首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 859 毫秒
1.
除饱和砂土液化外,饱和粉土地震液化问题也是岩土地震工程中一个重要的研究课题。饱和粉土地基的地震液化及变形可以采用多种地基加固方法防治,碎石桩技术是常用方法之一。碎石桩复合地基的抗液化效应,主要是增加桩周土体的密度、利于桩体的排水以及由桩体分担地震水平剪应力(桩体减震作用)。但由于粉土的土质特性,粉土-碎石桩复合地基的抗液化特性与砂土有着明显的差异。本文结合目前国内外碎石桩复合地基抗液化研究的最新进展,对粉土-碎石桩的密实、排水减压和减震作用做了较详细的评述,最后提出了关于碎石柱复合地基抗液化特性需要进一步研究的问题。  相似文献   

2.
针对经典离心机振动台试验,构建液化场地高桩码头三维数值模型,并验证数值模型的正确性。在此基础上,系统研究加固区距码头的距离、碎石桩直径和长度等参数对液化场地高桩码头加固效果的影响,揭示了不同加固参数下液化场地高桩码头变形受力规律。研究发现:液化场地高桩码头抗震性能与这些参数呈正相关,并且大直径和长尺寸碎石桩可以有效地控制地震过程中高桩码头的水平位移和桩身弯矩。研究工作对液化场地高桩码头地基加固具有重要借鉴意义。  相似文献   

3.
本文在考虑碎石桩排水和应力集中作用的基础上分析了碎石桩处理液化地基后复合地基的抗液化能力,并与自由场液化地基的抗液化能力进行了对比,提出了一种适用于碎石桩复合地基修正“Seed简化法”,可应用标准贯入试验对液化地基的处理效果进行评价。  相似文献   

4.
基于OpenSees有限元软件建立液化场地-碎石桩动力相互作用模型和液化自由场地模型,将两类模型的场地孔隙水压力和侧向位移反应进行对比分析,揭示碎石桩加固液化场地机理及规律,并分析场地倾角和碎石桩渗透系数对碎石桩抵抗液化自由场地侧向位移的影响规律。研究结果表明,渗透性较高的碎石桩可加快孔隙水压力的消散,减弱场地液化程度,进而减小场地侧向位移;当场地倾角较大时,随着场地倾角的持续增大,碎石桩抵抗液化自由场地侧向位移的效果逐渐减弱;碎石桩渗透系数较小时,提高碎石桩渗透系数可显著减小液化场地侧向位移,当渗透系数增至一定程度时,碎石桩渗透系数对液化场地侧向位移的影响较小。  相似文献   

5.
碎石桩是目前工程中用于处理饱和粉土液化地基最有效、最经济、最普遍的方式之一,但是饱和粉土地基上碎石桩的抗震液化特性还有待于进一步研究。本文利用三维有限差分程序FLAC3D结合安徽某高速公路路基工程对碎石桩加固后的粉土地基的抗震液化特性进行数值分析。通过研究不同埋深距离碎石桩中心不同距离处的孔压增长、消散规律,得到高烈度地震荷载作用下碎石桩加固饱和粉土地基的合理桩间距及加固深度,为类似工程提供了借鉴。  相似文献   

6.
碎石桩是目前工程中用于处理饱和粉土液化地基最有效、最经济、最普遍的方式之一,但是饱和粉土地基上碎石桩的抗震液化特性还有待于进一步研究。本文利用三维有限差分程序FLAC3D结合安徽某高速公路路基工程对碎石桩加固后的粉土地基的抗震液化特性进行数值分析。通过研究不同埋深距离碎石桩中心不同距离处的孔压增长、消散规律,得到高烈度地震荷载作用下碎石桩加固饱和粉土地基的合理桩间距及加固深度,为类似工程提供了借鉴。  相似文献   

7.
目前有关碎石桩复合地基在动荷载作用下的研究主要是针对其排水作用,而对其密实作用的研究很少,碎石桩复合地基在动荷载作用下沉降计算理论落后于工程实践.为了在碎石桩复合地基的动力模拟试验中模拟碎石桩的密实作用,设计了大型堆叠式剪切模型箱,并采用振动沉管法在振动台模型箱中进行了碎石桩的震后沉降试验研究,结果表明其能较好地模拟碎石桩振动沉管施工工艺.  相似文献   

8.
加固地基是增强地基抗震性能的一种行之有效的方法。加固地基可提高地基抗液化能力,改善地基土的动力特性,减轻砂土地基的液化势;通过对地基土产生预震效应,提高了加固地基整体的强度、刚度和稳定性。对震害严重的厚冲积层或厚软土层,用高压喷射注浆法进行加固处理有其独特的优越性。  相似文献   

9.
李冠泽  张季超 《华南地震》2014,(Z1):187-192
针对某海滨城市市政道路软基处理的难题,综合分析了多种地基处理方法,在场地条件复杂、工期紧、要求高的情况下,采用CFG桩-网复合地基对深厚软土路基进行加固处理。解决了深厚软土沉降和砂土液化等问题,详细论述了CFG桩-网复合地基的设计计算方法、施工工艺、成桩试验和检测结果。  相似文献   

10.
针对振动台试验,采用u-p形式控制方程表述饱和砂土的动力属性,选用土的多屈服面塑性本构模型刻画饱和砂土和黏土的力学特性,引入非线性梁-柱单元模拟桩,建立试验受控条件下液化场地群桩-土强震相互作用分析的三维有限元模型,并通过试验结果验证数值建模途径与模拟方法的正确性。以实际工程中常用的2×2群桩为例,建立桩-土-桥梁结构强震反应分析三维有限元模型。基于此,针对不同群桩基础配置对液化场地群桩-土强震相互作用影响展开具体分析。对比发现,桩的数量相同时,桩排列方向与地震波输入方向平行时比垂直时桩基受力减小5%~10%,而对场地液化情况无明显影响;相同排列形式下,三桩模型中土体出现液化的时间约比双桩模型延缓5s,桩上弯矩和剪力减小33%~38%。由此可见,桩基数量增加,桩-土体系整体刚度更大,场地抗液化性能显著,桩基对上部桥梁结构的承载性能明显增强,其安全性与可靠性更高。这对实际桥梁工程抗震设计具有一定的借鉴意义。  相似文献   

11.
Stone columns as liquefaction countermeasure in non-plastic silty soils   总被引:1,自引:0,他引:1  
In many cases densification with vibro-stone columns cannot be obtained in non-plastic silty soils. Shear stress re-distribution concepts [1] have been previously proposed as means to assess stone columns as a liquefaction countermeasure in such non-plastic silty soils. In this study, centrifuge testing is conducted to assess the performance of this liquefaction countermeasure. Attention is focused on exploring the overall site stiffening effects due to the stone column placement rather than the drainage effects. The response of a saturated silt stratum is analyzed under base dynamic excitation conditions. In a series of four separate model tests, this stratum is studied first without, then with stone columns, as a free-field situation, and with a surface foundation surcharge. The underlying mechanism and effectiveness of the stone columns are discussed based on the recorded dynamic responses. Effect of the installed columns on excess pore pressures and deformations is analyzed and compared. The test results demonstrate that stone columns can be an effective technique in the remediation of liquefaction induced settlement of non-plastic silty deposits particularly under shallow foundations, or vertical effective stresses larger than about 45 kPa (1000 psf) in free field conditions.  相似文献   

12.
将废弃橡胶轮胎内填充散体材料形成加筋土结构,已被应用于地基、挡土墙和边坡加固等工程,表现出较好的减震隔振效果,而轮胎加筋土的抗液化性能尚缺乏研究。开展3组小型振动台试验,通过改变轮胎垫层的排水条件,验证轮胎加筋砂垫层的抗液化效果。结果表明:轮胎加筋砂垫层具有良好的抗液化效果,与刚性垫层相比,超静孔压比峰值差值范围在0.01~0.19,残余超静孔压比差值范围在0.08~0.16,轮胎加筋砂垫层提供的排水通道具有抑制超静孔隙水压力发展和加速超静孔隙水消散的作用,孔隙水会沿着轮胎与下部土体的界面以及胎间的排水通道排出;采用量测侧向动土压力的方法,定义土体液化程度量化指标,进一步验证轮胎加筋砂垫层抗液化效果;振动过程中轮胎加筋垫层表面沉降范围为11.3~15.7 mm,表现出较好的变形协调性能。  相似文献   

13.
Pile foundation as well as other underground structures could be seriously affected by soil liquefaction during strong earthquakes. Damages on pile foundation due to liquefaction can be reduced by implementation of some soil improvement method. Main objective of present study is developing of drain method that can improve the soil in order to mitigate the destructiveness of liquefaction on superstructure supported by pile foundation. Series of shaking table tests were conducted on 2×2 pile foundation and soil model was improved by drains. Configurations of drains around piles, intensity of shaking were one of the parameters that were changing during the tests in order to investigate the response of pile foundation in improved soil condition.Shaking table tests and performed On-site experiment showed the following effects of the new drain method. (1) When the intensity of earthquake motion is 200 gal or less, generation of excess pore water pressure is reduced and the pile bending moment is decreased, (2) when the intensity of earthquake motion is stronger (300 gal or more), drainage effect prevents disappearance of subgrade reaction, and (3) proposed new type of drain can control excess pore water pressure without clogging.  相似文献   

14.
The evaluation and design of stone column improvement ground for liquefaction mitigation is a challenging issue for the state of practice. In this paper, a shear wave velocity-based approach is proposed based on the well-defined correlations of liquefaction resistance (CRR)-shear wave velocity (V s)-void ratio (e) of sandy soils, and the values of parameters in this approach are recommended for preliminary design purpose when site specific values are not available. The detailed procedures of pre- and post-improvement liquefaction evaluations and stone column design are given. According to this approach, the required level of ground improvement will be met once the target V s of soil is raised high enough (i.e., no less than the critical velocity) to resist the given earthquake loading according to the CRR-V s relationship, and then this requirement is transferred to the control of target void ratio (i.e., the critical e) according to the V s-e relationship. As this approach relies on the densification of the surrounding soil instead of the whole improved ground and is conservative by nature, specific considerations of the densification mechanism and effect are given, and the effects of drainage and reinforcement of stone columns are also discussed. A case study of a thermal power plant in Indonesia is introduced, where the effectiveness of stone column improved ground was evaluated by the proposed V s-based method and compared with the SPT-based evaluation. This improved ground performed well and experienced no liquefaction during subsequent strong earthquakes.  相似文献   

15.
The present paper deals with the influence of soil non-linearity, introduced by soil liquefaction, on the soil-foundation–structure interaction phenomena. Numerical simulations are carried out so as to study an improvement method to reduce the liquefaction potential in a sandy soil profile subjected to a shaking. The efficiency of the preloading in both the mitigation of a liquefiable soil and the reduction of induced structure relative settlements is showed. However, the intervention at the foundation soil modifies the dynamic characteristics of soil–structure system and it seems to increase the induced seismic forces during earthquake. In addition, a numerical parametric analysis is performed so as to quantify the impact of the uncertainties associated with the input signal on both the ground motion and the apparition of liquefaction phenomena.  相似文献   

16.
This article presents various tests using a cyclic triaxial instrument, on samples of saturated Hostun RF sand, reinforced with circular sheets of geosynthetic material. Tests performed with different types of geosynthetics of different compressibility, rigidity and roughness characteristics indicate a significant increase in liquefaction resistance for samples reinforced with compressible, non-woven geotextiles. The undrained behaviour of saturated Hostun RF sand reinforced with non-woven geotextiles is analysed on the basis of different test series. This analysis highlights the influence of reinforcement compressibility on interstitial pressure distribution in the sample, thus showing the role of this type of inclusion in the increase in liquefaction resistance.  相似文献   

17.
桥台在桥梁系统中占据重要位置,桥台的稳定性直接影响到桥梁的抗震性能。在国内外大量震害中发现大量由桥台破坏引起的桥梁损坏,而且这些破坏常常伴随着由于液化引起的地面大变形。为研究液化场地中桥台滑坡机理,采用完全耦合的有效应力分析方法,利用修正的PasterZienkiewicz Mark-Ⅲ模型来模拟砂土在地震荷载作用下的液化特性。研究台顶梁重和液化层位置对桥台位移的影响,并分析夯实作用对砂土液化的影响。结果表明:模拟得出结果与振动台试验结果基本一致,而且简单的夯实不能降低砂土液化的风险。  相似文献   

18.
To investigate the seismic response of a pile group during liquefaction, shaking table tests on a 1/25 scale model of a 2 × 2 pile group were conducted, which were pilot tests of a test project of a scale-model offshore wind turbine with jacket foundation. A large laminar shear box was utilized as the soil container to prepare a liquefiable sandy ground specimen. The pile group model comprising four slender aluminum piles with their pile heads connected by a rigid frame was designed with similitude considerations focusing on soil–pile interaction. The input motions were 2-Hz sinusoids with various acceleration amplitudes. The excess pore water pressure generation indicated that the upper half of the ground specimen reached initial liquefaction under the 50-gal-amplitude excitation, whereas in the 75-gal-amplitude test, almost entire ground was liquefied. Accelerations in soil, on the movable frames composing the laminar boundary of the shear box, and along the pile showed limited difference at the same elevation before liquefaction. After liquefaction, the soil and the movable-frame accelerations that represented the ground response considerably reduced, whereas both the movable frames and the piles exhibited high-frequency jitters other than 2-Hz sinusoid, and meantime, remarkable phase difference between the responses of the pile group and the ground was observed, all probably due to the substantial degradation of liquefied soil. Axial strains along the pile implied its double-curvature bending behavior, and the accordingly calculated moment declined significantly after liquefaction. These observations demonstrated the interaction between soil and piles during liquefaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号