首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three-year summertime surface atmospheric N2O concentrations were observed for the first timeon the Fildes Peninsula, maritime Antarctica, and the relationships among the N2O concentration, totalatmospheric O3 amount, and sunspot number were analyzed. Solar activity had an important effecton surface N20 concentration and total O3 amount, and increases of sunspot number were followed bydecreases in the N2O concentration and total O3 amount. A corresponding relationship exists betweenthe N2O concentration and total atmospheric O3, and ozone destruction was preceded by N2O reduction.We propose that the extended solar activity in the Antarctic summer reduces the stratospheric N2O byconverting it into NOx, increases the diffusion of N2O from the troposphere to the stratosphere, decreasesthe surface atmospheric N2O, and depletes O3 via the chemical reaction between O3 and NOx. Ourobservation results are consistent with the theory of solar activity regarding the formation of the AntarcticO3 hole.  相似文献   

2.
The gas-phase degradation of NH3 in the atmosphere still has many uncertainties. One of them is the possible isomerisation of NH2O to NHOH, as indicated by kinetic studies. Since NH2O is formed during the gas-phase oxidation of ammonia in the troposphere, this reaction can potentially influence the subsequent production of N2O and NOx. So far, the isomerisation has never been implemented into current chemical schemes describing the atmospheric gas-phase degradation of NH3 and its atmospheric relevance has never been assessed. The N2O yield from NH3 degradation is calculated to be in the range of 10–43 %. It depends on the NO2 and O3 concentrations, but is independent of the NH3 concentration. Compared with the results from recent literature, the N2O yield derived from the new mechanism is 20–80% lower, implying a smaller global N2O source strength of 0.4 Tg yr- 1. The production of NH2SO2 seems to be less important for the atmospheric degradation of NH3. NH3 oxidation is a sink for NOx at NOx mixing ratios of more than about 1 ppb and a source at lower NOx burdens.  相似文献   

3.
Black carbon(BC) reduces the photolysis coefficient by absorbing solar radiation, thereby affecting the concentration of ozone(O_3) near the ground. The influence of BC on O_3 has thus received much attention. In this study, Mie scattering and the tropospheric Ultraviolet and Visible radiation model are used to analyze the effect of BC optical properties on radiation. Combined with data of O_3 precursors in Nanjing in 2014, an EKMA curve is drawn, and the variations in O_3 concentration are further investigated using a zero-dimensional box mechanism model(NCAR MM). When O_3 precursors are unchanged, radiation and O_3 show a highly similar tendency in response to changing BC optical properties(R=0.997).With the increase of modal radius, the attenuation of fresh BC to radiation and O_3 first trends upward before decreasing. In the mixing process, the attenuation of BC to radiation and O_3 presents an upward tendency with the increase of relative humidity but decreases rapidly before increasing slowly with increasing thickness of coating. In addition, mass concentration is another major factor. When the BC to PM2.5 ratio increases to 5% in Nanjing, the radiation decreases by approximately 0.13%–3.71% while O_3 decreases by approximately 8.13%–13.11%. The radiative effect of BC not only reduces O_3 concentration but also changes the EKMA curve. Compared with the NOx control area, radiation has a significant influence on the VOCs control area. When aerosol optical depth(AOD) increases by 17.15%, the NOx to VOCs ratio decreases by 8.27%, and part of the original NOx control area is transferred to the VOCs control area.  相似文献   

4.
Recent studies demonstrate that the Antarctic Ozone Hole has important influences on Antarctic sea ice.While most of these works have focused on effects associated with atmospheric and oceanic dynamic processes caused by stratospheric ozone changes,here we show that stratospheric ozone-induced cloud radiative effects also play important roles in causing changes in Antarctic sea ice.Our simulations demonstrate that the recovery of the Antarctic Ozone Hole causes decreases in clouds over Southern Hemisphere(SH)high latitudes and increases in clouds over the SH extratropics.The decrease in clouds leads to a reduction in downward infrared radiation,especially in austral autumn.This results in cooling of the Southern Ocean surface and increasing Antarctic sea ice.Surface cooling also involves ice-albedo feedback.Increasing sea ice reflects solar radiation and causes further cooling and more increases in Antarctic sea ice.  相似文献   

5.
应用查表法模拟区域对流层O3、Nox分布和演化的研究   总被引:2,自引:0,他引:2  
应用STEM-II气相光化学模式探讨了影响对流层O3、NOx气相光化学转化率的各物理、化学因子。表明在我国多数地区光化学污染物特征(NMHC/NOx较高)下,光辐射强度、温度、初始O3浓度和NOx浓度是影响O3、NOx气相光化学转化率的主要因子。将以上因子分档组合,计算并建立了各种情况下O3、NOx气相光化学转化率的查算表,并将之用于模拟区域O3、NOx的演化和分布。结果表明,与光化学模式直接耦合计算法相比,该方法既能显著缩短计算时间,又能基本反映大气化学反应的非线性过程,并与直接耦合法符合得较好。  相似文献   

6.
中国地区臭氧前体物对地面臭氧的影响   总被引:5,自引:1,他引:4  
利用GEOS-Chem模式的数值试验结果,研究中国地区NOx和两类VOCs对O3质量浓度分布及其化学机理的影响。研究表明,NOx的减少会使得中国西部O3质量浓度显著降低,但在冬季NOx的减少会使得东北、华北地区O3质量浓度上升。而京津唐地区由于VOCs/NOx比值偏低,不能通过单一减少NOx来控制O3质量浓度。VOCs排放的减少会使得我国东部地区O3质量浓度大幅减少,其中人为VOCs的减少能降低我国东部地面O3质量浓度,而生物VOCs的减少只能在夏秋季有效减少我国东部地区35°N以南区域的地面O3质量浓度。控制地面O3质量浓度时,中国西部主要考虑NOx的减排,东部35°N以北主要考虑AVOCs的减排,而30~35°N应同时考虑AVOCs和BVOCs的减排,在30°N以南的地区,则需要全面考虑NOx和VOCs的减排。  相似文献   

7.
NUMERICAL SIMULATION OF THE FORMATION MECHANISM OF THE ANTARCTIC OZONE HOLE   总被引:1,自引:0,他引:1  
The global zonally averaged atmospheric chemistry model is developed in this paper.Theformation mechanism of the Antarctic ozone hole is numerically simulated using the model to checkthe viewpoints on the formation mechanism.The results show that:(1)The Antarctic ozone hole is a special phenomenon resulting from the heterogeneousreactions on the surface of the polar stratospheric cloud particles,under the special conditions oftemperature and circulation in Antarctic spring.The heterogeneous reactions reduce the NO_2concentration,resulting in the decrease of ozone production rate.The ozone content decreaseswhen its production is less than its destruction.This is the direct cause for the formation of theAntarctic ozone hole.(2)The impact of the polar vortex on the transport of trace species is not the determinativefactor in the formation of the Antarctic ozone hole.but makes the intensity of the ozone holechanged.(3)The solar cycles have negligible influence on the intensity of the Antarctic ozone holethrough photochemical reactions.  相似文献   

8.
根据1993年10月,1995年5月和1997年4月在农业生态环境“全球500佳”-安徽省颖上县小张庄(34°47′N,116°23′E)所进行的近地面污染气体(SO2,O3,NOx)和气溶胶的观测结果,给出了这些微量气体的浓度平均概况及随时间和季节变化的一些特征,这三次观测表明,小张庄大气环境质量是持续好的,地面O3浓度主要取决于地面总辐射强度控制下的光化学反应过程;小张庄大气气溶胶粒子99%是  相似文献   

9.
The impacts of solar activity on climate are explored in this two-part study.Based on the principles of atmospheric dynamics,Part I propose an amplifying mechanism of solar impacts on winter climate extremes through changing the atmospheric circulation patterns.This mechanism is supported by data analysis of the sunspot number up to the predicted Solar Cycle 24,the historical surface temperature data,and atmospheric variables of NCEP/NCAR Reanalysis up to the February 2011 for the Northern Hemisphere winters.For low solar activity,the thermal contrast between the low-and high-latitudes is enhanced,so as the mid-latitude baroclinic ultra-long wave activity.The land-ocean thermal contrast is also enhanced,which amplifies the topographic waves.The enhanced mid-latitude waves in turn enhance the meridional heat transport from the low to high latitudes,making the atmospheric "heat engine" more efficient than normal.The jets shift southward and the polar vortex is weakened.The Northern Annular Mode(NAM) index tends to be negative.The mid-latitude surface exhibits large-scale convergence and updrafts,which favor extreme weather/climate events to occur.The thermally driven Siberian high is enhanced,which enhances the East Asian winter monsoon(EAWM).For high solar activity,the mid-latitude circulation patterns are less wavy with less meridional transport.The NAM tends to be positive,and the Siberian high and the EAWM tend to be weaker than normal.Thus the extreme weather/climate events for high solar activity occur in different regions with different severity from those for low solar activity.The solar influence on the midto high-latitude surface temperature and circulations can stand out after removing the influence from the El Nin o-Southern Oscillation.The atmospheric amplifying mechanism indicates that the solar impacts on climate should not be simply estimated by the magnitude of the change in the solar radiation over solar cycles when it is compared with other external radiative forcings that do not influence the climate in the same way as the sun does.  相似文献   

10.
Ambient mixing ratios of NO, NO2, and O3 were determined together with the photolysis frequency of NO2, JNO2, at a rural, agricultural site in Germany. The data were collected during the POPCORN-campaign from August 1 to August 24, 1994, in a maize field 6 m above ground. The medians of the NO, NO2, and O3 mixing ratios between 10:00 and 14:00 UT were 0.25, 1.09, and 45 ppbv, respectively. The corresponding median of JNO2 was 6.0 · 10–3 s–1. NOx = NO + NO2 showed a strong diurnal variation with maximum mixing ratios at night, suggestive of a strong local surface source of NO, probably by microbial activity in the soil. The estimated average emission rate was 40 ng(N) m–2 s–1 of NOx, the major part of it probably in the form of NO. The available measurements allowed the estimation of the local NOx budget. At night the budget is almost closed and the measured NOx mixing ratios can be explained by the local source, local dry deposition of NO2, formation of NO3 and N2O5, and vertical exchange of air across the nocturnal inversion. During day-time, the local surface source of NO is not sufficient to explain the measured mixing ratios, and horizontal advection of NOx to the site must be included. The NO2/NO ratio during the morning und late afternoon is lower than predicted from the photostationary state owing to the local NO surface source, but is regulary higher during the hours around noon. For noon, August 10, 1994, the NO2/NO ratio was used to derive the momentary lower limit for the concentration of the peroxy-radicals of 2.2 · 109 cm–3 (86 pptv).  相似文献   

11.
A one-dimensional time-dependent photochemical model is used to simulate the influence of ion-produced NOx, and HOx radicals on the Antarctic ozone depletion in polar night and polar spring at a latitude of 73 degrees south.Vertical transport and nitrogen-oxygen (NOx), hydrogen-oxygen (HOx) production by ionic reactions have been introduced into the model.NOx and HOx produced by precipitating ions are transported into the lower stratosphere by vertical motion and have some effects in the development of the Antarctic ozone depletion.From winter through spring the calculated ozone column decreases to 269.4 DU. However, this value is significantly higher than the total ozone observed at several Antarctic ozone stations.  相似文献   

12.
A 3-D chemical transport model (OSLO CTM2) is used to investigate the impact of the increase of NOx emission over China. The model is capable to reproduce basically the seasonal variation of surface NOx and ozone over eastern China. NOx emission data and observations reveal that NOx over eastern China increases quite quickly with the economic development of China. Model results indicate that NOx concentration over eastern China increasingly rises with the increase of NOx emission over China, and accelerates to increase in winter. When the NOx emission increases from 1995 to its double, the ratio of NO2/NOx abruptly drops in winter over northern China. Ozone at the surface decreases in winter with the continual enhancement of the NOx level over eastern China, but increases over southern China in summertime. It is noticeable that peak ozone over northern China increases in summer although mean ozone changes little. In summer, ozone increases in the free troposphere dominantly below 500 hPa.Moreover, the increases of total ozone over eastern China are proportional to the increases of NOx emission.In a word, the model results suggest that the relationship between NOx and ozone at the surface would change with NOx increase.  相似文献   

13.
生物质燃烧对清洁地区地面O3含量的影响   总被引:1,自引:0,他引:1  
使用美国热电子公司的TE Mode1 49C型 O3监测仪、TE Model 48C型CO监测仪和TE Model 42C型NOx监测仪,对上甸子区域大气本底站2005年9月地面O3、CO和NOx的浓度进行了连续监测,获得了同步的气象数据,并详细记录了测站附近生物质燃烧的现象。结果表明,生物质燃烧影响了O3浓度日变化规律,最大小时平均浓度出现在18时(北京时间,下同),峰值过后的5~6 h内 O3的浓度仍明显高于无燃烧现象的情况, 且从燃烧集中时段(15时左右)至傍晚(19时),O3浓度逐时上升;NOx和CO浓度日变化规律和城市地区的观测结果也有不同,浓度高值时段和燃烧时间吻合,其中CO浓度在燃烧集中时段上升明显;生物质燃烧情况下,Δφ(O3)/Δφ(CO)高于无燃烧情况, 在午后至傍晚燃烧集中且太阳辐射条件较好的时段内,NOx、CO浓度与O3浓度呈现正相关关系。相同天气条件下的个例对比结果显示:测站受生物质燃烧排放输送的影响,主导风向下燃烧个例中O3浓度明显高出无燃烧个例约0.02 mg·m-3。  相似文献   

14.
The air quality model CMAQ-MADRID (Community Multiscale Air Quality-Model of Aerosol Dynamics, Reaction, Ionization and Dissolution) was employed to simulate summer O3 formation in Beijing China, in order to explore the impacts of four heterogeneous reactions on O3 formation in an urban area. The results showed that the impacts were obvious and exhibited the characteristics of a typical response of a VOC-limited regime in the urban area. For the four heterogeneous reactions considered, the NO2 and HO2 heterogeneous reactions have the most severe impacts on O3 formation. During the O3 formation period, the NO2 heterogeneous reaction increased new radical creation by 30%, raising the atmospheric activity as more NO→NO2 conversion occurred, thus causing the O3 to rise. The increase of O3 peak concentration reached a maximum value of 67 ppb in the urban area. In the morning hours, high NO titration reduced the effect of the photolysis of HONO, which was produced heterogeneously at night in the surface layer. The NO2 heterogeneous reaction in the daytime is likely one of the major reasons causing the O3 increase in the Beijing urban area. The HO2 heterogeneous reaction accelerated radical termination, resulting in a decrease of the radical concentration by 44% at the most. O3 peak concentration decreased by a maximum amount of 24 ppb in the urban area. The simulation results were improved when the heterogeneous reactions were included, with the O3 and HONO model results close to the observations.  相似文献   

15.
Acetaldehyde is one of the important VOC species of O3 precursors in the atmospheric environment. The influences of relative humidity (RH) and initial VOC/NOx ratio (RCN) on the formation of O3 are studied in smog chamber experiments, and the MCM v3.3.1 mechanism of acetaldehyde is modified based on the experimental results. In low-RH conditions (RH= 11.6%±1.1%), the O3 concentration at 6 h increases first and then decreases with the increase of RCN, and the RCN at the inflection point of O3 concentrations is 3.2. In high-RH experiments (RH = 78.8%±1.0%), variation of the O3 concentration at 6 h with RCN is similar to that in low-RH experiments, but the RCN at the inflection point is 2.8. RH has no significant effect on the O3 concentrations under low RCN (< 3), whereas it has a negative effect under high RCN (> 3). Compared with the experimental results, original MCM v3.3.1 greatly underestimates the O3 concentrations. Addition of both the photolysis process of peroxyacetyl nitrate and the photolysis process of HNO3 on the reactor surface into the original MCM can reduce the difference between the simulated O3 concentrations and the experimental results at 6 h from 24%-35% and 17%-49% to 6%-26% and 10%-42% under low- and high-RH conditions, respectively. The maximum incremental reactivity (MIR) of acetaldehyde simulated with the modified MCM is 4.0 ppb ppb-1 without considering the effect of other VOCs.  相似文献   

16.
Abstract

A coupled 1‐D radiative‐convective and photochemical diffusion model is used to study the influence of ozone photochemistry on changes in the vertical temperature structure and surface climate resulting from the doubling of atmospheric CO2, N2O, CH4 and increased stratospheric aerosols owing to the El Chichón volcanic eruption. It is found when CO2 alone is doubled, that the total ozone column increases by nearly 6% and the resulting increase in the solar heating contributes a smaller temperature decrease in the stratosphere (up to 4 K near the stratopause level). When the concentration of CO2, N2O and CH4 are simultaneously doubled, the total ozone column amount increases by only 2.5% resulting in a reduced temperature recovery in the stratosphere. Additional results concerning the effect of the interaction of ozone photochemistry with the stratospheric aerosol cloud produced by the El Chichón eruption show that it leads to a reduction in stratospheric ozone, which in turn has the effect of increasing the cooling at the surface and above the cloud centre while causing a slight warming below in the lower stratosphere.  相似文献   

17.
Based on composite analysis using categories of solar inactivity and activity, the responses of surface temperature to different categorized solar activity and a plausible mechanism have been discussed. The results show the increasing solar sunspot activity during solar cycles 13 to 24 (1880–2010) and it seemed to make a positive contribution to rising global temperature. However, the sunspots were fewer in number, if we focused on the most recent 60 years (1950–2010), and the decreasing solar activity did not contribute to a cooler Earth. This result indicates that the connection between sunspots and the Earth’s climate is sensitive to the study period. An extreme analysis was performed in an attempt to gain a better understanding of solar impacts. The extreme top 10 composite analysis demonstrated that the surface temperature response to solar activity is spatially different and is highly sensitive to El Niño–Southern Oscillation (ENSO) events. The most sensitive areas in the Pacific sector revealed a significant difference between including and excluding ENSO years. During the solar inactive years, the tropical eastern Pacific was observed as a weak El Niño-like (strong La Niña-like) pattern in the composite including (excluding) ENSO events. Another interesting feature is the strong similarity in the composites which include or exclude ENSO events during the sunspot active years, but it differs from the La Niña-like pattern observed in previous studies. The bottom-up mechanism associated with the response of the surface dynamical circulation and the heat balance when compared to the total solar irradiance forcing partially explains the connection.  相似文献   

18.
Responses of ocean circulation and ocean carbon cycle in the course of a global glaciation from the present Earth conditions are investigated by using a coupled climate-biogeochemical model. We investigate steady states of the climate system under colder conditions induced by a reduction of solar constant from the present condition. A globally ice-covered solution is obtained under the solar constant of 92.2% of the present value. We found that because almost all of sea water reaches the frozen point, the ocean stratification is maintained not by temperature but by salinity just before the global glaciation (at the solar constant of 92.3%). It is demonstrated that the ocean circulation is driven not by the surface cooling but by the surface freshwater forcing associated with formation and melting of sea ice. As a result, the deep ocean is ventilated exclusively by deep water formation in southern high latitudes where sea ice production takes place much more massively than northern high latitudes. We also found that atmospheric CO2 concentration decreases through the ocean carbon cycle. This reduction is explained primarily by an increase of solubility of CO2 due to a decrease of sea surface temperature, whereas the export production weakens by 30% just before the global glaciation. In order to investigate the conditions for the atmospheric CO2 reduction to cause global glaciations, we also conduct a series of simulations in which the total amount of carbon in the atmosphere?Cocean system is reduced from the present condition. Under the present solar constant, the results show that the global glaciation takes place when the total carbon decreases to be 70% of the present-day value. Just before the glaciation, weathering rate becomes very small (almost 10% of the present value) and the organic carbon burial declines due to weakened biological productivity. Therefore, outgoing carbon flux from the atmosphere?Cocean system significantly decreases. This suggests the atmosphere?Cocean system has strong negative feedback loops against decline of the total carbon content. The results obtained here imply that some processes outside the atmosphere?Cocean feedback loops may be required to cause global glaciations.  相似文献   

19.
Using the “lumped mechanism” and “counting species” methods, we developed a condensed gas-phase chemical model based on a simplified one. The modified quasi-steady-state approximation (QSSA) scheme and the error redistribution mass conservation technique are adopted to solve the atmospheric chemistry ki-netic equations. Results show that the condensed model can well simulate concentration variations of gas species such as SO2, NOx, O3, H2O2 and conversion rates of SO2 and NOx, transformation to H2SO4 and HNO3. These results are in good agreement with those from the simplified model, The conversion rates of SO2 and NOx under different initial concentrations and meteorological conditions are computed, and the results can be directly applied to regional acid deposition model.  相似文献   

20.
This study uses the WRF-Chem model combined with the empirical kinetic modeling method (EKMA curve) to study the compound pollution event in Beijing that happened in 13-23 May 2017. Sensitivity tests are conducted to analyze ozone sensitivity to its precursors, and to develop emission reduction measures. The results suggest that the model can accurately simulate the compound pollution process of photochemistry and haze. When VOCs and NOx were reduced by the same proportion, the effect of O3 reduction at peak time was more obvious, and the effect during daytime was more significant than at night. The degree of change in ozone was peak time > daytime average. When reducing or increasing the ratio of precursors by 25% at the same time, the effect of reducing 25% VOCs on the average ozone concentration reduction was most significant. The degree of change in ozone decreased with increasing altitude, the location of the ozone maximum change shifted westward, and its range narrowed. As the altitude increases, the VOCs-limited zone decreases, VOCs sensitivity decreases, NOx sensitivity increases. The controlled area changed from near-surface VOCs-limited to high-altitude NOx-limited. Upon examining the EKMA curve, we have found that suburban and urban are sensitive to VOCs. The sensitivity tests indicate that when VOCs in suburban are reduced about 60%, the O3-1h concentration could reach the standard, and when VOCs of the urban decreased by about 50%, the O3-1h concentration could reach the standard. Thus, these findings could provide references for the control of compound air pollution in Beijing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号