首页 | 本学科首页   官方微博 | 高级检索  
     检索      

液化场地桥梁群桩-土耦合体系强震反应分析
引用本文:唐浩,石秀峰,唐亮,蔡德钩,凌贤长,王东洋.液化场地桥梁群桩-土耦合体系强震反应分析[J].西北地震学报,2016,38(6):869-876.
作者姓名:唐浩  石秀峰  唐亮  蔡德钩  凌贤长  王东洋
作者单位:华中科技大学机械科学与工程学院, 湖北 武汉 430074,哈尔滨工业大学土木工程学院, 黑龙江 哈尔滨 150090,哈尔滨工业大学土木工程学院, 黑龙江 哈尔滨 150090,中国铁道科学研究院, 北京 100081,哈尔滨工业大学土木工程学院, 黑龙江 哈尔滨 150090,哈尔滨工业大学土木工程学院, 黑龙江 哈尔滨 150090
基金项目:国家自然科学基金项目(51578195,51378161和51308547);国家重点基础研究发展973计划项目(2012CB026104)
摘    要:针对振动台试验,采用u-p形式控制方程表述饱和砂土的动力属性,选用土的多屈服面塑性本构模型刻画饱和砂土和黏土的力学特性,引入非线性梁-柱单元模拟桩,建立试验受控条件下液化场地群桩-土强震相互作用分析的三维有限元模型,并通过试验结果验证数值建模途径与模拟方法的正确性。以实际工程中常用的2×2群桩为例,建立桩-土-桥梁结构强震反应分析三维有限元模型。基于此,针对不同群桩基础配置对液化场地群桩-土强震相互作用影响展开具体分析。对比发现,桩的数量相同时,桩排列方向与地震波输入方向平行时比垂直时桩基受力减小5%~10%,而对场地液化情况无明显影响;相同排列形式下,三桩模型中土体出现液化的时间约比双桩模型延缓5s,桩上弯矩和剪力减小33%~38%。由此可见,桩基数量增加,桩-土体系整体刚度更大,场地抗液化性能显著,桩基对上部桥梁结构的承载性能明显增强,其安全性与可靠性更高。这对实际桥梁工程抗震设计具有一定的借鉴意义。

关 键 词:液化场地  群桩基础  强震反应  桩-土相互作用  三维非线性有限元法
收稿时间:2016/10/21 0:00:00

Strong Seismic Response of Pile Group-soil Coupling System in Liquefied Ground
TANG Hao,SHI Xiu-feng,TANG Liang,CAI De-gou,LING Xian-zhang and WANG Dong-yang.Strong Seismic Response of Pile Group-soil Coupling System in Liquefied Ground[J].Northwestern Seismological Journal,2016,38(6):869-876.
Authors:TANG Hao  SHI Xiu-feng  TANG Liang  CAI De-gou  LING Xian-zhang and WANG Dong-yang
Institution:School of Mechanical Science & Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China,School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China,School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China,China Academy of Railway Sciences, Beijing 100081, China,School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China and School of Civil Engineering, Harbin Institute of Technology, Harbin 150090, Heilongjiang, China
Abstract:A three-dimensional finite element model was established for a shaking table test of dynamic pile group-soil interaction. Governing equations of u-p formulation were used to describe the dynamic properties of saturated sand. We choose a plastic multi-yield surface constitutive model to describe the dynamic properties of saturated sand, and a nonlinear beam-column element was used to simulate the pile in this model. The results of the test verify the validity and effectiveness of the numerical model. In an experiment using a 2×2 pile group, a three-dimensional nonlinear finite element model of soil-pile-bridge structure interaction was established. Based on this 2×2 pile group model, with a 2 piles in row pile group model (2PR) and a 2 piles in parallel pile group model (2PP), a 3×3 pile group model (with a 3PR pile group model and a 3PP pile group model) have been expended. Based on different configurations of pile group foundations, an analysis of soil-pile group interaction in liquefied ground was made. When using the same number of piles and a pile array direction parallel to the direction of seismic wave, stress is reduced by 5%~10%. However, there are few obvious effects on site liquefaction conditions. Under the same parallel array of piles, in comparison to the two-pile model, the three-pile model ground-liquefaction time results in delays of 5 s, and pile bending moment and shear force decreases 33%~38%. With an increase in the number of piles, the ground-liquefaction time is delayed, and the stress of pile body decreases. The results of this study will be of significant use for bridge engineering design.
Keywords:liquefied ground  pile group foundation  strong seismic response  pile-soil interaction  three-dimensional nonlinear finite element method
本文献已被 CNKI 等数据库收录!
点击此处可从《西北地震学报》浏览原始摘要信息
点击此处可从《西北地震学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号