首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
根据1998年NCEP逐日资料和TBB逐日资料,探讨了低纬度对流活动和副高周边水汽输送及其对流活动对夏季西太平洋副热带高压季节性北跳、南撤的影响效应.研究表明:低纬热带对流加强,且110°-150°E地区的南北向垂直经圈环流下沉区北移,夏季西太平洋副热带高压有北跳现象.另外,诊断结果亦表明西太平洋副高周边纬向水汽输送的显著减弱亦预示将出现副高的北跳,而西太平洋地区低纬经向水汽输送减少一候之后,副高南撤.研究结果表明西太平洋副高北跳、南撤与低纬度的对流潜热释放、中纬西太平洋副高周边的水汽输送及其对流活动存在密切的关系.数值模拟结果进一步证实上述副高活动变异与前期水汽输送及其对流特征的相关关系.  相似文献   

2.
亚澳季风区水汽输送季节转换特征   总被引:15,自引:4,他引:15  
利用NCEP/NCAR 1957~2001年45年逐日的再分析资料,从地面开始积分计算整层的水汽输送通量,从气候平均的角度分析了亚澳季风区大尺度水汽输送的季节转换演变特征。分析发现,亚澳季风区水汽输送由冬季向夏季的季节转换的基本特征是:夏季大值输送带的建立及其自西向东伸展,伴随着斯里兰卡低涡活动、自南向北的越赤道输送和副高的东撤、南海夏季风建立等一系列天气气候事件;而冬季形势的建立则是副高南侧东风输送带的西伸,伴随夏季大值输送带的断裂、西撤,最后形成亚洲低纬东风输送带,进而形成由北向南的越赤道输送以及澳大利亚和南印度洋夏季风水汽输送。伴随着冬、夏季节转换,中南半岛以西和以东地区的西风水汽输送的经向移动表现出完全不一样的特征,表明印度季风和东亚-西太平洋季风的形成机制有很大不同。  相似文献   

3.
夏季西太平洋副热带高压北跳及异常的研究   总被引:37,自引:4,他引:33  
张庆云  陶诗言 《气象学报》1999,57(5):539-548
根据欧洲中心1980~1989年逐日200,500和850hPa风场、高度场及日本气象厅提供的GMS观测的黑体辐射温度(TBB)逐日资料,探讨了夏季西太平洋地区(125~145°E)副热带高压脊线季节性北跳、季内脊线位置的异常与低纬度的西风爆发和热带对流的关系。研究表明:初夏西太平洋地区低层赤道西风爆发后,西太平洋地区的赤道对流加强(赤道地区的TBB值减小);赤道西风向北扩展,赤道强对流向北推移,热带对流加强(热带地区TBB值减小)。夏季西太平洋副热带高压脊线的二次北跳现象与低层赤道西风二次北跳及赤道对流向北推移密切相关。研究指出:夏季热带对流弱(强),西太平洋副热带高压脊线位置相对偏南(北),夏季西太平洋副热带高压脊线位置的异常与高、低层流场辐合、福散中心的位置及高层西风传播方向有关。  相似文献   

4.
文章通过对1951—2010年NECP/NCAR再分析逐日资料的分析,发现西太平洋副热带高压存在明显的季节性变化。夏季,副热带高压(以下简称副高)脊线出现两次显著的北跳,而且均伴随着副高强度指数的降低和西伸脊点的东退。脊线北跳过程也影响着东亚大气环流系统,南亚高压与西风急流在副高北跳后均同时减弱。但两次北跳过程仍然存在各自的特点:第一次副高脊线北跳时受到高纬地区纬向型环流调整与中低纬环流变化的共同影响,而第二次副高脊线北跳则主要受中低纬环流调整(太平洋负EAP事件)的影响。  相似文献   

5.
夏季北太平洋副热带高压系统的活动   总被引:36,自引:8,他引:36  
文中根据 NCEP/NCAR再分析资料 ,分析了北太平洋副热带高压系统的变化。 5~ 9月由于亚洲夏季风的建立及活动 ,北半球副热带高压系统在 6 0~ 1 2 0°E出现断裂 ,夏季西太平洋副热带高压脊点平均伸展到 1 2 0°E,其年际变化反映了亚洲夏季风的强弱。强夏季风年 5 0 0h Pa西太平洋副热带高压脊线位于 3 0°N以北 ,并分裂成两个中心 ,印度低压强 ;弱夏季风年西太平洋副热带高压脊线位于 3 0°N以南 ,表现为北太平洋高压中心向西伸展的高压脊 ,印度低压弱。夏季西太平洋副热带高压的季内活动有两种模态 :第 1种表现为副热带高压系统以 2 0~ 3 0 d的周期从北太平洋中部的副热带高压中心一次次地向西扩张到 1 2 0°E以西 ,这类过程大多出现在亚洲夏季风强度偏弱年 ;第 2种模态表现为副热带高压系统以 2 0~ 3 0 d的周期一次次地由东向西扩充时 ,在 1 2 5~ 1 5 5°E停滞 ,这类过程大多出现在亚洲夏季风强度偏强年。江淮流域梅雨的中断和结束与北太平洋副热带高压系统 2 0~ 3 0 d季内振荡有关。西太平洋副热带高压 5~ 1 0 d的短期活动受 3 5~ 45°N西风带活动的影响 ,当西风槽在中国沿海和西太平洋地区向南伸展到 3 0°N以南后 ,西太平洋副热带高压有一次加强活动  相似文献   

6.
诊断分析了北半球夏季来自印度季风的水汽输送与东亚上空水汽输送的关系,发现二者之间具有反相变化的特征。印度季风水汽输送偏强(偏弱)时,东亚上空的水汽输送偏弱(偏强),长江中下游降水偏少(偏多)。印度夏季风水汽输送与西太平洋副热带高压强度有显著的相关关系,印度季风水汽输送偏强(偏弱)时,西太平洋副热带高压强度偏弱(偏强),由此导致副高西侧东亚上空向北的水汽输送减弱(增强),使得长江中下游降水偏少(偏多)。对反映热带对流活动的外逸长波辐射(OLR)的分析表明,印度洋上空的对流加热异常不仅能够显著地影响印度季风,也可能对东亚季风产生直接的影响。  相似文献   

7.
黄荣辉  孙凤英 《大气科学》1994,18(4):456-465
本文通过1978—1989年热带西太平洋暖池上空的OLR资料、500 hPa高度场和降水的逐旬资料分析了热带西太平洋暖池上空对流活动对东亚夏季风季节内变化的影响。分析结果表明:在菲律宾周围对流活动强的夏季,西太平洋副热带高压在初夏向北突跳明显,即6月突跳明显,并且往往有两次向北突跳,这使得东亚夏季风降水雨带向北突跳明显,因此,雨带不可能在江淮流域维持;相反,在菲律宾周围对流活动弱的夏季,西太平洋副热带高压在初夏向北突跳不明显,即6月突跳不明显,它长期在江南上空维持,这样,东亚夏季风降水雨带往往在长江中、下  相似文献   

8.
2005年6月我国南方雨带异常偏南的分析   总被引:5,自引:1,他引:5  
康志明  鲍媛媛  陈晓红 《气象》2006,32(4):91-96
2005年6月我国南方雨带异常偏南。利用逐日观测资料、NCEP再分析资料以及NOAA-OLR资料对该年6月的天气形势特征和一些主要影响天气系统进行了诊断分析。讨论了西太平洋副热带高压、低层冷空气和水汽输送等与雨带异常之间的关系。结果表明西太平洋ITCZ偏弱,热带气旋少,使西太平洋副热带高压主体长时间偏南。青藏高原南部和低纬洋面上的对流异常,影响该地区季风环流,造成水汽向低纬地区集中,西南季风水汽输送带异常偏南。高层中高纬度异常环流,抑制南亚高压东段脊线北抬,高层西风异常通过动量下传,加强中低层西风锋区,冷空气南下到偏南地区等均是造成雨带异常偏南之原因。  相似文献   

9.
利用1995~2004年气象资料,分析了河南省降水最多年份汛期降水集中时段的大尺度环流特征,结果发现降水集中时段100 hPa南亚高压120°E脊线基本维持在25~32°N之间,降水集中时段开始前南亚高压有一个东移北跳过程,降水集中期间100 hPa高度场上呈现东高西低形势,有利于副高西伸和北抬;西太平洋副热带高压相对稳定,在多雨时段副高进退次数较多,且较长时间稳定在25°N左右,有利于西南暖湿气流沿副高外围进入河南省境内,为暴雨提供了充足的水汽;在降水集中时段,中纬度西风急流轴位置被北抬到40°N 以北,40°N以南基本是东风,这种中纬度地转西风持续偏弱,有利于副热带高压北跳和北跳后稳定,使雨带稳定在河南省.  相似文献   

10.
利用1995~2004年气象资料,分析了河南省降水最多年份汛期降水集中时段的大尺度环流特征,结果发现:降水集中时段100hPa南亚高压120°E脊线基本维持在25~32°N之间,降水集中时段开始前南亚高压有一个东移北跳过程,降水集中期间100hPa高度场上呈现东高西低形势,有利于副高西伸和北抬;西太平洋副热带高压相对稳定,在多雨时段副高进退次数较多,且较长时间稳定在25°N左右,有利于西南暖湿气流沿副高外围进入河南省境内,为暴雨提供了充足的水汽;在降水集中时段,中纬度西风急流轴位置被北抬到40°N以北, 40°N以南基本是东风,这种中纬度地转西风持续偏弱,有利于副热带高压北跳和北跳后稳定,使雨带稳定在河南省。  相似文献   

11.
章大全  陈丽娟  柳艳菊  柯宗建 《气象》2018,44(1):189-198
本文回顾了2016年10月降水业务预报中考虑的动力模式预测信息、前兆信号及其影响。2016年10月全国平均降水量为1951年以来历史同期最多,且环流形势和要素分布特征在月内均发生明显转折。业务发布预报在华北南部、黄淮、江淮、江汉等地降水异常与实况存在较大差异,同时对月内环流形势调整及降水变率估计不足。数值模式预报和物理因子诊断预测与实况的对比分析表明,环流形势整体分布特征预报与实况较为一致,但对西太平洋副热带高压等环流因子的强度、西伸脊点位置以及月内变率的预报与实况存在较大差异。从大气对热带海温信号的滞后响应以及同期相关分析表明,El Nino事件次年秋季副热带高压往往持续偏强偏北。10月赤道太平洋东冷西暖,暖池区对流活跃,东亚上空出现的异常经向环流圈通过低层径向风异常及异常辐合辐散,在日本岛附近形成反气旋式环流距平,也有利于副热带高压加强北抬。9、10月热带印度洋偶极子负位相有利于印缅槽加强,从而有利于水汽向我国东部地区输送。来自副热带高压外围的异常东南水汽和来自西南的水汽共同输送到我国中东部地区,并与南下冷空气交汇产生异常水汽辐合,造成这些地区降水明显偏多。此外10月热带对流活动依然活跃,台风的生成、登陆个数均较常年偏多,是我国东南沿海降水偏多的主要原因。  相似文献   

12.
刘芸芸  王永光  柯宗建 《气象》2021,(1):117-126
2020年夏季我国天气气候极为异常,全国平均降水量为373.0 mm,较常年同期偏多14.7%,为1961年以来次多;季节内阶段性特征显著,6—7月多雨带主要位于江南大部—江淮地区,8月则主要在东北、华北及西南地区,致使2020年夏季雨型分布异常,不是传统认识上的四类雨型分布。通过对同期大气环流和热带海温等异常特征分析发现,6—7月,欧亚中高纬环流表现为“两脊一槽”型,东亚副热带夏季风异常偏弱,西太平洋副热带高压(以下简称西太副高)较常年同期显著偏强、偏西,第一次季节性北跳偏早,第二次北跳明显偏晚,且表现出明显的准双周振荡特征;使得来自西北太平洋的转向水汽输送偏强,并与中高纬不断南下的冷空气活动相配合,水汽通量异常辐合区主要位于长江中下游地区,导致江淮梅雨异常偏多。热带印度洋持续偏暖对维持6—7月西太副高偏强偏西及东亚夏季风异常偏弱起到了重要作用。8月,欧亚中高纬环流调整为“两槽一脊”型,蒙古低压活跃;西太副高也由前期偏纬向型的带状分布转为“块状”分布,脊线位置偏北;沿西太副高外围的异常西南风水汽输送延伸至华北—东北南部,形成自西南到东北的异常多雨带,与6—7月江淮流域降水异常偏多的空间分布有明显不同。异常的热带大气季节内振荡活动是导致8月中低纬大气环流发生调整的重要原因。  相似文献   

13.
1980年和1981年夏季及其前期冬春季太平洋和印度洋海温均未出现显著异常。然而,这两年东亚夏季风环流的季节内变化却呈现显著异常,且截然不同,具体表征为:1980年西太平洋副热带高压(副高)第一次北跳异常偏早,第二次北跳异常偏晚,而1981年则相反,第一次北跳接近气候态,第二次北跳却异常偏早。就副高两次北跳过程而言,其直接原因也有显著差异:1980年副高两次北跳主要受热带西太平洋对流增强的影响,而1981年两次北跳则是由于热带西太平洋对流增强后所激发的极向传播的Rossby波列与中高纬度东传的Rossby波的锁相作用造成的。与北跳过程相比,副高北跳前后环流稳定维持的时间长短显得更为重要。研究表明,1980年夏季副高异常程度之所以堪比1983年和1998年强El Ni?o衰减年,主要是由于不同阶段南半球环流和北半球中高纬度环流的相互配合与接力,其中,6月和8月副高异常偏强对夏季平均副高异常偏强起到主要贡献,但二者的影响因子不同:6月主要受马斯克林高压(马高)偏强的影响,而8月则与澳大利亚高压(澳高)异常偏强有关。此外,7月和8月副高异常偏南是因为鄂霍茨克海阻塞高压长期维持。与1980年相比,1981年夏季马高和澳高均异常偏弱,因而南半球环流对副高异常的影响有限。北半球中高纬度环流的季节内变化对该年夏季副高的快速北进和南退起主导作用,特别是8月中高纬度盛行强烈的经向环流,使得副高异常偏东偏弱,从而导致夏季平均副高异常偏东偏弱。本文的个例分析表明,在无显著海温异常强迫的年份需要特别关注南半球环流和北半球中高纬度环流对副高及与之相关的东亚夏季风环流的季节内演变的影响,但是这些环流因子持续性较差,难以用于跨季度预测。  相似文献   

14.
利用1981—2000年候平均NCEP/NCAR再分析资料和CMAP全球降水资料,分析了从中国东部大陆到西太平洋副热带地区季风和降水季节变化的特征及其与热带季风降水的关系,探讨了季风建立和加强的原因。夏季东亚—西太平洋盛行的西南风开始于江南和西太平洋副热带的春初,并向北扩展到中纬度,热带西南风范围向北扩展的迹象不明显。从冬到夏,中国西部和西太平洋副热带的表面加热季节变化可以使副热带对流层向西的温度梯度反转比热带早,使西南季风在副热带最早开始;从大气环流看,青藏高原东侧低压槽的加强和向东延伸,以及西太平洋副热带高压的加强和向西移动,都影响着副热带西南季风的开始和发展;初夏江南的南风向北扩展与副热带高压向北移动有关,随着高原东侧低压槽向南延伸,槽前的偏南风范围向南扩展。随着副热带季风建立和向北扩展,其最大风速中心前方的低层空气质量辐合和水汽辐合以及上升运动也加强和向北移动,导致降水加强和雨带向北移动。热带季风雨季开始晚,主要维持在热带而没有明显进入副热带,江淮梅雨不是由热带季风雨带直接向北移动而致,而是由春季江南雨带北移而致。在热带季风爆发前,副热带季风区水汽输送主要来自中南半岛北部和中国华南沿海,而在热带季风爆发后,水汽输送来自孟加拉湾和热带西太平洋。  相似文献   

15.
利用NCEP/NCAR再分析资料、日本气象厅提供的TBB资料研究了 1 998年 7月西太平洋副热带高压突然偏南的原因。结果表明 ,西太平洋副高脊线突然“南撤”有其一定局限性 ,事实上应是副热带高压脊线在南侧的一次“重建”过程。针对这次重建 ,发现 1 998年 7月上中旬在西太平洋副热带地区存在南北两个高压脊 ,据此本文提出了副热带高压双脊线的概念 ,并着重揭示了这次西太平洋副热带高压双脊线的基本演变特征、环流场和温湿场结构、可能的形成机制及其对 1 998年夏季长江流域“二度梅”的影响。分析表明西太平洋副热带高压双脊线时期具有与单脊线时期明显不同的环流特征和温湿场结构 ,其北侧脊线附近的特征与传统上单脊线副热带高压的特征较一致 ,但南侧脊线附近则更多的具有低纬度系统的特点 ;这次双脊线过程与赤道缓冲带北上并与副热带高压打通合并变性及热带对流云团的演变有密切关系。此外 ,文中还通过中国台站降水资料探讨了副热带高压双脊线的维持对中国东部雨型的影响 ,指出西太平洋副热带高压双脊线的出现改变了原有的水汽输送路径 ,从而在中国东部出现两条雨带 ,呈倒 7字型 ,分别与副热带高压北、南侧脊线相对应。这些结果为西太平洋副热带高压演变规律和机制的研究提供了新的线索  相似文献   

16.
利用NCEP/NCAR再分析资料和中科院大气物理研究所PIAP3大气环流模式,分析了印度洋偶极子对夏季中国南海西南季风水汽输送的影响。结果表明,印度洋偶极子正位相期间夏季中国南海西南水汽输送较强,负位相期间则较弱。原因可归结为以下:正位相期间,MJO(Madden-Julian Oscillation)多活动于热带西印度洋,其向东传播受到阻碍,但经向传播明显,通常可传播至孟加拉湾地区,同时PIAP3显示印度洋季风槽位置偏北,且印尼以西过赤道气流较强,从而使得这一地区气旋性环流得到建立与加强。孟加拉湾地区对应着较强的对流活动以及深厚积云对流加热,从而通过对流加热的二级热力响应使西太平洋副热带高压位置向北推进,进而使得南海地区西南季风水汽输送得到建立与加强。在此期间孟加拉湾、中南半岛至南海地区对流活动较强,而苏门答腊沿岸对流活动受到抑制,由此增强了Reverse-Hadley环流,使低层经向风较强,进而增强了南海西南季风的水汽输送,PIAP3大气环流模式证实了Reverse-Hadley环流的增强。负位相期间,MJO多活动于热带东印度洋,在东传过程中受到Walker环流配置影响,在140°E赤道附近形成东西向非对称积云对流加热热源,其东侧Kelvin波响应加强了东风异常并配合副热带高压南缘东风压制了中国南海的西南季风水汽输送。在此期间,MJO在南海地区的经向传播较强,但经向传播常止步于南海地区15°N附近,虽携带大量水汽,但深厚积云对流强烈地消耗水汽使大气中水汽含量降低,PIAP3大气环流模式证实负位相期间深厚积云对流对水汽消耗加大,从而使得负位相期间南海地区水汽含量与正位相期间大体相近,但由于经向风不足使水汽向北输送较弱。  相似文献   

17.
2011年8月气候异常及成因分析   总被引:4,自引:1,他引:3  
在总结2011年8月我国气候异常与大气环流特征的基础上,针对西南干旱和热带气旋活动偏少两大气候异常事件的成因进行了分析。结果表明:高度场偏高、西太平洋副热带高压偏强、夏季风偏弱和水汽条件较差等大气环流异常是导致高温干旱的主要原因;中部型拉尼娜事件的滞后影响和印度洋偏暖的影响是西南干旱的重要外强迫条件。南海对流活动偏弱,菲律宾以东季风槽位置偏北,热带气旋活动区域垂直风切偏大,西北太平洋副热带高压偏强等因素导致热带气旋活动偏少。  相似文献   

18.
The unique role of the South China Sea summer monsoon (SCSSM) onset process in the development of the East Asian summer monsoon (EASM) is demonstrated in this study. The SCSSM onset process is examined in terms of the vertical linkage between the Western Pacific subtropical high (WPSH) and the South Asian high (SAH). A composite analysis is performed in order to adequately describe the vertical linkage in a synoptic timescale. The South China Sea (SCS) is a key region for the seasonal migrations of the WPSH and the SAH, with the former retreating northeastward, the latter advancing northwestward, and both taking place over the SCS during the SCSSM onset period. The SCSSM onset process is characterized by a significant change in the relative configuration of the ridge lines of the WPSH and the SAH. Just prior to the onset period, the ridge lines intersect vertically over the SCS, thus prohibiting convective activities. During the onset period, the ridge line intersection moves away from the SCS due to the retreating WPSH and the northward shift of the SAH ridge line. This coincides with the emergence of monsoonal convective activities over the SCS and the establishment of a moisture channel from the tropics, which in turn provides favorable conditions for the development of deep convective activity. The northeastward intrusion of the lower level southwesterlies and the moisture supplying channel are closely related to the development of a preexisting twin cyclone in the Bay of Bengal. The northeastward lower level southwesterlies form a monsoonal ascending motion in the SCS, which further merges upward into the northeasterlies to the south of the SAH ridge line. This is a signature of the establishment of the local Hadley circulation, which marks the beginning of the EASM. The frontal system is the most frequent attendant synoptic event during the SCSSM onset. From the viewpoint of synoptic process, the SCSSM undergoes a two-stage onset process which is characterized by the southward intrusion of the frontal system in the earlier stage and the outbreak of the tropical convection in the later stage. The frontal system may act as a trigger for the outbreak of the tropical convection in the later stage. The burst out of the monsoonal convection over the SCS is essential for the breakdown of the vertical intersection between the WPSH and the SAH therein.  相似文献   

19.
夏季东亚高空急流与太平洋-日本遥相关型的关系   总被引:1,自引:1,他引:1  
钟中  唐筱之  卢伟  陈中一 《气象科学》2015,35(6):672-683
利用NCEP/NCAR和NOAA月平均资料,采用奇异值分解方法分析了夏季东亚高空纬向风场和西北太平洋海表温度(SST)的耦合关系,并据此研究了东亚副热带高空急流和太平洋-日本(Pacific-Japan,PJ)遥相关型的可能联系。合成分析结果表明,东亚副热带高空急流正模态年,急流偏南偏强,对流层上层南亚高压增强东进,中层西太平洋副热带高压加强西伸,菲律宾周边海域SST升高,中纬度黑潮延伸体区SST降低,菲律宾海和热带西太平洋地区对流活动偏弱,日本海和黑潮延伸体海区对流活动增强,对应PJ遥相关型的负位相;而东亚副热带高空急流负模态年,急流偏北偏弱,对流层上层南亚高压减弱西退,中层西太平洋副热带高压减弱东撤,菲律宾周边SST降低,中纬度黑潮延伸体区SST升高,菲律宾海和热带西太平洋地区对流活动强盛,日本海和黑潮延伸体海区对流活动减弱,对应PJ遥相关型的正位相。由于夏季东亚副热带高空急流活动与PJ遥相关型存在关联,PJ遥相关型可能是东亚副热带高空急流响应太平洋海温异常的纽带。  相似文献   

20.
The interannual variability of autumn precipitation over South China and its relationship with atmospheric circulation and SST anomalies are examined using the autumn precipitation data of 160 stations in China and the NCEP-NCAR reanalysis dataset from 1951 to 2004. Results indicate a strong interannual variability of autumn precipitation over South China and its positive correlation with the autumn western Pacific subtropical high (WPSH). In the flood years, the WPSH ridge line lies over the south of South China and the strengthened ridge over North Asia triggers cold air to move southward. Furthermore, there exists a significantly anomalous updraft and cyclone with the northward stream strengthened at 850 hPa and a positive anomaly center of meridional moisture transport strengthening the northward warm and humid water transport over South China. These display the reverse feature in drought years. The autumn precipitation interannual variability over South China correlates positively with SST in the western Pacific and North Pacific, whereas a negative correlation occurs in the South Indian Ocean in July. The time of the strongest lag-correlation coefficients between SST and autumn precipitation over South China is about two months, implying that the SST of the three ocean areas in July might be one of the predictors for autumn precipitation interannual variability over South China. Discussion about the linkage among July SSTs in the western Pacific, the autumn WPSH and autumn precipitation over South China suggests that SST anomalies might contribute to autumn precipitation through its close relation to the autumn WPSH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号