可能与岩浆作用有关。  相似文献   

13.
Many metallic ore deposits of the Late Cretaceous to Early Tertiary periods are distributed in the Gyeongsang Basin. Previous and newly analyzed sulfur isotope data of 309 sulfide samples from 56 ore deposits were reviewed to discuss the genetic characteristics in relation to granitoid rocks. The metallogenic provinces of the Gyeongsang Basin are divided into the Au–Ag(–Cu–Pb–Zn) province in the western basin where the sedimentary rocks of the Shindong and Hayang groups are distributed, Pb–Zn(–Au–Ag–Cu), Cu–Pb–Zn(–Au–Ag), and Fe–W(–Mo) province in the central basin where the volcanic rocks of the Yucheon Group are dominant, and Cu(–Mo–W–Fe) province in the southeastern basin where both sedimentary rocks of the Hayang Group and Tertiary volcanic rocks are present. Average sulfur isotope compositions of the ore deposits show high tendencies ranging from 2.2 to 11.7‰ (average 5.4‰) in the Pb–Zn(–Au–Ag–Cu) province, ?0.7 to 11.5‰ (average 4.6‰) in the Cu–Pb–Zn(–Au–Ag) province, and 3.7 to 11.4‰ (average 7.5‰) in the Fe–W(–Mo) province in relation to magnetite‐series granitoids, whereas they are low in the Au–Ag(–Cu–Pb–Zn) province in relation to ilmenite‐series granitoids, ranging from ?2.9 to 5.7‰ (average 1.7‰). In the Cu(–Mo–W–Fe) province δ34S values are intermediate ranging from 0.3 to 7.7‰ (average 3.6‰) and locally high δ34S values are likely attributable to sulfur derived from the Tertiary volcanic rocks during hydrothermal alteration through faults commonly developed in this region. Magma originated by the partial melting of the 34S‐enriched oceanic plate intruded into the volcanic rocks and formed magnetite‐series granitoids in the central basin, which contributed to high δ34S values of the metallic deposits. Conversely, ilmenite‐series granitoids were formed by assimilation of sedimentary rocks rich in organic sulfur that influenced the low δ34S values of the deposits in the western and southeastern provinces.  相似文献   

14.
铁是生物必需的营养元素,并且生物圈与岩石圈、水圈、大气圈密切联系。因此,了解生物过程的铁同位素地球化学行为,对于示踪铁元素在生物圈内部体系的迁移和循环,以及运用铁同位素示踪生物圈和岩石圈、水圈之间的相互作用都具有重要意义。本文对不同生物体的铁同位素组成特征以及不同生物过程的铁同位素地球化学行为进行了总结。结果表明,生物倾向于优先吸收铁的轻同位素,而且在食物链中随着级别的升高,这种情况越明显。生物诱发过程(包括异化铁还原作用和细菌氧化作用)中,铁只是提供或接受电子,并没有真正进入生物细胞体内,这些过程所产生的铁同位素分馏值和无生物参与氧化还原过程产生的铁同位素分馏值相同。生物(包括微生物、植物、动物和人)吸收过程中,铁进入生物体细胞内,这些过程的铁同位素分馏主要受氧化还原作用所控制。铁同位素在生物学、医学等领域具有很大的应用潜力,有可能会成为这些领域新的示踪工具。  相似文献   

15.
新疆金山沟金矿床赋存在下石炭统巴塔玛依内山组火山岩中,受火山机构的环状、放射状断裂及叠加的NE向断裂裂隙控制.蚀变发育,分为线型和面型两类蚀变带,进一步划分出成矿期前、成矿期和成矿期后3期蚀变.流体包裹体及氢、氧、碳、硫、铅同位素特征表明,参与成矿的碳为岩浆源和地层的混合碳,硫、铅来源于地幔,金等成矿元素来自火山岩,成矿溶液为大气降水与岩浆水的混合溶液.矿床成因应属浅成中低温火山岩型金矿  相似文献   

16.
硼及硼同位素地球化学在地质研究中的应用   总被引:17,自引:0,他引:17  
总结了硼及硼同位素的地球化学特征:(1)硼是易溶元素,主要赋存在地球表层,尤其是海水、海相沉积物及海水交代岩石中。其同位素组成δ11B值按顺序变化,封闭盐湖卤水(>40‰)>海水(395‰)>海相硼矿物(182‰~3173‰)>海相沉积物(139‰~252‰)>海水交代岩石(451‰~1085‰)。大陆水及陆相沉积物硼含量及硼同位素组成变化极大,并多以负值为主。海陆过渡构造带则具有过渡的硼丰度值和硼同位素组成。(2)11B较10B具有更活跃的地球化学性质,因此在水岩作用中具有明显的同位素交换。硅化交代作用中,岩石被硅化交代,释放硼,并优先释放重硼,同位素组成变轻;在脱硅反应中,岩石释放硅吸收硼,并优先吸收重硼,同位素组成变重。在封闭体系中,水溶液淋滤岩石中部分的硼,即可大量富集,并富集11B;在开放体系中,岩石硼被大量淋滤流失,δ11B值明显降低。由于水岩作用的结果,从新鲜海底玄武岩到正常海水,硼同位素值从-295‰到395‰逐渐升高。(3)变质脱水反应中硼被大量排出,并优先排出重硼同位素,进入流体相,因此随着变质程度由低到高,岩石中硼含量及同位素组成δ11B值由高变低。(4)在成矿研究中?  相似文献   

17.
青海虎头崖铜铅锌多金属矿床硫、铅同位素组成及成因意义   总被引:11,自引:0,他引:11  
马圣钞 《地质与勘探》2012,48(2):321-331
[摘 要] 青海虎头崖铜铅锌多金属矿是东昆仑祁漫塔格成矿带内多金属矿床的典型代表之一。本文对该矿床硫、铅同位素组成进行详细研究,探讨了成矿物质来源和矿床成因。结果表明,该矿床黄铜矿、方铅矿、闪锌矿、黄铁矿等硫化物的δ34S 值变化于+0.6‰~+8.3‰,平均+4.4‰,反映成矿流体中的硫为海水硫酸盐的地层硫和深源岩浆硫的混合硫,而不同矿带硫同位素均值的差别,可能与围岩地层硫的差异及参与程度有关。矿石矿物铅同位素组成总体变化较小(206Pb/204Pb、207Pb/204Pb 和208Pb/204Pb比值分别为18.476~18.688、15.560~15.688 和38.261~38.599),主要分布于造山带和上地壳铅演化线范围内,为岩浆作用导致的上地壳和地幔混合成因。由于赋矿层位及主控矿因素不同,各矿带的矿石铅同位素出现一定的差异。比如滩间山群内6号铜多金属矿点207Pb/204Pb 值和产于岩体与缔敖苏组接触带上的域矿带207Pb/204Pb 值相比,后者的上地壳铅参与程度较高,进一步证明壳幔混合作用对本矿区的影响。该矿床为与岩浆侵入活动密切相关的矽卡岩型铜铅锌多金属矿床。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号