首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
Different compositions of galaxy types in the field in comparison to galaxy clusters as described by the morphology–density relation in the local universe are interpreted as a result of transformation processes from late- to early-type galaxies. This interpretation is supported by the Butcher–Oemler effect. We investigate E+A galaxies as an intermediate state between late-type galaxies in low-density environments and early-type galaxies in high-density environment to constrain the possible transformation processes. For this purpose, we model a grid of post-starburst galaxies by inducing a burst and/or a halting of star formation on the normal evolution of spiral galaxies with our galaxy evolution code galev . From our models, we find that the common E+A criteria exclude a significant number of post-starburst galaxies, and propose that comparing their spectral energy distributions leads to a more sufficient method to investigate post-starburst galaxies. We predict that a higher number of E+A galaxies in the early universe cannot be ascribed solely to a higher number of starburst, but is a result of a lower metallicity and a higher burst strength due to more gas content of the galaxies in the early universe. We find that even galaxies with a normal evolution without a starburst have an Hδ-strong phase at early galaxy ages.  相似文献   

2.
It has been known for a long time that the clustering of galaxies changes as a function of galaxy type. This galaxy bias acts as a hindrance to the extraction of cosmological information from the galaxy power spectrum or correlation function. Theoretical arguments show that a change in the amplitude of the clustering between galaxies and mass on large scales is unavoidable, but cosmological information can be easily extracted from the shape of the power spectrum or correlation function if this bias is independent of scale. Scale-dependent bias is generally small on large scales,   k < 0.1  h  Mpc−1  , but on smaller scales can affect the recovery of  Ωm h   from the measured shape of the clustering signal, and have a small effect on the Baryon Acoustic Oscillations. In this paper, we investigate the transition from scale-independent to scale-dependent galaxy bias as a function of galaxy population. We use the Sloan Digital Sky Survey Data Release 5 sample to fit various models, which attempt to parametrize the turn-off from scale-independent behaviour. For blue galaxies, we find that the strength of the turn-off is strongly dependent on galaxy luminosity, with stronger scale-dependent bias on larger scales for more luminous galaxies. For red galaxies, the scale dependence is a weaker function of luminosity. Such trends need to be modelled in order to optimally extract the information available in future surveys, and can help with the design of such surveys.  相似文献   

3.
We investigate the angular correlation function, ο(θ), of the galaxies detected in the 2.1-μm K ' band in 17 fields (101.5 arcmin2 in total), each containing a z ∼1.1 radio galaxy. There is a significant detection of galaxy clustering at a limit of K ∼20, with a ο(θ) amplitude similar to that estimated by Carlberg et al. at K =21.5. The ο(θ) amplitudes of these K -limited samples are higher than expected from the faint galaxy clustering in the blue and red passbands, but consistent with a pure luminosity evolution model if clustering is stable (ε=0) and the correlation function of early-type galaxies is steeper than that of spirals.
We do not detect a significant cross-correlation between the radio galaxies and the other galaxies in these fields. The upper limits on the cross-correlation are consistent with a mean clustering environment of Abell class 0 for z ∼1.1 radio galaxies, similar to that observed for radio galaxies at z ∼0.5, but would argue against an Abell class 1 or richer environment. As Abell 0 clustering around the radio galaxies would not significantly increase the ο(θ) amplitude of galaxies in these fields, stable clustering with a steep ξ( r ) for E/S0 galaxies appears to remain the most likely interpretation of the ο(θ) amplitude.
At K ≤20, the number of galaxy–galaxy pairs of 2–3 arcsec separation exceeds the random expectation by a factor of 2.15±0.26. The excess of close pairs is comparable to that previously reported for R -band data, and consistent with a ∼(1+ z )2 evolution of the galaxy merger rate.  相似文献   

4.
An analysis of the environments around a sample of 28 3CR radio galaxies with redshifts 0.6< z <1.8 is presented, based primarily upon K -band images down to K ∼20 taken using the UK Infrared Telescope (UKIRT). A net overdensity of K -band galaxies is found in the fields of the radio galaxies, with the mean excess counts being comparable to that expected for clusters of Abell Class 0 richness. A sharp peak is found in the angular cross-correlation amplitude centred on the radio galaxies that, for reasonable assumptions about the luminosity function of the galaxies, corresponds to a spatial cross-correlation amplitude between those determined for low-redshift Abell Class 0 and 1 clusters.
These data are complemented by J -band images also from UKIRT, and by optical images from the Hubble Space Telescope . The fields of the lower redshift ( z ≲0.9) radio galaxies in the sample generally show well-defined near-infrared colour–magnitude relations with little scatter, indicating a significant number of galaxies at the redshift of the radio galaxy; the relations involving colours at shorter wavelengths than the 4000 Å break show considerably greater scatter, suggesting that many of the cluster galaxies have low levels of recent or on-going star formation. At higher redshifts the colour–magnitude sequences are less prominent owing to the increased field galaxy contribution at faint magnitudes, but there is a statistical excess of galaxies with the very red infrared colours ( J − K ≳1.75) expected of old cluster galaxies at these redshifts.
Although these results are appropriate for the mean of all of the radio galaxy fields, there exist large field-to-field variations in the richness of the environments. Many, but certainly not all, powerful z ∼1 radio galaxies lie in (proto)cluster environments.  相似文献   

5.
We have carried out an investigation of the environments of low redshift H  ii galaxies by cross-correlating their positions on the sky with those of faint field galaxies in the Automatic Plate Measuring Machine (APM) catalogues. We address the question of whether violent star formation in H  ii galaxies is induced by low-mass companions by statistically estimating the mean space density of galaxies around them. We argue that even if low-mass companions were mainly intergalactic H  i clouds, their optical counterparts should be detectable at faint limits of the APM scans.
A significantly positive signal is detected for the H  ii galaxy–APM galaxy angular cross-correlation function, but the amplitude is poorly determined. The projected cross-correlation function has a higher signal-to-noise ratio, and suggests that the amplitude is slightly lower than for normal field galaxies. This implies that these bursting dwarf galaxies inhabit slightly lower density environments than those of normal field galaxies, consistent with other studies of emission-line galaxies. This suggests that in these dwarf starburst galaxies, star formation is not always triggered by tidal interactions, and a significant fraction must have a different origin.  相似文献   

6.
We have used a large sample of low-inclination spiral galaxies with radially resolved optical and near-infrared photometry to investigate trends in star formation history with radius as a function of galaxy structural parameters. A maximum-likelihood method was used to match all the available photometry of our sample to the colours predicted by stellar population synthesis models. The use of simplistic star formation histories, uncertainties in the stellar population models and considering the importance of dust all compromise the absolute ages and metallicities derived in this work; however, our conclusions are robust in a relative sense. We find that most spiral galaxies have stellar population gradients, in the sense that their inner regions are older and more metal rich than their outer regions. Our main conclusion is that the surface density of a galaxy drives its star formation history, perhaps through a local density dependence in the star formation law. The mass of a galaxy is a less important parameter; the age of a galaxy is relatively unaffected by its mass; however, the metallicity of galaxies depends on both surface density and mass. This suggests that galaxy‐mass-dependent feedback is an important process in the chemical evolution of galaxies. In addition, there is significant cosmic scatter suggesting that mass and density may not be the only parameters affecting the star formation history of a galaxy.  相似文献   

7.
It is shown that the radial velocity dispersion of the elongated HCGs (b/a ≤ 0.2) with smaller two‐dimensional galaxy‐galaxy median projected separation R is, on average, higher than those of the groups with larger R. It shows that galaxies in a group move preferentially along its elongation. Inspection of radial velocities of member galaxies in chain‐like and in roundish HCGs shows that galaxies in HCGs most probably rotate around the gravitational center of the corresponding group. Other two possible mechanisms: flying apart of galaxies from the group in opposite directions, and infall of field galaxies upon the group are excluded. It follows that HCGs are, probably, more stable formations, than it has been assumed. In this case the known inconsistencies between the results of the N‐body simulations and the observational facts are being excluded.  相似文献   

8.
The spatial orientations of the galactic planes for galaxies in the Coma/A1367 supercluster have been determined. Owing to the ambiguity in the determination of the inclination angle, two possible orientations of the normal to the galaxy plane were found. Two angles, the polar angle δ D and the azimuthal angle η , describe the orientation of normals. The distribution of both angles has been checked for isotropy. It is shown that the distribution is not isotropic. The same alignment is observed for samples containing elliptical and lenticular galaxies and for samples containing only spirals, as well as for samples containing galaxies located in different parts of the supercluster. In the case of spiral galaxies, the anisotropy shows that galaxy rotation axes strongly favour alignment with the main plane of the supercluster. The projection of the rotation axes on to the main plane of the supercluster has a preferential direction pointing towards the supercluster, but this effect is weak. A comparison with theory is also presented.  相似文献   

9.
We report the results of a survey of the H  i environment of NGC 6946 in a search for gas-rich companions to the galaxy. Such gas-rich companions could include material left over from the galaxy assembly process which could persist into the current day around an isolated galaxy such as NGC 6946. NGC 6946 is prolifically forming stars, has a nuclear starburst, and has widespread high-velocity clouds associated with the disc. All of these features could be explained by the accretion of low-mass H  i clouds by NGC 6946. Our survey recovered two previously detected dwarf galaxies associated with NGC 6946, but otherwise found no signatures of interactions in the NGC 6946 system. The companions are small enough, and distant enough from NGC 6946 that they should have minimal effect on the main galaxy. Some tidal debris may be expected due to interaction between the two dwarf galaxies, but none is observed. This could be because it is at low column densities, or because the dwarf galaxies are more separated than they appear on the sky. This study of the system suggests that NGC 6946 is a gravitationally bound system with two dwarf galaxies in stable orbits about the larger primary galaxy.  相似文献   

10.
We study the stellar mass assembly of the Spiderweb galaxy  (MRC 1138−262)  , a massive   z = 2.2  radio galaxy in a protocluster and the probable progenitor of a brightest cluster galaxy. Nearby protocluster galaxies are identified and their properties are determined by fitting stellar population models to their rest-frame ultraviolet to optical spectral energy distributions. We find that within 150 kpc of the radio galaxy the stellar mass is centrally concentrated in the radio galaxy, yet most of the dust-uncorrected, instantaneous star formation occurs in the surrounding low-mass satellite galaxies. We predict that most of the galaxies within 150 kpc of the radio galaxy will merge with the central radio galaxy by   z = 0  , increasing its stellar mass by up to a factor of ≃2. However, it will take several hundred Myr for the first mergers to occur, by which time the large star formation rates are likely to have exhausted the gas reservoirs in the satellite galaxies. The tidal radii of the satellite galaxies are small, suggesting that stars and gas are being stripped and deposited at distances of tens of kpc from the central radio galaxy. These stripped stars may become intracluster stars or form an extended stellar halo around the radio galaxy, such as those observed around cD galaxies in cluster cores.  相似文献   

11.
E+A galaxies are characterized as galaxies with strong Balmer absorption lines but without any [O  ii ] or Hα emission lines. The existence of strong Balmer absorption lines indicates that E+A galaxies have experienced starburst within the past one gigayear. However, the lack of [O  ii ] and Hα emission lines indicates that E+A galaxies do not have any on-going star formation. Therefore, E+A galaxies are interpreted as post-starburst galaxies. For many years, however, it has been a mystery why E+A galaxies started starburst and why they quenched star formation abruptly. Using one of the largest samples of 266 E+A galaxies carefully selected from the Sloan Digital Sky Survey Data Release 2, we have investigated the environment of E+A galaxies from 50 kpc to 8 Mpc scale, i.e. from a typical distance to satellite galaxies to the scale of large-scale structures. We found that E+A galaxies have an excess of local galaxy density only at a scale of <100 kpc (with a 2σ significance), but not at the cluster scale (∼1.5 Mpc) nor at the scale of large-scale structure (∼8 Mpc). These results indicate that E+A galaxies are not created by the physical mechanisms associated with galaxy clusters or the large-scale structure, but are likely to be created by dynamical interaction with closely accompanying galaxies at a <100 kpc scale. The claim is also supported by the morphology of E+A galaxies. We have found that almost all E+A galaxies have a bright compact core, and that ∼30 per cent of E+A galaxies have dynamically disturbed signatures or tidal tails, which quite strongly suggest the morphological appearance of merger/interaction remnants.  相似文献   

12.
Galaxy harassment has been proposed as a physical process that morphologically transforms low surface density disc galaxies into dwarf elliptical galaxies in clusters. It has been used to link the observed very different morphology of distant cluster galaxies (relatively more blue galaxies with 'disturbed' morphologies) with the relatively large numbers of dwarf elliptical galaxies found in nearby clusters. One prediction of the harassment model is that the remnant galaxies should lie on low surface brightness tidal streams or arcs. We demonstrate in this paper that we have an analysis method that is sensitive to the detection of arcs down to a surface brightness of 29 B μ and we then use this method to search for arcs around 46 Virgo cluster dwarf elliptical galaxies. We find no evidence for tidal streams or arcs and consequently no evidence for galaxy harassment as a viable explanation for the relatively large numbers of dwarf galaxies found in the Virgo cluster.  相似文献   

13.
We present evidence for a new morphologically defined form of small-scale substructure in the Coma cluster, which we call galaxy aggregates. Aggregates are dominated by a central galaxy, which is on average 5 mag brighter than the smaller aggregate members, nearly all of which lie to one side of the central galaxy. We have found three such galaxy aggregates: two dominated by the S0 galaxies RB 55 and RB 60, and one by the starbursting SBb NGC 4858.   RB 55 and 60 are both equidistant between the two dominant D galaxies NGC 4874 and 4889, while NGC 4858 is located near the large E0 galaxy NGC 4860. All three central galaxies have redshifts consistent with Coma cluster membership. We describe the spatial structures of these unique objects, and suggest several possible mechanisms to explain their origin. These include: chance superpositions from background galaxies, interactions between other galaxies and with the cluster gravitational potential, and ram pressure. We conclude that the most probable scenario of creation is an interaction with the cluster through its gravitational potential.  相似文献   

14.
We have carried out the harmonic analysis of the atomic hydrogen (H  i ) surface density maps and the velocity fields for 11 galaxies belonging to the Ursa Major group, over a radial range of 4–6 disc scalelengths in each galaxy. This analysis gives the radial variation of spatial lopsidedness, quantified by the Fourier amplitude A 1 of the   m = 1  component normalized to the average value. The kinematical analysis gives a value for the elongation of the potential to be ∼10 per cent. The mean amplitude of spatial lopsidedness is found to be ∼0.14 in the inner disc, similar to the field galaxies, and is smaller by a factor of ∼2 compared to the Eridanus group galaxies. It is also shown that the average value of A 1 does not increase with the Hubble type, contrary to what is seen in field galaxies. We argue that the physical origin of lopsidedness in the Ursa Major group of galaxies is tidal interactions, albeit weaker and less frequent than in Eridanus. Thus systematic studies of lopsidedness in groups of galaxies can provide dynamical clues regarding the interactions and evolution of galaxies in a group environment.  相似文献   

15.
We use semi-analytic models of galaxy formation combined with high-resolution N -body simulations to make predictions for galaxy–dark matter correlations and apply them to galaxy–galaxy lensing. We analyse cross-power spectra between the dark matter and different galaxy samples selected by luminosity, colour or star formation rate. We compare the predictions with the recent detection by the Sloan Digital Sky Survey (SDSS). We show that the correlation amplitude and the mean tangential shear depend strongly on the luminosity of the sample on scales below 1  h −1 Mpc, reflecting the correlation between the galaxy luminosity and the halo mass. The cross-correlation cannot, however, be used to infer the halo profile directly because different halo masses dominate on different scales and because not all galaxies are at the centres of the corresponding haloes. We compute the redshift evolution of the cross-correlation amplitude and compare it with those of galaxies and dark matter. We also compute the galaxy–dark matter correlation coefficient and show that it is close to unity on scales above 1  h −1 Mpc for all considered galaxy types. This would allow one to extract the bias and the dark matter power spectrum on large scales from the galaxy and galaxy–dark matter correlations.  相似文献   

16.
概括地介绍了盘星系的运动学边缘弯曲现象、盘星系中心的HI发射线空洞和棒旋星系中核球的长轴和棒的长轴不互相平行也不互相垂直等星系振动的问接观测证据;综述了星系振动动力学的理论研究情况,主要介绍了利用非静态维里方程和N体数值模拟得到的有关结果;展望了该领域今后的发展趋势,指出了建立引力自治的星系振动模型的必要性。  相似文献   

17.
We present upper limits on the 850-μm and 450-μm fluxes of the warm hyperluminous (bolometric luminosity     galaxies IRAS P09104+4109     and IRAS F15307+3252     , derived from measurements using the SCUBA bolometer array on the James Clerk Maxwell Telescope. Hot luminous infrared sources like these are thought to differ from more normal cold ultraluminous infrared     galaxies in that they derive most of their bolometric luminosities from dusty active galactic nuclei (AGNs) as opposed to starbursts. Such hot, dusty AGNs at high redshift are thought to be responsible for much of the mass accretion of the Universe that is in turn responsible for the formation of the supermassive black holes seen in the centres of local galaxies. The galaxy IRAS P09104+4109 is also unusual in that it is a cD galaxy in the centre of a substantial cooling-flow cluster, not an isolated interacting galaxy like most ultraluminous infrared galaxies. Previously it was known to have large amounts of hot     dust from IRAS observations. We now show that the contribution of cold dust to the bolometric luminosity is less than 3 per cent. Most ultraluminous infrared galaxies possess large amounts of cold dust, and it is now known that some cooling-flow cluster cD galaxies do as well. Yet this object, which is an extreme example of both, does not have enough cold gas to contribute significantly to the bolometric luminosity. We outline physical reasons why this could have happened. We then provide a discussion of strategies for finding hot dusty AGNs, given the limitations on submillimetre surveys implied by this work.  相似文献   

18.
We have observed the galaxy environments around a sample of 21 radio-loud, steep-spectrum quasars at 0.5≤ z ≤0.82, spanning several orders of magnitude in radio luminosity. The observations also include background control fields used to obtain the excess number of galaxies in each quasar field. The galaxy excess was quantified using the spatial galaxy–quasar correlation amplitude, B gq, and an Abell-type measurement, N 0.5. A few quasars are found in relatively rich clusters, but on average, they seem to prefer galaxy groups or clusters of approximately Abell class 0. We have combined our sample with literature samples extending down to z ≈0.2 and covering the same range in radio luminosity. By using the Spearman statistic to disentangle redshift and luminosity dependences, we detect a weak, but significant, positive correlation between the richness of the quasar environment and the radio luminosity of the quasar. However, we do not find any epoch dependence in B gq, as has previously been reported for radio quasars and galaxies. We discuss the radio luminosity–cluster richness link and possible explanations for the weak correlation that is seen.  相似文献   

19.
We have determined a dust-free colour–magnitude (CM) relation for spiral galaxies, by using I  −  K colours in edge-on galaxies above the plane. We find that the scatter in this relation is small and approximately as large as can be explained by observational uncertainties. The slope of the near-IR CM relation is steeper for spirals than for elliptical galaxies. We suggest two possible explanations. First, the difference could be caused by vertical colour gradients in spiral galaxies. In that case these gradients should be similar for all galaxies, on average ∼0.15 dex in [Fe/H] per scaleheight, and should increase for later galaxy types. The most likely explanation, however, is that spirals and ellipticals have intrinsically different CM relations. This means that the stars in spirals are younger than those in ellipticals. The age, however, or the fraction of young stars in spiral galaxies would be determined solely by the luminosity of the galaxy, and not by its environment.  相似文献   

20.
A statistical study of global galaxy parameters can help to improve our understanding of galaxy formation processes. In this paper we present the analysis of global galaxy parameters based on optical and near-infrared observations of a large sample of edge-on disc galaxies. We found a correlation between the ratio of the radial to vertical scale parameter and galaxy type: galaxies become systematically thinner when going from type S0 to type Sc, whereas the distribution seems to level off for later types. The observed scalelength ratios (and thus the radial colour gradients) largely represent the dust content of the galaxies. On average, the colour gradients indicated by the scalelength ratios increase from type Sa to at least type Sc. For galaxy types later than Sc, the average colour gradient seems to decrease again. The distribution of K -band (edge-on) disc central surface brightnesses is rather flat, although with a large scatter. However, the latest-type sample galaxies ( T  > 6) show an indication that their average disc central surface brightnesses may be fainter than those of the earlier types. This effect is probably not the result of dust extinction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号