首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 864 毫秒
1.
This study introduces a new global climate model—the Integrated Climate Model(ICM)—developed for the seasonal prediction of East Asian–western North Pacific(EA–WNP) climate by the Center for Monsoon System Research at the Institute of Atmospheric Physics(CMSR, IAP), Chinese Academy of Sciences. ICM integrates ECHAM5 and NEMO2.3 as its atmospheric and oceanic components, respectively, using OASIS3 as the coupler. The simulation skill of ICM is evaluated here, including the simulated climatology, interannual variation, and the influence of El Nińo as one of the most important factors on EA–WNP climate. ICM successfully reproduces the distribution of sea surface temperature(SST) and precipitation without climate shift, the seasonal cycle of equatorial Pacific SST, and the precipitation and circulation of East Asian summer monsoon. The most prominent biases of ICM are the excessive cold tongue and unrealistic westward phase propagation of equatorial Pacific SST. The main interannual variation of the tropical Pacific SST and EA–WNP climate—El Nińo and the East Asia–Pacific Pattern—are also well simulated in ICM, with realistic spatial pattern and period. The simulated El Nińo has significant impact on EA–WNP climate, as in other models. The assessment shows ICM should be a reliable model for the seasonal prediction of EA–WNP climate.  相似文献   

2.
Seasonal prediction of Asian-Australian monsoon (A-AM) precipitation is one of the most important and challenging tasks in climate prediction. In this paper, we evaluate the performance of Grid Atmospheric Model of IAP LASG (GAMIL) on retrospective prediction of the A-AM interannual variation (IAV), and determine to what extent GAMIL can capture the two major observed modes of A-AM rainfall IAV for the period 1979-2003. The first mode is associated with the turnabout of warming (cooling) in the Nifio 3.4 region, whereas the second mode leads the warming/cooling by about one year, signaling precursory conditions for ENSO.
We show that the GAMIL one-month lead prediction of the seasonal precipitation anomalies is primarily able to capture major features of the two observed leading modes of the IAV, with the first mode better predicted than the second. It also depicts the relationship between the first mode and ENSO rather well. On the other hand, the GAMIL has deficiencies in capturing the relationship between the second mode and ENSO. We conclude: (1) successful reproduction of the E1 Nifio-excited monsoon-ocean interaction and E1 Nifio forcing may be critical for the seasonal prediction of the A-AM rainfall IAV with the GAMIL; (2) more efforts are needed to improve the simulation not only in the Nifio 3.4 region but also in the joining area of Asia and the Indian-Pacific Ocean; (3) the selection of a one-tier system may improve the ultimate prediction of the A-AM rainfall IAV. These results offer some references for improvement of the GAMIL and associated seasonal prediction skill.  相似文献   

3.
The mechanism of the locking of the E1 Nino event onset phase to boreal spring (from April to June) in an intermediate coupled ocean-atmosphere model is investigated. The results show that the seasonal variation of the zonal wind anomaly over the equatorial Pacific associated with the seasonal variation of the ITCZ is the mechanism of the locking in the model. From January to March of the E1 Nino year, the western wind anomaly over the western equatorial Pacific can excite the downwelling Kelvin wave that propagates eastward to the eastern and middle Pacific by April to June. From April to December of the year before the E1 Nifio year, the eastern wind anomaly over the equatorial Pacific forces the downwelling Rossby waves that modulate the ENSO cycle. The modulation and the reflection at the western boundary modulate the time of the transition from the cool to the warm phase to September of the year before the E1 Nifio year and cause the strongest downwelling Kelvin wave from the reflected Rossby waves at the western boundary to arrive in the middle and eastern equatorial Pacific by April to June of the E1 Nino year. The superposition of these two kinds of downwelling Kelvin waves causes the El Nino event to tend to occur from April to June.  相似文献   

4.
Although the "predictability barrier" is a scientific problem brought forward during the middle 1990’s,it has yet to be clearly understood.In this paper,the authors used model results to study the "predictability barrier" of some atmospheric (climatic) systems,including the equatorial Pacific sea surface temperature (SST),East Asia trough (EAT),and South Asia wind field (monsoon).It is shown that the "predictability barrier" appeared not only in predicting the SST in the equatorial Pacific,but also in predicting the atmospheric circulation systems,such as the EAT and the monsoon.The "predictability barrier" for predicting the different climate systems appeared not only in spring,but also in different seasons.It appeared in spring for the equatorial Pacific SST,in summer for the EAT,and in fall and winter for the monsoon.Further analyses showed that the fundamental physical essence of the "predictability barrier" is the seasonal variability characteristics of the atmospheric (climate) system.The "predictability barrier" would occur when the system was at its weakest or worst continuous phase.Furthermore,the models and error patterns also had an important impact on the "predictability barrier";good models and special error patterns can minimize the "predictability barrier".  相似文献   

5.
The Atlantic Multidecadal Oscillation (AMO), the multidecadal variation of North Atlantic sea surface temperature (SST), exhibits an oscillation with a period of 65-80 years and an amplitude of 0.4℃. Observational composite analyses reveal that the warm phase AMO is linked to warmer winters in East China, with enhanced precipitation in the north of this region and reduced precipitation in the south, on multidecadal time scales. The pattern is reversed during the cold phase AMO. Whether the AMO acts as a forcing of the multidecadal winter climate of East China is explored by investigating the atmospheric response to warm AMO SST anomalies in a large ensemble of atmospheric general circulation model (AGCM) experiments. The results from three AGCMs are consistent and suggest that the AMO warmth favors warmer winters in East China. This influence is realized through inducing negative surface air pressure anomalies in the hemispheric-wide domain extending from the midlatitude North Atlantic to midlatitude Eurasia. These negative surface anomalies favor the weakening of the Mongolian Cold High, and thus induce a weaker East Asian Winter Monsoon.  相似文献   

6.
ABSTRACT Using data from 17 coupled models and nine sets of corresponding Atmospheric Model Intercomparison Project (AMIP) results, we investigated annual and seasonal variation biases in the upper 50 m of the south-central equatorial Pacific, with a focus on the double-ITCZ bias, and examined the causes for the amplitude biases by using heat budget analysis. The results showed that, in the research region, most of the models simulate SSTs that are higher than or similar to observed. The simulated seasonal phase is close to that observed, but the amplitudes of more than half of the model results are larger than or equal to observations. Heat budget analysis demonstrated that strong shortwave radiation in individual atmospheric models is the main factor that leads to high SST values and that weak southward cold advection is an important mechanism for maintaining a high SST. For seasonal circulation, large surface shortwave radiation amplitudes cause large SST amplitudes.  相似文献   

7.
There is a continuous and relatively stable rainy period every spring in southern China (SC). This spring precipitation process is a unique weather and climate phenomenon in East Asia. Previously, the variation characteristics and associated mechanisms of this precipitation process have been mostly discussed from the perspective of seasonal mean. Based on the observed and reanalysis datasets from 1982 to 2021, this study investigates the diversity of the interannual variations of monthly precipitation in spring in SC, and focuses on the potential influence of the tropical sea surface temperature (SST) anomalies. The results show that the interannual variations of monthly precipitation in spring in SC have significant differences, and the correlations between each two months are very weak. All the interannual variations of precipitation in three months are related to a similar western North Pacific anomalous anticyclone (WNPAC), and the southwesterlies at the western flank of WNPAC bring abundant water vapor for the precipitation in SC. However, the WNPAC is influenced by tropical SST anomalies in different regions each month. The interannual variation of precipitation in March in SC is mainly influenced by the signal of El Ni?o-Southern Oscillation, and the associated SST anomalies in the equatorial central-eastern Pacific regulate the WNPAC through the Pacific-East Asia (PEA) tele-connection. In contrast, the WNPAC associated with the interannual variation of precipitation in April can be affected by the SST anomalies in the northwestern equatorial Pacific through a thermally induced Rossby wave response. The interannual variation of precipitation in May is regulated by the SST anomalies around the western Maritime Continent, which stimulates the development of low-level anomalous anticyclones over the South China Sea and east of the Philippine Sea by driving anomalous meridional vertical circulation.  相似文献   

8.
A modified version of the NCAR/RegCM2 has been developed at the National Climate Center (NCC), China Meteorological Administration, through a series of sensitivity experiments and multi-year simulations and hindcasts, with a special emphasis on the adequate choice of physical parameterization schemes suitable for the East Asian monsoon climate. This regional climate model is nested with the NCC/IAP (Institute of Atmospheric Physics) T63 coupled GCM to make an experimental seasonal prediction for China and East Asia. The four-year (2001 to 2004) prediction results are encouraging. This paper is the first part of a two-part paper, and it mainly describes the sensitivity study of the physical process paraxneterization represented in the model. The systematic errors produced by the different physical parameterization schemes such as the land surface processes, convective precipitation, cloud-radiation transfer process, boundary layer process and large-scale terrain features have been identified based on multi-year and extreme flooding event simulations. A number of comparative experiments has shown that the mass flux scheme (MFS) and Betts-Miller scheme (BM) for convective precipitation, the LPMI (land surface process model I) and LPMII (land surface process model Ⅱ) for the land surface process, the CCM3 radiation transfer scheme for cloud-radiation transfer processes, the TKE (turbulent kinetic energy) scheme for the boundary layer processes and the topography treatment schemes for the Tibetan Plateau are suitable for simulations and prediction of the East Asia monsoon climate in rainy seasons. Based on the above sensitivity study, a modified version of the RegCM2 (RegCM_NCC) has been set up for climate simulations and seasonal predictions.  相似文献   

9.
Based on the National Centers for Environmental Prediction and National Center for Atmospheric Research (NCEP/NCAR) reanalysis data from 1950-1999, interdecadal variability of the East Asian Summer Monsoon (EASM) and its associated atmospheric circulations are investigated. The EASM exhibits a distinct interdecadal variation, with stronger (weaker) summer monsoon maintained from 1950-1964 (1976-1997). In the former case, there is an enhanced Walker cell in the eastern Pacific and an anti-Walker cell in the western Pacific. The associated ascending motion resides in the central Pacific, which flows eastward and westward in the upper troposphere, descending in the eastern and western ends of the Pacific basin. At the same time, an anomalous East Asian Hadley Cell (EAHC) is found to connect the low-latitude and mid-latitude systems in East Asia, which strengthens the EASM. The descending branch of the EAHC lies in the west part of the anti-Walker cell, flowing northward in the lower troposphere and then ascending at the south of Lake Baikal (40°-50°N, 95°- 115°E) before returning to low latitudes in the upper troposphere, thus strengthening the EASM. The relationship between the EASM and SST in the eastern tropical Pacific is also discussed. A possible mechanism is proposed to link interdecadal variation of the EASM with the eastern tropical Pacific SST. A warmer sea surface temperature anomaly (SSTA) therein induces anomalous ascending motion in the eastern Pacific, resulting in a weaker Walker cell, and at the same time inducing an anomalous Walker cell in the western Pacific and an enhanced EAHC, leading to a weaker EASM. Furthermore, the interdecadal variation of summer precipitation over North China is found to be the south of Lake Baikal through enhancing and reducing strongly regulated by the velocity potential over the regional vertical motions.  相似文献   

10.
Two sets of numerical experiments using the coupled National Center for Environmental Prediction General Circulation Model (NCEP/GCM T42L18) and the Simplified Simple Biosphere land surface scheme (SSiB) were carried out to investigate the climate impacts of fractional vegetation cover (FVC) and leaf area index (LAI) on East Asia summer precipitation, especially in the Yellow River Basin (YRB). One set employed prescribed FVC and LAI which have no interannual variations based on the climatology of vegetation distribution; the other with FVC and LAI derived from satellite observations of the International Satellite Land Surface Climate Project (ISLSCP) for 1987 and 1988. The simulations of the two experiments were compared to study the influence of FVC, LAI on summer precipitation interannual variation in the YRB. Compared with observations and the NCEP reanalysis data, the experiment that included both the effects of satellite-derived vegetation indexes and sea surface temperature (SST) produced better seasonal and interannual precipitation variations than the experiment with SST but no interannual variations in FVC and LAI, indicating that better representations of the vegetation index and its interannual variation may be important for climate prediction. The difference between 1987 and 1988 indicated that with the increase of FVC and LAI, especially around the YRB, surface albedo decreased, net surface radiation increased, and consequently local evaporation and precipitation intensified. Further more, surface sensible heat flux, surface temperature and its diurnal variation decreased around the YRB in response to more vegetation. The decrease of surface-emitting longwave radiation due to the cooler surface outweighed the decrease of surface solar radiation income with more cloud coverage, thus maintaining the positive anomaly of net surface radiation. Further study indicated that moisture flux variations associated with changes in the general circulation also contributed to the precipitation interannual variation.  相似文献   

11.
Collaboration of interannual variabilities and the climate mean state determines the type of E1 Nifio. Recent studies highlight the impact of a La Nifia-like mean state change, which acts to suppress the convection and low-level convergence over the central Pacific, on the predominance of central Pacific (CP) E1 Nifio in the most recent decade. However, how interannual variabilities affect the climate mean state has been less thoroughly investigated. Using a linear shallow-water model, the ef- fect of decadal changes of air-sea interaction on the two types of El Nifio and the climate mean state over the tropical Pacific is examined. It is demonstrated that the predominance of the eastem Pacific (EP) and CP E1 Nino is dominated mainly by relationships between anomalous wind stresses and sea surface temperature (SST). Furthermore, changes between air-sea interactions from 1980-98 to 1999-2011 prompted the generation of the La Ninalike pattern, which is similar to the background change in the most recent decade.  相似文献   

12.
Identification of key SST zones is essential in predicting the weather / climate systems in East Asia. With the SST data by the U.K. Meteorological Office and 40-year geopotential height and wind fields by NCAR / NCEP, the relationship between the East Asian summer monsoon and north Pacific SSTA is studied, which reveals their interactions are of interdecadal variation. Before mid-1970's, the north Pacific SSTA acts upon the summer monsoon in East Asia through a great circle wavetrain and results in more rainfall in the summer of the northern part of China. After 1976, the SSTA weakens the wavetrain and no longer influences the precipitation in North China due to loosened links with the East Asian summer monsoon. It can be drawn that the key SST zones having potential effects on the weather / climate systems in East Asia do not stay in one particular area of the ocean but rather shift elsewhere as governed by the interdecadal variations of the air-sea interactions. It is hoped that the study would help shed light on the prediction of drought / flood spans in China.  相似文献   

13.
Interdecadal Variability of the East Asian Summer Monsoon in an AGCM   总被引:3,自引:0,他引:3  
It is well known that significant interdecadal variation of the East Asian summer monsoon (EASM) occurred around the end of the 1970s. Whether these variations can be attributed to the evolution of global sea surface temperature (SST) and sea ice concentration distribution is investigated with an atmospheric general circulation model (AGCM). The model is forced with observed monthly global SST and sea ice evolution through 1958-1999. A total of four integrations starting from different initial conditions are carried out. It is found that only one of these reproduces the observed interdecadal changes of the EASM after the 1970s, including weakened low-level meridional wind, decreased surface air temperature and increased sea level pressure in central China, as well as the southwestward shift of the western Pacific subtropical high ridge and the strengthened 200-hPa westerlies. This discrepancy among these simulated results suggests that the interdecadal variation of the EASM cannot be accounted for by historical global SST and sea ice evolution. Thus, the possibility that the interdecadal timescale change of monsoon is a natural variability of the coupled climate system evolution cannot be excluded.  相似文献   

14.
The effects of the sea surface temperature (SST) anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are simulated by the IAP-GCM with an observed and idealized distributions of the SST anomalies in the tropical western Pacific,respectively.Firstly,the atmospheric circulation anomalies during July and August,1980 are simulated by three anomalous experiments including the global SST anomaly experiment,the tropical SST anomaly experiment and the extratropical SST anomaly experiment,using the observed SST anomalies in 1980.It is shown that the SST anomalies in the tropical ocean greatly influence the formation and maintenance of the blocking high over the northeastern Asia,and may play a more important role than the SST anomalies in the extratropical ocean in the influence on the atmospheric circulation anomalies.Secondly,the effects of the SST anomalies in the tropical western Pacific on the atmospheric circulation anomalies over East Asia are also simulated w  相似文献   

15.
An overview of Chinese contribution to Coupled Model Intercomparison Project-Phase 5 (CMIP5) is presented. The performances of five Chinese Climate/Earth System Models that participated in the CMIP5 pro ject are assessed in the context of climate mean states, seasonal cycle, intraseasonal oscillation, interan-nual variability, interdecadal variability, global monsoon, Asian-Australian monsoon, 20th-century historical climate simulation, climate change pro jection, and climate sensitivity. Both the strengths and weaknesses of the models are evaluated. The models generally show reasonable performances in simulating sea surface tem-perature (SST) mean state, seasonal cycle, spatial patterns of Madden-Julian oscillation (MJO) amplitude and tropical cyclone Genesis Potential Index (GPI), global monsoon precipitation pattern, El Ni-no-Southern Oscillation (ENSO), and Pacific Decadal Oscillation (PDO) related SST anomalies. However, the perfor-mances of the models in simulating the time periods, amplitude, and phase locking of ENSO, PDO time periods, GPI magnitude, MJO propagation, magnitude of SST seasonal cycle, northwestern Pacific mon-soon and North American monsoon domains, as well as the skill of large-scale Asian monsoon precipitation need to be improved. The model performances in simulating the time evolution and spatial pattern of the 20th-century global warming and the future change under representative concentration pathways pro jection are compared to the multimodel ensemble of CMIP5 models. The model discrepancies in terms of climate sensitivity are also discussed.  相似文献   

16.
In phase Ⅱ of the Regional Climate Model Inter-comparison Project (RMIP) for Asia, the regional climate has been simulated for July 1988 through December 1998 by five regional climate models and one global variable resolution model. Comparison of the 10-year simulated precipitation with the observations was carried out. The results show that most models have the capacity to reproduce the basic spatial pattern of precipitation for Asia, and the main rainbelt can be reproduced by most models, but there are distinctions in the location and the intensity. Most models overestimate the precipitation over most continental regions. Interannual variability of the precipitation can also be basically simulated, while differences exist between various models and the observations. The biases in the stream field are important reasons behind the simulation errors of the Regional Climate Models (RCMs). The cumulus scheme and land surface process have large influences on the precipitation simulation. Generally, the Grell cumulus scheme produces more precipitation than the Kuo scheme.  相似文献   

17.
In this paper, the relation between Asian summer monsoon circulation and sea surface temperature anomalies over equatorial central-eastern Pacific is investigated by using a global spectral model. This model has nine layers in the vertical and the model variables are represented in the horizontal as truncated expansions of the surface spherical harmonics with rhomboidal truncation at wave number 15. The model involves comparatively complete physical processes and parameterizations with mountains.Using the above model, two experimental schemes are designed, namely control case and anomalous sea surface temperature case. The above two schemes are respectively integrated for forty days and the simulated results are obtained from the last 30-day averaged simulations.The simulations show that positive SST anomalies over equatorial central-eastern Pacific weakens Indian monsoon circulation,decreases precipitation in Indian sub-continent whereas it intensifies East Asian monsoon circulation and increases preci  相似文献   

18.
The interaction between climate and vegetation along four Pole-Equator-Pole (PEP) belts were explored using a global two-way coupled model, AVIM-GOALS, which links the ecophysiological processes at the land surface with the general circulation model (GCM). The PEP belts are important in linking the climate change with the variation of sea and land, including terrestrial ecosystems. Previous PEP belts studies have mainly focused on the paleoclimate variation and its reconstruction. This study analyzes and discusses the interaction between modern climate and vegetation represented by leaf area index (LAI) and net primary production (NPP). The results show that the simulated LAI variation, corresponding to the observed LAI variation, agrees with the peak-valley variation of precipitation in these belts. The annual mean NPP simulated by the coupled model is also consistent with PIK NPP data in its overall variation trend along the four belts, which is a good example to promote global ecological studies by coupling the climate and vegetation models. A large discrepancy between the simulated and estimated LAI emerges to the south of 15°N along PEP 3 and to the south of 18°S in PEP 1S, and the discrepancy for the simulated NPP and PIK data in the two regions is relatively smaller in contrast to the LAI difference. Precipitation is a key factor affecting vegetation variation, and the overall trend of LAI and NPP corresponds more obviously to precipitation variation than temperature change along most parts of these PEP belts.  相似文献   

19.
Based on the NCAR/NCEP monthly and pentad reanalysis dataset of 1961-2003, the progress of seasonal evolution of the summer atmospheric circulation in the East Asia in July to August, including the advanced and delayed cases, and their relationships with the subseasonal processes over the western North Pacific are analyzed and compared with that of climatology. The results show that the progress of seasonal cycle is advanced about a month ahead of the climatological time when the convection during 20-29 July is active in the region of the subtropical West Pacific (15°-25°N, 150°-165°E), while it is delayed about one month when weaker convections appear in the same region. Instead, the relative active convection for the latter occurs in Pentad 46 (14-18 August). It is proved that the convective activities in the early July in the equatorial central and east Pacific, and then the convective anomalies in the subtropical western North Pacific can excite the formation of the acceleration and delay of the seasonal circulation evolution in the East Asia in the late summer. The preceding subseasonal processes over the western North Pacific, including the time-lag interactions among the active convection in the late June and early July, the Northwest Pacific anticyclone, the underlying sea surface temperature and low-level winds anomalies, and their relationships with the anomalous seasonal evolution of the summer atmospheric circulation in the East Asia in late July are also investigated. However, further study, especially the numerical experiments, is needed on the mechanism of the anomaly summer seasonal cycle in the East Asia and the Northwest Pacific.  相似文献   

20.
Based on surface air temperature and precipitation observation data and NCEP/NCAR atmospheric reanalysis data,this study evaluates the prediction of East Asian summer climate during 1959–2016 undertaken by the CESM (Community Earth System Model) large-ensemble initialized decadal prediction (CESM-DPLE) project. The results demonstrate that CESM-DPLE can reasonably capture the basic features of the East Asian summer climate and associated main atmospheric circulation patterns. In general, the prediction skill is quite high for surface air temperature,but less so for precipitation, on the interannual timescale. CESM-DPLE reproduces the anomalies of mid-and highlatitude atmospheric circulation and the East Asian monsoon and climate reasonably well, all of which are attributed to the teleconnection wave train driven by the Atlantic Multidecadal Oscillation (AMO). A transition into the warm phase of the AMO after the late 1990s decreased the geopotential height and enhanced the strength of the monsoon in East Asia via the teleconnection wave train during summer, leading to excessive precipitation and warming over East Asia. Altogether, CESM-DPLE is capable of predicting the summer temperature in East Asia on the interannual timescale, as well as the interdecadal variations of East Asian summer climate associated with the transition of AMO phases in the late 1990s, albeit with certain inadequacies remaining. The CESM-DPLE project provides an important resource for investigating and predicting the East Asian climate on the interannual and decadal timescales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号