首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 269 毫秒
1.
张雯  董啸  薛峰 《大气科学》2020,44(2):390-406
基于1957~2017年观测和再分析资料,合成分析了北太平洋年代际振荡(Pacific decadal oscillation,PDO)不同位相下El Ni?o发展年和La Nina年东亚夏季风的环流、降水特征及季节内变化。结果表明,PDO正、负位相作为背景场,分别对El Ni?o发展年、La Nina年东亚夏季风及夏季降水具有加强作用。PDO正位相一方面可增强El Ni?o发展年夏季热带中东太平洋暖海温异常信号,另一方面通过冷海温状态加强中高纬东亚大陆与西北太平洋的环流异常,从而在一定程度上增强了东亚夏季风环流的异常程度;反之,PDO负位相则增强了La Nina年热带海气相互作用以及中高纬环流(如东北亚反气旋)的异常。在季节内变化方面,El Ni?o发展年6月贝湖以东反气旋性环流为东亚地区带来稳定的北风异常,东北亚位势高度减弱;7月开始,环流形势发生调整,日本以东洋面出现气旋性异常,东亚大陆偏北风及位势高度负异常均得到加强;8月,随着东亚夏季风季节进程和El Ni?o发展,西太平洋出现气旋性环流异常,东亚副热带位势高度进一步降低,西北太平洋副热带高压(简称副高)明显东退。La Nina年6月异常较弱,主要环流差异自7月西北太平洋为大范围气旋性异常控制开始,东亚-太平洋遥相关型显著,副高于季节内始终偏弱偏东。上述两种情况下,均造成东亚地区夏季降水总体上偏少,尤其是中国北方降水显著偏少。  相似文献   

2.
东亚夏季风指数的年际变化与东亚大气环流   总被引:66,自引:9,他引:66  
文中从夏季东亚热带、副热带环流系统特点出发 ,定义了能较好表征东亚夏季风环流年际变化的特征指数 ,并分析了东亚夏季风指数的年际变化与东亚大气环流及夏季中国东部降水的关系。文中定义的东亚夏季风指数既反映了夏季东亚大气环流风场的变化特征 ,也较好地反映了夏季中国东部降水的年际变化特征。此外 ,还探讨了东亚夏季风指数变化的先兆信号  相似文献   

3.
The two leading modes of the interannual variability of the tropical Indian Ocean (TIO) sea surface temperature (SST) anomaly are the Indian Ocean basin mode (IOBM) and the Indian Ocean dipole mode (IODM) from March to August. In this paper, the relationship between the TIO SST anomaly and the sub-seasonal evolution of the circulation and rainfall over East Asia during boreal spring and summer is investigated by using correlation analysis and composite analysis based on multi-source observation data from 1979 to 2013, together with numerical simulations from an atmospheric general circulation model. The results indicate that the impacts of the IOBM on the circulation and rainfall over East Asia vary remarkably from spring to summer. The anomalous anticyclone over the tropical Northwest Pacific induced by the warm IOBM is closely linked with the Pacific–Japan or East Asia–Pacific teleconnection pattern, which persists from March to August. In the upper troposphere over East Asia, the warm phase of the IOBM generates a significant anticyclonic response from March to May. In June and July, however, the circulation response is characterized by enhanced subtropical westerly flow. A distinct anomalous cyclone is found in August. Overall, the IOBM can exert significant influence on the western North Pacific subtropical high, the South Asian high, and the East Asian jet, which collectively modulate the precipitation anomaly over East Asia. In contrast, the effects of the IODM on the climate anomaly over East Asia are relatively weak in boreal spring and summer. Therefore, studying the impacts of the TIO SST anomaly on the climate anomaly in East Asia should take full account of the different sub-seasonal response during boreal spring and summer.  相似文献   

4.
The anomalous behavior of the western Pacific subtropical high (WPSH) in El Niño developing summer is studied based on the composite results of eight major El Niño events during 1979-2013. It is shown that the WPSH tends to retreat eastwards with weak intensity during the developing summer. The anomaly exhibits an intraseasonal variation with a weaker anomaly in June and July and a stronger anomaly in August, indicating that different underlying physical mechanisms may be responsible for the anomalous WPSH during early and late summer periods. In June and July, owing to the cold advection anomaly characterized as a weak northerly anomaly from high latitudes, geopotential height in East Asia is reduced and the WPSH tends to retreat eastwards slightly. By contrast, enhanced convection over the warm pool in August makes the atmosphere more sensitive to El Niño forcing. Consequently, a cyclonic anomaly in the western Pacific is induced, which is consistent with the seasonal march of atmospheric circulation from July to August. Accordingly, geopotential height in the western Pacific is reduced significantly, and the WPSH tends to retreat eastwards remarkably in August. Different from the developing summer, geopotential height in the decaying summer over East Asia and the western Pacific tends to enhance and extend northwards from June to August consistently, reaching the maximum anomaly in August. Therefore, the seasonal march plays an important role in the WPSH anomaly for both the developing and decaying summer.  相似文献   

5.
本文重点分析对比热带夏季季节内振荡(Boreal Summer Intraseasonal Oscillation,BSISO)1987—1995年(P1),1996—2007年(P2)和2008—2017年(P3)三阶段东亚—西北太平洋地区(East Asian-Western North Pacific,EAWNP)5—9月BSISO年代际变化的季节内差异特征。结果表明,在P1和P3两阶段,5—7月EAWNP BSISO强度几乎相同,但P2中每个月均显著增强,表明5—7月EAWNP BSISO经历了P1—P2增强和P2—P3减弱的年代际变化。8月,EAWNP BSISO强度从P1到P3逐渐增强,P3阶段比P1有显著增强,孟加拉湾和东亚副热带区域的BSISO活动增强。和P1相比,南海地区BSISO活动在P2阶段异常活跃,在5—7月强度增强,并且北传显著。在P2阶段,负位相的太平洋年代际(Interdecadal Pacific Oscillation,IPO)对应的赤道西太平洋和印度洋海温增暖,及Walker环流的增强为5—7月BSISO活动提供了水汽和对流发展的有利条件,而南海地区北传对流的叠加作用以及南海海温增暖进一步加强了BSISO的强度和北传。在P3阶段,8月孟加拉湾BSISO活动增强,除了热带印度洋一致增暖和太平洋ENSO型海温为BSISO活动提供水汽和对流发展的条件外,70°~90°E区域局地Hadley环流引起的上升运动也对BSISO的强度增强和北传有贡献。  相似文献   

6.
黄荣辉  孙凤英 《大气科学》1994,18(2):141-151
本文利用1978-1989年热带西太平洋暖池的表层与次表?层海温、高云量与降水等观测资料分析了热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常的影响。分析结果表明:热带西太平洋暖池的热状态及其上空的对流活动对东亚夏季气候异常起着十分重要的作用。当热带西太平洋暖池增暖时,从菲律宾周围经南海到中印半岛上空的对流活动将增强,西太平洋副热带高压的位置偏北,我国江淮流域夏季降水偏少;反之,则菲律宾周围的对流活动减弱,副热带高压偏南,江淮流域的降水偏多,黄河流域的降水偏少,易发生干旱。观测事实还表明,当热带西太平洋暖池上空的对流增强后,从东南亚、经东亚到北美西海岸上空大气环流的异常呈现出一个遥相关型—东亚太平洋型。  相似文献   

7.
Multi-stage onset of the summer monsoon over the western North Pacific   总被引:9,自引:1,他引:9  
R. Wu  B. Wang 《Climate Dynamics》2001,17(4):277-289
 The climatological summer monsoon onset displays a distinct step wise northeastward movement over the South China Sea and the western North Pacific (WNP) (110°–160°E, 10°–20°N). Monsoon rain commences over the South China Sea-Philippines region in mid-May, extends abruptly to the southwestern Philippine Sea in early to mid-June, and finally penetrates to the northeastern part of the domain around mid-July. In association, three abrupt changes are identified in the atmospheric circulation. Specifically, the WNP subtropical high displays a sudden eastward retreat or quick northward displacement and the monsoon trough pushes abruptly eastward or northeastward at the onset of the three stages. The step wise movement of the onset results from the slow northeastward seasonal evolution of large-scale circulation and the phase-locked intraseasonal oscillation (ISO). The seasonal evolution establishes a large-scale background for the development of convection and the ISO triggers deep convection. The ISO over the WNP has a dominant period of about 20–30 days. This determines up the time interval between the consecutive stages of the monsoon onset. From the atmospheric perspective, the seasonal sea surface temperature (SST) change in the WNP plays a critical role in the northeastward advance of the onset. The seasonal northeastward march of the warmest SST tongue (SST exceeding 29.5 °C) favors the northeastward movement of the monsoon trough and the high convective instability region. The seasonal SST change, in turn, is affected by the monsoon through cloud-radiation and wind-evaporation feedbacks. Received: 19 October 1999 / Accepted: 5 June 2000  相似文献   

8.
太平洋海气相互作用的时空变化   总被引:11,自引:2,他引:11  
陈烈庭 《气象学报》1983,41(3):296-304
本文根据1957—1976年赤道太平洋海温和北太平洋海平面气压的月平均资料,计算了它们之间全年(1—12月)逐月的时滞相关,分析了北太平洋副热带反气旋影响赤道海温和赤道海温对副高反馈的季节变化。发现它们之间的联系不同季节、不同地区有明显差异:副热带反气旋对赤道海温的影响(负相关)以春季最大,秋季最小;赤道海温的反馈,对副高的不同部分作用不同,对副高主体的作用(正相关)以冬半年最大、夏半年较小(尤其是盛夏),对西部副高脊的作用(负相关)相反,以夏半年最大,冬半年较小。其过渡期为5月和11月。同时对其季节变化的可能原因也提出了一些初步看法。其中特别强调了大型环流背景的基本状态(包括平均垂直环流)对海气相互作用过程的重要性。  相似文献   

9.
东亚夏季风环流和雨带的季节内变化   总被引:16,自引:9,他引:7  
苏同华  薛峰 《大气科学》2010,34(3):611-628
基于常规气象要素资料及变差度方法, 分析了东亚夏季风环流的演变特征, 发现东亚地区在夏季期间存在两次明显的次季节突变, 主要表现为西太平洋副热带高压 (副高) 的两次东退北跳, 第一次是在6月中旬, 第二次是在7月下旬。由于副高与雨带密切相关, 雨带在演进过程中也呈现出两次明显的突跳, 分别对应于江淮流域至日本一带梅雨期以及中国华北和东北雨季的开始。较第一次北跳而言, 副高的第二次北跳更为明显。副高的第一次北跳主要受南海地区对流活动加强的影响, 而第二次北跳则是暖池对流活动与高纬地区环流共同作用的结果。暖池地区向东北方向传播的Rossby波列以及高纬地区东传的Rossby波通过锁相作用使得副高强烈北跳。此外, 副高与其西部边缘凝结潜热的相互作用导致副高发生季节内的低频振荡。 风场变差度的分析表明, 高纬地区对流层中低层环流的调整随着夏季季节进程逐渐减弱, 这与中高纬地区温差的变化有关。而高纬地区高层环流的调整在夏季后半期随着高度的增加却逐渐增强, 这与高层环流从夏到冬的季节变化有关。从风场相似度的变化上还可以看到, 副高第二次北跳后东亚地区呈现出明显不同的环流状态。 南半球环流对于南海及暖池地区对流活动的增强有重要影响。6月中旬, 南海与暖池地区对流活动的增强是由于南海西边界西风加强并向东扩展造成的, 这与马斯克林高压 (马高) 的加强密切相关。而在7月中旬, 澳大利亚高压 (澳高) 的增强使其东北部的越赤道气流加强, 南半球大量冷空气侵入到暖池地区, 加强了暖池地区的不稳定性以及低层的辐合, 从而使暖池地区的对流活动增强。但在夏季前半期, 暖池对流活动也可调制澳高强度与其东北部越赤道气流强弱的关系, 使得二者呈现出相反的变化趋势。南半球冬季期间, 澳高在振荡中减弱, 这与澳洲大陆下垫面温度及上游马高的能量频散有关, 前者影响澳高的变化趋势 (减弱), 而后者影响澳高的低频振荡。  相似文献   

10.
近年来的许多观测事实表明,全球大气环流的变化存在着相关性。Wallace和Gutzler发现大气环流的异常存在着五种遥相关型:太平洋北美型,西大西洋型,东大西洋型,西太平洋型和欧亚型。黄荣辉从理论和数值试验方面指出,冬季热带东太平洋海温的异常会引起中高纬度大气环流的异常。黄荣辉等人近期的研究还揭示出夏季热带西太平洋海温的异常,会在东南亚、东亚与太平洋北  相似文献   

11.
长江中下游入梅指数及早晚梅年的海气背景特征   总被引:4,自引:0,他引:4  
利用1957~2001年全国160站逐月降水资料和116站入梅日期资料,定义了一个长江中下游入梅指数,以定量描述长江中下游地区平均入梅的早晚,再结合ERA-40高分辨率再分析资料和ERSST海温资料,利用相关分析和合成分析, 分别研究了早、晚梅年同期(6~7月份)和前期(前一年12月份至当年5月份)的大尺度大气环流及海温的异常特征。结果表明:早梅年同期,200 hPa南亚高压偏北,印度北部、孟加拉湾-印度尼西亚-副热带太平洋地区上空的对流偏强,西太平洋副热带高压和赤道辐合带位置偏北,东亚副热带夏季风偏强,晚梅年则相反。前期1月份北太平洋涛动及4月份西太平洋暖池附近的对流与当年入梅早晚存在显著的相关关系:早梅年,1月份北太平洋涛动偏弱,4月份西太平洋暖池附近的对流活跃;晚梅年,1月份北太平洋涛动偏强,4月份西太平洋暖池附近的对流偏弱。此外, 从前期海温场来看,早梅年,1~4月份北大西洋中高纬地区海温偏低,低纬地区海温偏高,呈南北偶极子分布状态,2月份西太平洋暖池附近海域及北半球冬、春季环澳大利亚海域海温明显偏高,晚梅年情况正好相反。以上这些前期信号为长江中下游地区入梅的短期气候预测提供了参考依据。  相似文献   

12.
积云对流参数化方案对东亚夏季环流和降水模拟的影响   总被引:3,自引:0,他引:3  
利用WRF(Weather Research and Forecasting)模式对东亚夏季区域气候模拟中最常选用的两种积云对流参数化方案进行对比分析,研究积云对流参数化方案选用对大尺度环流模拟的影响。结果表明:Kain-Fritsch(KF)方案对西太平洋副热带高压(简称副高)及环流的模拟效果较好,虽然KF方案模拟降水偏多,但是时空分布与TRMM降水分布接近;Grell-Freitas(GF)方案对流加热率过大,从而模拟的南海—菲律宾区域对流异常增强,在南海—菲律宾洋面上的垂直输送异常增大,非绝热加热的范围偏大,导致副高南侧下沉区辐散减弱,抑制了副高北抬西伸,进而影响到水汽输送和季风环流,最终对东亚夏季降水的模拟产生不利影响。修改GF方案对流加热率和干燥率的敏感性试验表明,减小对流加热率和干燥率参数能有效抑制南海—菲律宾区域过强的对流,东亚大尺度环流的模拟得到明显改进。  相似文献   

13.
Observations show that the summer precipitation over East China often goes through decadal variations of opposite sign over North China and the Yangtze River valley (YRV), such as the “southern flood and northern drought” pattern that occurred during the late 1970s–1990s. In this study it is shown that a modulation of the Pacific Decadal Oscillation (PDO) on the summer precipitation pattern over East China during the last century is partly responsible for this characteristic precipitation pattern. During positive PDO phases, the warm winter sea surface temperatures (SSTs) in the eastern subtropical Pacific along the western coast of North American propagate to the tropics in the following summer due to weakened oceanic meridional circulation and the existence of a coupled wind–evaporation–SST feedback mechanism, resulting in a warming in the eastern tropical Pacific Ocean (5°N–20°N, 160°W–120°W) in summer. This in turn causes a zonal anomalous circulation over the subtropical–tropical Pacific Ocean that induces a strengthened western Pacific subtropical high (WPSH) and thus more moisture over the YRV region. The end result of these events is that the summer precipitation is increased over the YRV region while it is decreased over North China. The suggested mechanism is found both in the observations and in a 600-years fully coupled pre-industrial multi-century control simulations with Bergen Climate Model. The intensification of the WPSH due to the warming in the eastern tropical Pacific Ocean was also examined in idealized SSTA-forced AGCM experiments.  相似文献   

14.
This study has developed a multiple linear regression model for the seasonal prediction of the summer tropical cyclone genesis frequency (TCGF) in the western North Pacific using the three teleconnection patterns. These patterns are representative of the Siberian High Oscillation (SHO) in the East Asian continent, the North Pacific Oscillation in the North Pacific, and Antarctic Oscillation (AAO) near the Australia during the boreal spring (April–May). This statistical model is verified through the two analyses: (a) statistical method of cross validation and (b) differences between the high TCGF years and low TCGF years that is hindcasted by the statistical model. The high TCGF years are characterized by the following anomalous features: Three anomalous teleconnection patterns such as anticyclonic circulation (positive SHO phase) in the East Asian continent, pressure pattern like “north-high and south-low” in the North Pacific, and cyclonic circulation (negative AAO phase) near the Australia were strengthened during the period from boreal spring to boreal summer. Thus, anomalous trade winds in the tropical western Pacific (TWP) were weakened by anomalous cyclonic circulations that located in the subtropical western Pacific (SWP) in both hemispheres. In consequence, this spatial distribution of anomalous pressure pattern suppressed convection in the TWP but strengthened convection in the SWP.  相似文献   

15.
利用NCEP/NCAR发布的850 hPa风场和OLR场以及福建38个站月降水资料, 分析了福建夏季旱涝与东亚夏季风及西太平洋副高的关系。结果表明夏季旱涝与夏季风强弱及副高南北位置密切相关。涝 (旱) 年在东亚季风系统中的热带季风环流出现异常加强 (减弱), 副热带季风环流则出现异常减弱 (加强); 涝年副高平均脊线位置偏北于27°N附近, 旱年则偏南于24°N附近; 由春入夏, 再由夏入秋副高南北位置的季节位移, 涝年先是急速北跳, 而后又急速南撤, 旱年却进退平缓。旱涝年东亚中高纬度环流亦表现出不同特征, 涝 (旱) 年一般没有 (有) 出现阻塞形势, 中纬度纬 (经) 向环流发展, 副热带锋区北抬 (南压), 研究还进一步揭示了夏季副高位置南北偏离影响夏季各月降水及其分布的不同形式。  相似文献   

16.
根据1998年NCEP逐日资料和TBB逐日资料,探讨了低纬度对流活动和副高周边水汽输送及其对流活动对夏季西太平洋副热带高压季节性北跳、南撤的影响效应。研究表明:低纬热带对流加强,且110°-150°E地区的南北向垂直经圈环流下沉区北移,夏季西太平洋副热带高压有北跳现象。另外,诊断结果亦表明西太平洋副高周边纬向水汽输送的显著减弱亦预示将出现副高的北跳,而西太平洋地区低纬经向水汽输送减少一候之后,副高南撤。研究结果表明西太平洋副高北跳、南撤与低纬度的对流潜热释放、中纬西太平洋副高周边的水汽输送及其对流活动存在密切的关系。数值模拟结果进一步证实上述副高活动变异与前期水汽输送及其对流特征的相关关系。  相似文献   

17.
Using Global Precipitation Climatology Project daily rainfall and ERA interim reanalysis data, we investigate the distinct characteristic of quasi-biweekly variation (QBV: 12–20 days) over East Asia (EA) during early (June 10–July 20) and late (July 21–August 31) summer. The QBV maximum variance is found over the core region of EA (30°–40°N, 110°–130°E), which includes eastern China (lower reaches of the Yellow, Huaihe, and Yangtze rivers) and the Korean Peninsula. At both its peak wet and dry phases, QBV over the core region has a baroclinic structure, but with different spatial distributions, different lower-level prevalent wind anomalies, and different upper-level major circulation anomalies in the two subseasons. Meanwhile, the two subseasons have different propagating tracks prior to reaching the peak phase, and different precursors associated with the local genesis of QBV. Furthermore, during the transition from the peak dry to peak wet phase of QBV, the major monsoon circulations have different behaviors that tropical monsoon trough extends eastward in early summer but retreats westward in late summer and the South Asia high (SAH) and western North Pacific (WNP) subtropical high move toward (away from) each other in early (late) summer. The abrupt change of mean state in mid to late July, which includes the northward migration of westerly jet, SAH and WNP, and the weakening and broken of westerly jet, is considered the root cause of the change in behavior of QBV. Finally, we indicate that the tropical monsoon trough and midlatitude westerly jet are possible sources of QBV over subtropical EA in both subseasons and provide useful guidance for 2–3 week predictions over EA.  相似文献   

18.
The paper presents a review of the success and failure of the practical results from summer drought and flood forecasts and seasonal precipitation forecasts in the period from 1976 to 1985. An analysis is made on the anomaly of the general circulation winch gives rise to summer precipitation and drought-flood occurrences in the country. It is proposed that the subtropical high over the West Pacific, the South Asia high and middle-latitude westerlies are the major synoptical regimes producing summer weather in China. The analysis focuses on the features of low-frequency oscillation and abnormality of the West Pacific sub-tropical high in the monthly 500 hPa mean charts, and on their interactions with the sea temperature of the North Pacific and the Equatorial Pacific. The result shows that there exist quasi-cycles of 3-4 years, 11 years and 19 years or so in the subtropical high with the feature of strong persistence and seasonal changes. There is a rather good correlation between the behaviour of the subtropical high and changes in the cold current area in the East Pacific, and especially during the El Nino period, there is an ob-vious coupling with abnormal changes of the intensity of the subtropical high. Analysis is also made on the effect of the thermal condition of the Tibetan Plateau, the Northern Hemisphere westerly circulation and the astronomical factors on the West Pacific subtropical high, the South Asia high and precipitation in the rainy season in China.  相似文献   

19.
Since the early or late onset of the South China Sea summer monsoon (SCSM) has a large impact on summer monsoon rainfall in East Asia, the mechanism and process of early or late onset of the SCSM are an worthy issue to study. In this paper, the results analyzed by using the observed data show that the onset date and process of the SCSM are closely associated with the thermal state of the tropical western Pacific in spring. When the tropical western Pacific is in a warming state in spring, the western Pacific subtropical high shifts eastward, and twin cyclones are early caused over the Bay of Bengal and Sumatra before the SCSM onset. In this case, the cyclonic circulation located over the Bay of Bengal can be early intensified and become into a strong trough. Thus, the westerly flow and convective activity can be intensified over Sumatra, the Indo-China Peninsula and the South China Sea (SCS) in mid-May. This leads to early onset of the SCSM. In contrast, when the tropical western Pacific is in a cooling state, the western Pacific subtropical high anomalously shifts westward, the twin cyclones located over the equatorial eastern Indian Ocean and Sumatra are weakened, and the twin anomaly anticyclones appear over these regions from late April to mid-May. Thus, the westerly flow and convective activity cannot be early intensified over the Indo-China Peninsula and the SCS. Only when the western Pacific subtropical high moves eastward, the weak trough located over the Bay of Bengal can be intensified and become into a strong trough, the strong southwesterly wind and convective activity can be intensified over the Indo-China Peninsula and the SCS in late May. Thus, this leads to late onset of the SCSM. Moreover, in this paper, the influencing mechanism of the thermal state of the tropical western Pacific on the SCSM onset is discussed further from the Walker circulation anomalies in the different thermal states of the tropical western Pacific.  相似文献   

20.
The boreal summer intraseasonal oscillation (BSISO) has strong convective activity centers in Indian (I), Western North Pacific (WNP), and North American (NA) summer monsoon (SM) regions. The present study attempts to reveal BSISO teleconnection patterns associated with these dominant intraseasonal variability centers. During the active phase of ISM, a zonally elongated band of enhanced convection extends from India via the Bay of Bengal and Philippine Sea to tropical central Pacific with suppressed convection over the eastern Pacific near Mexico. The corresponding extratropical circulation anomalies occur along the waveguides generated by the North African-Asian jet and North Atlantic-North European jet. When the tropical convection strengthens over the WNPSM sector, a distinct great circle-like Rossby wave train emanates from the WNP to the western coast of United States (US) with an eastward shift of enhanced meridional circulation. In the active phase of NASM, large anticyclonic anomalies anchor over the western coast of US and eastern Canada and the global teleconnection pattern is similar to that during a break phase of the ISM. Examination of the evolution of the BSISO teleconnection reveals quasi-stationary patterns with preferred centers of teleconnection located at Europe, Russia, central Asia, East Asia, western US, and eastern US and Canada, respectively. Most centers are embedded in the waveguide along the westerly jet stream, but the centers at Europe and Russia occur to the north of the jet-induced waveguide. Eastward propagation of the ISO teleconnection is evident over the Pacific-North America sector. The rainfall anomalies over the elongated band near the monsoon domain over the Indo-western Pacific sector have an opposite tendency with that over the central and southern China, Mexico and southern US, providing a source of intraseasonal predictability to extratropical regions. The BSISO teleconnection along and to the north of the subtropical jet provides a good indication of the surface sir temperature anomalies in the NH extratropics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号