首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 58 毫秒
1.
南极上空“臭氧洞”形成和演变的分析研究   总被引:2,自引:0,他引:2  
曲绍厚 《高原气象》1992,11(1):83-89
近十年来,南极地区上空“臭氧洞”的出现、演变趋势及其可能产生的生物学效应和气候效应引起世人的普遍关注和担忧。目前在南极“臭氧洞”形成理论方面,人类活动影响学说占有统治地位,但两年前魏鼎提出的“电化学-动力学”理论颇受重视。本根据作在日本南极昭和站(60°00′S,39°35′E)工作期间,收集和观测到南极臭氧数据、极地涡旋以及有关的太阳和射电活动等方面的资料,作了仔细的统计相关分析。结果为魏鼎提出的理论提供了新的直接证据,进一步指出了由太阳活动所导致的带电粒子流准11年周期变化与南极上空特有的大气环流相结合,是南极“臭氧洞”形成的重要原因,但人类活动(释放化学物质,特别是CFCs)所带来的影响也不容忽视。  相似文献   

2.
南极臭氧的短期气候变化特征   总被引:4,自引:1,他引:4       下载免费PDF全文
利用1957~1992年南极地区大气臭氧总量地面观测站资料,对南极地区臭氧的时空变化特征进行了研究。结果表明,虽然近35年来南极地区的大气臭氧有较明显的减小趋势,但在不同地区、时段和季节,其变化趋势也不同。近年来南极地区大气臭氧的显著亏损,主要是由南极臭氧洞的形成和发展所造成的。南极地区的大气臭氧存在明显的年振荡、准20个月和准30个月的振荡周期。臭氧变化与天文日照、平流层温度场、平流层冰晶云及人类活动排放到大气中的氟氯烃和溴化烃等污染物质有关。  相似文献   

3.
NUMERICAL SIMULATION OF THE FORMATION MECHANISM OF THE ANTARCTIC OZONE HOLE   总被引:1,自引:0,他引:1  
The global zonally averaged atmospheric chemistry model is developed in this paper.Theformation mechanism of the Antarctic ozone hole is numerically simulated using the model to checkthe viewpoints on the formation mechanism.The results show that:(1)The Antarctic ozone hole is a special phenomenon resulting from the heterogeneousreactions on the surface of the polar stratospheric cloud particles,under the special conditions oftemperature and circulation in Antarctic spring.The heterogeneous reactions reduce the NO_2concentration,resulting in the decrease of ozone production rate.The ozone content decreaseswhen its production is less than its destruction.This is the direct cause for the formation of theAntarctic ozone hole.(2)The impact of the polar vortex on the transport of trace species is not the determinativefactor in the formation of the Antarctic ozone hole.but makes the intensity of the ozone holechanged.(3)The solar cycles have negligible influence on the intensity of the Antarctic ozone holethrough photochemical reactions.  相似文献   

4.
极地气象是全球大气科学的重要组成部分。南、北极地区作为大气的两大冷源,对全球热量平衡起着重要作用,极地的大气环流对中低纬度地区的天气气候有很大影响,甚至可影响到南北半球大气的热量、动量、水汽和质量交换。有关这方面的研究工作愈来愈受  相似文献   

5.
南极臭氧洞的影响因子和变化趋势   总被引:1,自引:0,他引:1       下载免费PDF全文
利用卫星和台站观测的南极臭氧资料和NCEP/NCAR再分析资料,分析了南极臭氧近年来的变化特征和影响因子,探讨了南极臭氧洞期间中山站臭氧突变过程与大气动力的作用。结果显示,平流层氯和溴的卤化物当量(EESC)和平流层温度是影响南极臭氧洞面积的关键因子。臭氧总量与EESC和平流层温度均具有显著相关,表明两站虽然都位于臭氧洞边缘,EESC和平流层温度对臭氧总量的变化仍然可以起决定性的作用,同时也验证了EESC参数在东南极大陆沿岸具有适用性。 EESC的年代际变化与臭氧变化趋势相似,臭氧的年际变化与平流层温度关系密切。回归结果表明,2010年后臭氧洞面积逐渐减小,在2070年左右可能恢复到1980年前的水平,但其结果存在很大的不确定性。  相似文献   

6.
With the gradual yet unequivocal phasing out of ozone depleting substances(ODSs), the environmental crisis caused by the discovery of an ozone hole over the Antarctic has lessened in severity and a promising recovery of the ozone layer is predicted in this century. However, strong volcanic activity can also cause ozone depletion that might be severe enough to threaten the existence of life on Earth. In this study, a transport model and a coupled chemistry–climate model were used to simulate the impacts of super volcanoes on ozone depletion. The volcanic eruptions in the experiments were the 1991 Mount Pinatubo eruption and a 100 × Pinatubo size eruption. The results show that the percentage of global mean total column ozone depletion in the 2050 RCP8.5 100 × Pinatubo scenario is approximately 6% compared to two years before the eruption and 6.4% in tropics. An identical simulation, 100 × Pinatubo eruption only with natural source ODSs, produces an ozone depletion of 2.5% compared to two years before the eruption, and with 4.4% loss in the tropics. Based on the model results,the reduced ODSs and stratospheric cooling lighten the ozone depletion after super volcanic eruption.  相似文献   

7.
利用南极大陆沿岸中山站2008-2013年的地面臭氧连续观测数据和相关资料,对地面臭氧损耗事件(ODE)进行研究。结果显示,春季南极中山站常发生臭氧损耗事件。在该事件发生期间,气象要素有明显的突变过程,包括气温明显下降,风向由偏东风转变为偏北风,风速随之下降。来自海冰区的偏北风增多,风速很小,使臭氧浓度维持在较低水平。地面臭氧损耗事件主要与南极沿岸海冰区的活性溴(BrO)浓度有关。春季南极大陆沿岸海冰冻融过程中形成的冰间水道和冰间湖,在低温的作用下会再次冻结,形成薄冰和霜花。卫星资料能够观测到薄冰区释放的活化海盐溴高浓度区,活性溴与臭氧发生化学反应形成地面臭氧损耗事件。臭氧损耗现象是在未受到人为影响的自然状态下发生的,与中高纬度地区光化学反应导致臭氧消耗有所不同。   相似文献   

8.
The variability of Antarctic total column ozone in 1980–2018 is considered. The study analyzes trends in Antarctic total column ozone during the study period as well as the physical and chemical processes affecting the seasonal variability of total column ozone. The main attention is paid to the influence of dynamical processes on the stability of the Antarctic polar vortex, to the formation of polar stratospheric clouds, and to the influence of gas-phase and heterogeneous processes on the surface of polar stratospheric clouds and sulfate aerosol. The method of research is the analysis of the results of ground and satellite observations and numerical modeling of physical and chemical processes over the Antarctic using a global chemistry transport model with the dynamical parameters specified from reanalysis data.  相似文献   

9.
A one-dimensional time-dependent photochemical model is used to simulate the influence of ion-produced NOx, and HOx radicals on the Antarctic ozone depletion in polar night and polar spring at a latitude of 73 degrees south.Vertical transport and nitrogen-oxygen (NOx), hydrogen-oxygen (HOx) production by ionic reactions have been introduced into the model.NOx and HOx produced by precipitating ions are transported into the lower stratosphere by vertical motion and have some effects in the development of the Antarctic ozone depletion.From winter through spring the calculated ozone column decreases to 269.4 DU. However, this value is significantly higher than the total ozone observed at several Antarctic ozone stations.  相似文献   

10.
Observations have shown highly variable ozone depletion over the Antarctic in the 2000s, which could affect the long-term ozone trend in this region as well as the global ozone recovery. By using the total column ozone data (1979-2011), interannual variation of the springtime Antarctic ozone tow is investigated, together with its relationship with the polar vortex evolution in the lower stratosphere. The results show that springtime Antarctic ozone depletion has continued in the 2000s, seemingly contradicting the consensus view of a global ozone recovery expected at the beginning of the 21st century. The spring Antarctic polar vortex in the lower stratosphere is much stronger in the 2000s than before, with a larger area, delayed breakup time, and greater longevity during 2000-2011. Fhrther analyses show that the recent continuation of springtime Antarctic ozone depletion could be largely attributed to the abnormal variation of the Antarctic polar vortex.  相似文献   

11.
Recently, the depletion in ozone and aerosol extinctions inside Antarctic Spring westerly vortex and condensa-tion nuclei enhancement events in the mid latitudes stratosphere were related to downward transport of aerosols by subsidence and sedimentation. However, the problems associated with such hypothesis would keep a constraint on photochemical theories on ozone hole and stratospheric condensation nuclei (CN) events. Alternately, the gross fea-tures of aerosol hole are better explicable assuming a reversed residual circulation. This opens a path for combined operation on ozone by both photochemistry and dynamics in the same space domain.Independently, we relate the CN events to the growth and transport of negative ion complexes above the Peak of Junge Layer (PJL) without invoking photochemistry in order to be consistant with the observed interhemispheric dif-ferences in the planetary wave activity and CN concentration.  相似文献   

12.
A Tibetan ozone low was found in the 1990s after the Antarctic ozone hole.Whether this ozone low has been recovering from the beginning of the 2000s following the global ozone recovery is an intriguing topic.With the most recent merged TOMS/SBUV(Total Ozone Mapping Spectrometer/Solar Backscatter Ultra Violet) ozone data,the Tibetan ozone low and its long-term variation during 1979-2010 are analyzed using a statistical regression model that includes the seasonal cycle,solar cycle,quasi-biennial oscillation(QBO),ENSO signal,and trends.The results show that the Tibetan ozone low maintains and may become more severe on average during 1979-2010,compared with its mean state in the periods before 2000,possibly caused by the stronger downward trend of total ozone concentration over the Tibet.Compared with the ozone variation over the non-Tibetan region along the same latitudes,the Tibetan ozone has a larger downward trend during 1979-2010,with a maximum value of-0.40±0.10 DU yr 1 in January,which suggests the strengthening of the Tibetan ozone low in contrast to the recovery of global ozone.Regression analyses show that the QBO signal plays an important role in determining the total ozone variation over the Tibet.In addition,the long-term ozone variation over the Tibetan region is largely affected by the thermal-dynamical proxies such as the lower stratospheric temperature,with its contribution reaching around 10% of the total ozone change,which is greatly different from that over the non-Tibetan region.  相似文献   

13.
南极春季臭氧的TOVS反演及其与BREWER观测的比较   总被引:1,自引:1,他引:1       下载免费PDF全文
通过改进臭氧的统计反演算法,从NOAA卫星的TOVS资料中提取了1993年南极臭氧洞期间中山站上空大气臭氧含量的资料。本文的结果与NOAA的TOVS臭氧产品以及中山站的Brewer观测进行了比较。尽管3种资料对在臭氧洞期间臭氧含量的显著减少这一特征上相当一致,但此项结果相对于Brewer观测,其均方根误差29 DU,优于NOAA的业务反演产品。此外,还初步讨论了这两种反演的误差特征。  相似文献   

14.
极地大气科学与全球变化研究进展   总被引:4,自引:0,他引:4       下载免费PDF全文
南极和北极是地球上的气候敏感地区, 也是多个国际科学计划研究全球气候变化的关键地区。极地大气科学考察与研究是极地科学研究的重要组成部分。中国气象科学研究院的极地大气科学考察与研究始于20世纪80年代, 25年来有较大进展。中国气象科学研究院参加了我国组织的23次南极考察、2次北冰洋考察和3次北极考察; 承担了南极长城站和中山站、北极黄河站气象业务建设和维持, 以及中-澳合作南极冰盖3个无人自动气象站工作; 进行了常规地面气象、Brewer大气臭氧、近地面物理、冰雪和大气化学等观测, 获得了较为系统的极地大气环境资料。开展了有关极地大气科学与全球变化的研究, 在极地天气气候特征及气候变化时空多样性、极地海冰变化和南极海冰涛动、极地近地面物理特征和海-冰-气相互作用、中山站臭氧变化特征及南极臭氧洞和大气化学、气候代用资料获取和古气候环境以及极地大气环境变化对东亚环流和中国天气气候影响等方面的研究取得了新进展。中国极地大气科学正积极通过多学科交叉、走国际合作道路, 努力提高对极地在全球变化中作用的认识水平, 并积极探索极地变化对我国气候、环境的影响。  相似文献   

15.
Over the past two decades, skeptics of the reality and significance of anthropogenic climate change have frequently accused climate scientists of “alarmism”: of over-interpreting or overreacting to evidence of human impacts on the climate system. However, the available evidence suggests that scientists have in fact been conservative in their projections of the impacts of climate change. In particular, we discuss recent studies showing that at least some of the key attributes of global warming from increased atmospheric greenhouse gases have been under-predicted, particularly in IPCC assessments of the physical science, by Working Group I. We also note the less frequent manifestation of over-prediction of key characteristics of climate in such assessments. We suggest, therefore, that scientists are biased not toward alarmism but rather the reverse: toward cautious estimates, where we define caution as erring on the side of less rather than more alarming predictions. We call this tendency “erring on the side of least drama (ESLD).” We explore some cases of ESLD at work, including predictions of Arctic ozone depletion and the possible disintegration of the West Antarctic ice sheet, and suggest some possible causes of this directional bias, including adherence to the scientific norms of restraint, objectivity, skepticism, rationality, dispassion, and moderation. We conclude with suggestions for further work to identify and explore ESLD.  相似文献   

16.
The variability of parameters of the Antarctic ozone anomaly is studied using data of the TOMS/OMI satellite monitoring of the ozone layer, MERRA-2 reanalysis, and balloon sounding of the vertical distribution of ozone and temperature at the South Pole. The dynamic processes in the Antarctic stratosphere which define conditions for the significant ozone layer destruction are analyzed. Despite the decrease in the concentration of ozone-depleting substances, the significant ozone loss in the recent 8 years was observed in the Antarctic in 2011 and 2015.  相似文献   

17.
Recent studies demonstrate that the Antarctic Ozone Hole has important influences on Antarctic sea ice.While most of these works have focused on effects associated with atmospheric and oceanic dynamic processes caused by stratospheric ozone changes,here we show that stratospheric ozone-induced cloud radiative effects also play important roles in causing changes in Antarctic sea ice.Our simulations demonstrate that the recovery of the Antarctic Ozone Hole causes decreases in clouds over Southern Hemisphere(SH)high latitudes and increases in clouds over the SH extratropics.The decrease in clouds leads to a reduction in downward infrared radiation,especially in austral autumn.This results in cooling of the Southern Ocean surface and increasing Antarctic sea ice.Surface cooling also involves ice-albedo feedback.Increasing sea ice reflects solar radiation and causes further cooling and more increases in Antarctic sea ice.  相似文献   

18.
Temperature trends in the upper stratosphere are investigated using satellite measurements from Stratospheric Sounding Unit(SSU) outputs and simulations from chemistry–climate models(CCMs) and the Coupled Model Intercomparison Project Phase 6(CMIP6). Observational evidence shows a lack of cooling in the Antarctic, in contrast to strong cooling at other latitudes, during austral winter over 1979–97. Analysis of CCM simulations for a longer period of1961–97 also shows a significant contrast in the...  相似文献   

19.
Three-year summertime surface atmospheric N2O concentrations were observed for the first timeon the Fildes Peninsula, maritime Antarctica, and the relationships among the N2O concentration, totalatmospheric O3 amount, and sunspot number were analyzed. Solar activity had an important effecton surface N20 concentration and total O3 amount, and increases of sunspot number were followed bydecreases in the N2O concentration and total O3 amount. A corresponding relationship exists betweenthe N2O concentration and total atmospheric O3, and ozone destruction was preceded by N2O reduction.We propose that the extended solar activity in the Antarctic summer reduces the stratospheric N2O byconverting it into NOx, increases the diffusion of N2O from the troposphere to the stratosphere, decreasesthe surface atmospheric N2O, and depletes O3 via the chemical reaction between O3 and NOx. Ourobservation results are consistent with the theory of solar activity regarding the formation of the AntarcticO3 hole.  相似文献   

20.
Three-year summertime surface atmospheric N2O concentrations were observed for the first time on the Fildes Peninsula, maritime Antarctica, and the relationships among the N2O concentration, total atmospheric O3 amount, and sunspot number were analyzed. Solar activity had an important effect on surface N2O concentration and total O3 amount, and increases of sunspot number were followed by decreases in the N2O concentration and total O3 amount. A corresponding relationship exists between the N2O concentration and total atmospheric O3, and ozone destruction was preceded by N2O reduction. We propose that the extended solar activity in the Antarctic summer reduces the stratospheric N2O by converting it into NOx, increases the diffusion of N2O from the troposphere to the stratosphere, decreases the surface atmospheric N2O, and depletes O3 via the chemical reaction between O3 and NOx. Our observation results are consistent with the theory of solar activity regarding the formation of the Antarctic O3 hole.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号