首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long Waves Associated with Bichromatic Waves   总被引:1,自引:0,他引:1  
A numerical model of low frequency waves is presented. The model is based on that of Roelvink (1993), but the nu-merical techniques used in the solution are based on the so-called Weighted-Average Flux (WAF) method with Time-Operator-Splitting (TOS) used for the treatment of the source terms. This method allows a small number of computational points to be used, and is particularly efficient in modeling wave setup. The short wave (or primary wave) energy equation is solved with a traditional Lax-Wendroff technique. A nonlinear wave theory is introduced. The model described in this paper is found to be satisfactory in modeling low frequency waves associated with incident bichromalic waves.  相似文献   

2.
A numerical wave model based on the modified four-order nonlinear Schrdinger (NLS) equation in deep water is developed to simulate freak waves. A standard split-step, pseudo-spectral method is used to solve NLS equation. The validation of the model is firstly verified, and then the simulation of freak waves is performed by changing sideband conditions. Results show that freak waves entirely consistent with the definition in the evolution of wave trains are obtained. The possible occurrence mechanism of freak waves is discussed and the relevant characteristics are also analyzed.  相似文献   

3.
Hilbert Transform Applied to Separation of Waves   总被引:1,自引:0,他引:1  
SUN  Hequan 《中国海洋工程》2002,16(2):239-248
The analytical method (AM) for separation of composite waves is presented based on the Hilbert transform. It is ap-plicable to both regular and irregular trains of waves. The wave data series measured with two wave gauges in the experi-ments are separated into two series of incident and reflected waves. Then, the reflection coefficient can be easily ob-tained. The arrival of reflected waves can also be detected for improvement of the accuracy of the reflection coefficient.The reflection performance of the physical model can be estimated exactly without calculation of wave height and phasedifference. Numerical samples developed to test the method are proved to be accurate. Physical experiments are conduct-ed and compared with Goda‘s method and satisfactory results are obtained.  相似文献   

4.
The analytical method (AM) for separation of composite waves is presented based on the Hilbert transform. It is ap-plicable to both regular and irregular trains of waves. The wave data series measured with two wave gauges in the experi-ments are separated into two series of incident and reflected waves. Then, the reflection coefficient can be easily ob-tained. The arrival of reflected waves can also be detected for improveraent of the accuracy of the reflection coefficient. The reflection performance of the physical model can be estimated exactly without calculation of wave height and phase difference. Numerical samples developed to test the method are proved to be accurate. Physical experiments are conduct-ed and compared with Goda s method and satisfactory results are obtained.  相似文献   

5.
In this study,the water entry of wedges in regular waves is numerically investigated by a two-dimensional in-house numerical code.The numerical model based on the viscous Navier?Stokes(N?S)equations employs a high-order different method—the constrained interpolation profile(CIP)method to discretize the convection term.A Volume of Fluid(VOF)-type method,the tangent of hyperbola for interface capturing/slope weighting(THINC/SW)is employed to capture the free surface/interface,and an immersed boundary method is adopted to treat the motion of wedges.The momentum source function derived from the Boussinesq equation is applied as an internal wavemaker to generate regular waves.The accuracy of the numerical model is validated in comparison with experimental results in the literature.The results of water entry in waves are provided in terms of the impact force of wedge,velocity and pressure distributions of fluid.Considerable attention is paid to the effects of wave parameters and the position of wedge impacting the water surface.It is found that the existence of waves significantly influences the velocity and pressure field of fluid and impact force on the wedges.  相似文献   

6.
Based on the theoretical high-order model with a dissipative term for non-linear and dispersive wave in water of varying depth, a 3-D mathematical model of non-linear wave propagation is presented. The model, which can be used to calculate the wave particle velocity and wave pressure, is suitable to the complicated topography whose relative depth ratio of the characteristic water depth to the characteristic wavelength in deep-water) is equal to or smaller than one. The governing equations are discretized with the improved 2-D Crank-Nicolson method in which the first-order derivatives are corrected by Taylor series expansion, .and the general boundary conditions with an arbitrary reflection coefficient and phase shift are adopted in the model. The surface elevation, horizontal and vertical velocity components and wave pressure of standing waves are numerically calculated. The results show that the numerical model can effectively simulate the complicated standing waves, and the general boundary conditions  相似文献   

7.
Sediment transport in the Hangzhou Bay is extremely complicated due to its bathymetry and hydrodynamic conditions. The ECOMSED model is employed to simulate three-dimensional (3-D) cohesive sediment transport in Hangzhou Bay. Dynamical factors such as Coriolis force, tides, salinity, river discharges, and waves are considered in the model. The wave parameters, including the significant wave height, period, and direction, are calculated with the SWAN model. The Grant-Madsen model is introduced for the bed shear stress due to the combined effect of waves and currents. The formulation of bed shear stress used to calculate the sink/source terms is modified based on previous research that sufficiently validated the formulation with measurement data. The integrated model of the above-mentioned models is applied to simulate sediment transport in Hangzhou Bay. The results of the simulation agree well with field observations concerning the distribution of suspended sediment, indicating that the sediments are remarkably suspended in Hangzhou Bay under the action of waves and currents.  相似文献   

8.
A numerical wave model based on the modified four-order nonlinear Schoedinger (NKS) equation in deep water is developed to simulate freak waves. A standard split-step, pseudo-spectral method is used to solve NLS equation. The validation of the model is firstly verified, and then the simulation of freak waves is perforated by changing sideband condi- tions. Results show that freak waves entirely consistent with the definition in the evolution of wave trains are obtained. The possible occurrence mechanism of freak waves is discussed and the relevant characteristics are also analyzed.  相似文献   

9.
This study deals with the general numerical model to simulate the two-dimensional tidal flow, flooding wave (long wave) and shallow water waves (short wave). The foundational model is based on nonlinear Boussinesq equations. Numerical method for modelling the short waves is investigated in detail. The forces, such as Coriolis forces, wind stress, atmosphere and bottom friction, are considered. A two-dimensional implicit difference scheme of Boussinesq equations is proposed. The low-reflection outflow open boundary is suggested. By means of this model,both velocity fields of circulation current in a channel with step expansion and the wave diffraction behind a semi-infinite breakwater are computed, and the results are satisfactory.  相似文献   

10.
Improvements on Mean Free Wave Surface Modeling   总被引:1,自引:0,他引:1  
DONG  Guo-hai 《中国海洋工程》2002,16(4):549-560
Some new results of the modeling of mean free surface of waves or wave set-up are presented. The stream funetion wave theory is applied to incident short waves. The limiting wave steepness is adopted as the wave breaker indcx in the calculation of wave breaking dissipation. The model is based on Roelvink (1993), but the numerical techniques used in the solution are based on the Weighted-Average Flux (WAF) method (Watson et al. , 1992), with Time-Operator-Split-ting (TOS) used for the treatment of the source terms. This method allows a small number of eomputational points to be used, and is particularly efficient in modeling wave set-up. The short wave (or incident primary wave) energy equation is solved by use of a traditional Lax-Wendroff technique. The present model is found to be satisfactory compared with the measurements conducted by Stive (1983).  相似文献   

11.
A three-dimensional numerical model in the δ-coordinate system is developed to study the problem of waves. Turbulence effects are modeled by a subgfid-scale (SGS) model with the concept of large eddy simulation (LES). The δ-coordinate transformation is introduced to map the irregular physical domain of the wavy free surface and uneven bottom onto the regular computational domain of the shape of rectangular prism. The operator splitting method, which splits the solution procedure into the advection, diffusion, and propagation steps, is used to solve the modified Navier-Stokes Equation.The model is used to simulate the propagation of solitary wave and wave passing over a submerged breakwater. Numerical results are compared with available analytical solutions and experimental data in terms of velocity profiles, free surface displacement, and energy conservation. Good agreement is obtained. The method is proved to be of high accuracy and efficiency in simulating surface wave propagation and wave-structure interaction. It is suitable for the large and irregular physical domain, and requiring the non-uniform grid system. The present work provides a foundation for further studies of random waves, wave-structure interaction, wave-discharge interaction, etc.  相似文献   

12.
A fully nonlinear numerical model based on a time-domain higher-order boundary element method (HOBEM) is founded to simulate the kinematics of extreme waves. In the model, the fully nonlinear free surface boundary conditions are satisfied and a semi-mixed Euler-Lagrange method is used to track free surface; a fourth-order Runga-Kutta technique is adopted to refresh the wave elevation and velocity potential on the free surface at each time step; an image Green function is used in the numerical wave tank so that the integrations on the lateral surfaces and bottom are excluded. The extreme waves are generated by the method of wave focusing. The physical experiments are carried out in a wave flume. On the horizontal velocity of the measured point, numerical solutions agree well with experimental results. The characteristics of the nonlinear extreme-wave kinematics and the velocity distribution are studied here.  相似文献   

13.
This paper presents a simulation model based on the finite element method. The method is used to analyze the motion response and mooring line tension of the flatfish cage system in waves. The cage system consists of top frames, netting, mooring lines, bottom frames, and floats. A series of scaled physical model tests in regular waves are conducted to verify the numerical model. The comparison results show that the simulated and the experimental results agree well under the wave conditions, and the maximum pitch of the bottom frame with two orientations is about 12o. The motion process of the whole cage system in the wave can be described with the computer visualized technology. Then, the mooring line tensions and the motion of the bottom frame with three kinds of weight are calculated under different wave conditions. According to the numerical results, the differences in mooring line tensions of flatfish cages with three weight modes are indistinct. The maximum pitch of the bottom frame decreases with the increase of the bottom weight.  相似文献   

14.
LI  Yucheng 《中国海洋工程》2002,16(3):329-342
The reflection of oblique incident waves from breakwaters with a partially-perforated front wall is investigated. The fluid domain is divided into two sub-domains and the eigenfunction expansion method is applied to expand velocity poten-tials in each domain. In the eigen-expansion of the velocity potential, evanescent waves are included. Numerical results of the present model are compared with experimental data. The effect of porosity, the relative chamber width, the relative water depth in the wave absorbing chamber and the water depth in front of the structure are discussed.  相似文献   

15.
This work presents a new approach for simulating the random waves in viscous fluids and the associated bottom shear stresses. By generating the incident random waves in a numerical wave flume and solving the unsteady two-dimensional Navier-Stokes equations and the fully nonlinear free surface boundaiy conditions for the fluid flows in the flume, the viscous flows and laminar bottom shear stresses induced by random waves axe determined. The deterministic spectral amplitude method implemented by use of the fast Fourier transform algorithm was adopted to generate the incident random waves. The accuracy of the numerical scheme is confirmed by comparing the predicted wave spectrum with the target spectrum and by comparing the nanlerical transfer function between the shear stress and the surface elevation with the theoretical transfer function. The maximum bottom shear stress caused by random waves, computed by this wave model, is compared with that obtained by Myrhaug' s model (1995). The transfer function method is also employed to determine the maximum shear stress, and is proved accurate.  相似文献   

16.
When wastewater is discharged into a coastal area through an ouffall system, it will always be subjected to the action of waves. It is important to study and quantify the mixing of the discharge with the ambient water so that accurate environmental impact assessment can be made for such discharge conditions. The present work aims to study the phenomenon of a plane jet discharged into water environment with regular waves. A 3D numerical model based on the full Navier- Stokes equations (NSE) in the a-coordinate is developed to study the present problem. Turbulence effects are modeled by a subgrid-scale (SGS) model using the concept of large eddy simulation (LES). The operator splitting method is used to solve the modified NSE. The model has been applied to the simulation of three different eases of submerged plane jets with surface waves: jet with strong waves, jet with weak waves and jet without waves. Numerical results show that the waves enhance the mixing of the jet with the ambient fluid, and cause a periodic deflection of the jet. The size of the recirculation is about 1.5- 2.4 h (water depth) . The velocity profile of the jet is serf-similar in the zone of established flow for both the pure jet and jet in wave circumstances. The spreading characteristic constant a is 0. 100 and 0. 105 for pure momentum jets with Re numbers 1025 and 2050. The value of a increases from 0. 130 to 0. 147 for a jet in weak and strong wave circumstances, showing that waves have an obvious effect on the mixing and dilution properties of jets. Numerical results are in good agreement with the experimental data for the cases of pure jets and jets with waves.  相似文献   

17.
As the main load-bearing component of fish cages, the floating collar supports the whole cage and undergoes large deformations. In this paper, a mathematical method is developed to study the motions and elastic deformations of elastic floating collars in random waves. The irregular wave is simulated by the random phase method and the statistical approach and Fourier transfer are applied to analyze the elastic response in both time and frequency domains. The governing equations of motions are established by Newton’s second law, and the governing equations of deformations are obtained based on curved beam theory and modal superposition method. In order to validate the numerical model of the floating collar attacked by random waves, a series of physical model tests are conducted. Good relationship between numerical simulation and experimental observations is obtained. The numerical results indicate that the transfer function of out-of-plane and in-plane deformations increase with the increasing of wave frequency. In the frequency range between 0.6 Hz and 1.1 Hz, a linear relationship exists between the wave elevations and the deformations. The average phase difference between the wave elevation and out-of-plane deformation is 60° with waves leading and the phase between the wave elevation and in-plane deformation is 10° with waves lagging. In addition, the effect of fish net on the elastic response is analyzed. The results suggest that the deformation of the floating collar with fish net is a little larger than that without net.  相似文献   

18.
Xie  Wu-de  Xu  Wan-hai  Zhai  Li-bin  Gao  Xi-feng  Xu  Zeng-wei 《中国海洋工程》2019,33(6):704-712
The marine risers are often subjected to parametric excitations from the fluctuation top tension. The top tension on the riser may fluctuate with multiple frequencies caused by irregular waves. In this paper, the influence between different frequency components in the top tension on the riser system is theoretically simulated and analyzed. With the Euler-Bernoulli beam theory, a dynamic model for the vibrations of the riser is established. The top tension is set as fluctuating with time and it has two different frequencies. The influences from the fluctuation amplitudes, circular frequencies and phase angles of these frequency components on the riser system are analyzed in detail. When these two frequencies are fluctuating in the stable regions, the riser system may become unstable because ω_1+ω_2≈2Ωn. The fluctuation amplitudes of these frequencies have little effect on the components of the vibration frequencies of the riser. For different phase angles, the stability and dynamic behaviors of the riser would be different.  相似文献   

19.
A horizontal two- dimensional numerical model is developed for estimation of sediment transport and sea bed change around a large circular cylinder under wave action. The wave model is based on an elliptic mild slope equation. The wave-induced current by the gradient of radiation stress is considered and a depth integrated shallow water equation is applied to the calculation of the current. The mass transport velocity and the bed shear stress due to streaming are considered, which are important factors affecting the sediment transport around a structure due to waves, especially in reflective areas. Wave-current interaction is taken into account in the model for computing the bed shear stress. The model is implemented by a finite element method. The results of this model are compared with those from other methods and agree well with experimental data.  相似文献   

20.
Large Eddy Simulation for Plunge Breaker and Sediment Suspension   总被引:1,自引:1,他引:1  
BAI  Yuchuan 《中国海洋工程》2002,16(2):151-164
Breaking waves are a powerful agent for generating turbulence that plays an important role in many fluid dynamical processes, particularly in the mixing of materials. Breaking waves can dislodge sediment and throw it into suspension, which will then be carried by wave-induced steady current and tidal flow. In order to investigate sediment suspension by breaking waves, a numerical model based on large-eddy-simulation (LES) is developed. This numerical model can be used to simulate wave breaking and sediment suspension. The model consists of a free-surface model using the surface marker method combined with a two-dimensional model that solves the flow equations. The turbulence and the turbulent diffusion are described by a large-eddy-simulation (LES) method where the large turbulence features are simulated by solving the flow equations, and a subgrid model represents the small-scale turbulence that is not resolved by the flow model. A dynamic eddy viscosity subgrid scale stress model has been used for the  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号