首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
The ∼2.6 Ga Hutti greenstone belt is one of several Neoarchean greenstone terranes of the eastern Dharwar Craton. There are prevalent mafic volcanic flows with subordinate felsic volcanic units and siliciclastic sedimentary rocks. All lithologies show variable intensities of submarine hydrothermal alteration, polyphase deformation and greenschist to amphibolite grade metamorphism, yet pillow, cumulus, and other primary volcanic features are locally preserved. Well exposed interlayered metabasalts, Mg-andesites (MA), and felsic flows outcrop along an 11 km sector in the SE of the terrane. Based on combined petrographic and geochemical characteristics, two tholeiitic basalt populations have been identified within the metabasalts: (1) those with enriched LREE at 20-50 times chondrite, and (2) an depleted LREE population at 12-20 times chondrite. The former has fractionated LREE, where (La/Sm)N = 1.2-1.7, but flat HREE, and negative anomalies at Nb, P, and Ti relative to neighbouring REE. The latter has lower absolute abundances of compatible and incompatible elements, mildly fractionated LREE, smaller anomalies at Nb, P, and Ti, with (Gd/Yb)N = 1.1-1.6. Several samples have the “N-MORB” signature of LREE depletion coupled with positive Nb anomalies. On the Th/Yb vs. Nb/Yb discrimination diagram depleted basalts plot near the MORB field whereas enriched basalts overlap the backarc and arc fields, consistent with a paired arc-back-arc. Mg-andesites feature SiO2 57-61 wt.%, multielement pattens similar to enriched basalts, coupled with Cr, Co, Ni contents greater than “normal” andesites. Felsic volcanic rocks are characterized by low Y, high (La/Yb)N, and Zr/Sm, but low Nb/Ta, with zero to positive Eu anomalies, thus conforming to most of the compositional criteria of Archean and Phanerozoic adakites. Similar associations of enriched and depleted arc basalts, with adakites, are known from Neoarchean greenstone terranes of the Superior Province. During intraoceanic subduction, slab dehydration-wedge melting generated arc basalts whereas slab melting-wedge hybridization, generated adakites and Mg-andesites.  相似文献   

2.
Despite the fact that some greenstone belts preserve the record of contemporaneous komatiitic and tholeiitic volcanism, a genetic link between the two is not widely accepted. The significance of a compositional gap seperating these magma types and differences in their respective degree of light rare earth element (LREE) enrichment, cited as evidence against a derivative relationship, are complicated by the possibility of crustal assimilation by magmas of komatiitic affinity. In the Archean La Grande Greenstone belt of northern Quebec a succession of metamorphosed tholeiitic basalts and younger, high-Mg, LREE-enriched andesites are preserved. The tholeiites are differentiated basaltic rocks whose chemical compositions appear to have been controlled by low pressure, gabbroic fractional crystallization and are similar to Type 1 MORB. Parental magmas were probably high-Mg liquids of compositions similar to komatiitic basalts which also occur in the greenstone belt. These high-Mg liquids are believed to be themselves the product of high pressure, OLIV+OPX fractional crystallization of more magnesian primary liquids of komatiitic composition. The higher La/Sm ratios of komatiitic basalts and tholeiites relative to komatiites in this belt, can be explained by small degrees of crustal assimilation. In the central part of the belt, late-stage, mafic igneous rocks have chemical compositions similar to Archean examples of contaminated volcanic rocks (e.g., Kambalda, Australia). These late-stage lavas consist of basalts and andesites with high-Mg, Ni and Cr abundances, LREE-enriched profiles and low Ti abundances. They are believed to be the products of crustal assimilation and crystallization of OPX-PLAG-CPX from high-Mg liquids of komatiitic affinity. The volcanic stratigraphy records the progressive effects of crustal contamination through time. A light sialic crust may have initially acted as a density barrier, preventing the eruption of primary high-Mg liquids and forcing fractionation at depth which produced more buoyant compositions. With subsequent thinning of the crust, the density barrier presumably failed, and primary liquids migrated directly toward the surface. Reaction of these liquids with tonalitic crust produced contaminated differentiates.  相似文献   

3.
The Neoproterozoic Wadi Ranga metavolcanic rocks, South Eastern Desert of Egypt, constitute a slightly metamorphosed bimodal sequence of low-K submarine tholeiitic mafic and felsic volcanic rocks. The mafic volcanic rocks are represented by massive and pillow flows and agglomerates, composed of porphyritic and aphyric basalts and basaltic andesites that are mostly amygdaloidal. The felsic volcanic rocks embrace porphyritic dacites and rhyolites and tuffs, which overlie the mafic volcanic rocks. The geochemical characteristics of Wadi Ranga volcanic rocks, especially a strong Nb depletion, indicate that they were formed from subduction-related melts. The clinopyroxene phenocrysts of basalts are more akin to those crystallizing from island-arc tholeiitic magmas. The tholeiitic nature of the Wadi Ranga volcanics as well as their LREE-depleted or nearly flat REE patterns and their low K2O contents suggest that they were developed in an immature island arc setting. The subchondritic Nb/Ta ratios (with the lowest ratio reported for any arc rocks) and low Nb/Yb ratios indicate that the mantle source of the Wadi Ranga mafic volcanic rocks was more depleted than N-MORB-source mantle. Subduction signature was dominated by aqueous fluids derived from slab dehydration, whereas the role of subducted sediments in mantle-wedge metasomatization was subordinate, implying that the subduction system was sediment-starved and far from continental clastic input. The amount of slab-derived fluids was enough to produce hydrous magmas that follow the tholeiitic but not the calc-alkaline differentiation trend. With Mg# > 64, few samples of Wadi Ranga mafic volcanic rocks are similar to primitive arc magmas, whereas the other samples have clearly experienced considerable fractional crystallization.The low abundances of trace elements, together with low K2O contents of the felsic metavolcanic rocks indicate that they were erupted in a primitive island arc setting. The felsic volcanic rocks are characterized by lower K/Rb ratios compared to the mafic volcanic rocks, higher trace element abundances (~ 2 to ~ 9 times basalt) on primitive arc basalt-normalized pattern and nearly flat chondrite-normalized REE patterns, which display a negative Eu anomaly. These features are largely consistent with fractional crystallization model for the origin of the felsic volcanic rocks. Moreover, SiO2-REE variations for the Wadi Ranga volcanic rocks display steadily increasing LREE over the entire mafic to felsic range and enriched La abundances in the felsic lavas relative to the most mafic lavas, features which are consistent with production of the felsic volcanic rocks through fractional crystallization of basaltic melts. The relatively large volume of Wadi Ranga silicic volcanic rocks implies that significant volume of silicic magmas can be generated in immature island arcs by fractional crystallization and indicates the significant role of intra-oceanic arcs in the production of Neoproterozoic continental crust. We emphasize that the geochemical characteristics of these rocks such as their low LILE and nearly flat REE patterns can successfully discriminate them from other Egyptian Neoproterozoic felsic volcanic rocks, which have higher LILE, Zr and Nb and fractionated REE patterns.  相似文献   

4.
闽中地区马面山群东岩组变质岩形成的古构造环境研究   总被引:9,自引:0,他引:9  
闽中地区马面山群东岩组地层主要为绿片岩为主的一套古火山沉积建造。其主要岩性类型包括各种成分的绿片岩、大理岩、石英片岩及变粒岩类。绿片岩显示海底火山喷发特征,变粒岩原岩为中酸性岩类。东岩组变质岩岩石化学研究表明,绿片岩的原岩应为玄武岩类。变粒岩类主要属于英安岩及流纹岩。这些特征反映东岩组具双峰式火山岩特征,形成于大陆内部张性环境。绿片岩稀土元素特征也显示和大陆拉张环境中的火山岩类稀土特征非常相似,属大陆拉斑玄武岩;微量元素分布显示出该组变质岩原岩类似于大洋岛和大陆裂谷的板内碱性玄武岩。因此闽中地区中元古代可能处于板内古裂谷环境。  相似文献   

5.
The Dir-Utror volcanic series forms a NE–SW trending belt within the northwestern portion of the Kohistan island arc terrane in the western Himalayas of northern Pakistan. The Kohistan arc terrane comprises a diverse suite of volcanic, plutonic, and subordinate sedimentary rocks of late Mesozoic to Tertiary age, developed prior to and after suturing of the Indo-Pakistan and Asiatic continental blocks. The Dir-Utror volcanic series near Dir is dominated by basaltic-andesite and andesite, with subordinate basalt, high-MgO basalt, dacite, and rhyolite. Porphyritic textures are dominant, with less common aphyric and seriate textures. Plagioclase is the dominant phenocryst in mafic to intermediate rocks, K-feldspar and quartz phenocrysts predominate in the dacites and rhyolites. Chlorite, epidote, albite, and actinolite are the most common metamorphic phases; blue-green amphibole, andesine, muscovite, biotite, kaolinite, sericite, carbonate, and opaques are widespread but less abundant. Phase assemblages and chemistry suggest predominant greenschist facies metamorphism with epidote-amphibolite facies conditions attained locally.Whole rock major element compositions define a calc-alkaline trend: CaO, FeO, MgO, TiO2, Al2O3, V, Cr, Ni, and Sc all decrease with increasing silica, whereas alkalis, Rb, Ba, and Y increase. MORB-normalized trace element concentrations show enrichment of the low-field strength incompatible elements (Ce, La, Ba, Rb, K) and deep negative Nb, P, and Ti anomalies—patterns typical of subduction related magmas. Mafic volcanic rocks plot in fields for calc-alkaline volcanics on trace element discrimination diagrams, showing that pre-existing oceanic crust is not preserved here. All rocks are LREE-enriched, with La=16–112×chondrite, La/Lu=2.6–9.8×chondrite, and Eu/Eu*=0.5–0.9. Dacites and rhyolites have the lowest La/Lu and Eu/Eu* ratios, reflecting the dominant role of plagioclase fractionation in their formation. Some andesites have La/Lu ratios which are too high to result from fractionation of the more mafic lavas; chondrite-normalized REE patterns for these andesites cross those of the basaltic andesites, indicating that these lavas cannot be related to a common parent.The high proportion of mafic lavas rules out older continental crust as the main source of the volcanic rocks. The scarcity of more evolved felsic volcanics (dacite, rhyolite) can be explained by the nature of the underlying crust, which consists of accreted intra-oceanic arc volcanic and plutonic rocks, and is mafic relative to normal continental margins. Andesites with high La, La/Lu, K2O, and Rb may be crustal melts; we suggest that garnet-rich high-pressure granulites similar to those exposed in the Jijal complex may be restites formed during partial melting of the crust.  相似文献   

6.
The Rio Itapicuru greenstone terrain of north-central Bahia State consists of belts of supracrustal rocks surrounding granitic plutons and domes. The basal supracrustal rocks are predominantly massive metabasalts with minor amounts of intercalated chemical sedimentary rocks and mafic tuffs. They are overlain by a middle unit of intermediate to acid pyroclastic rocks, lavas, and volcaniclastic sediments, and an upper unit of greywackes, sandstones and conglomerates.A geochemical study of major and trace elements of the volcanic rocks indicates the existence of a chemical discontinuity between the basaltic and the acid to intermediate members. The basalts are typical tholeiites with Ti, Zr, Sr, Y and Nb contents analogous to those of modern ocean-floor tholeiites or, alternatively, low-K tholeiites of primitive island arcs. In contrast, compositional variations of the hornblende-bearing andesites and dacites fall along indisputably calc-alkaline trends of low FeO and TiO2 contents which decrease with increasing differentiation. The lithostratigraphic and chemical variations within lavas of the Rio Itapicuru greenstone are comparable to those described from the Western Australian greenstone belts. Only in greenstone belts of the Canadian type do thick calc-alkaline sequences containing abudant basaltic andesites overlie conformably and transitionally the underlying tholeiitic basalts. Elsewhere the calc-alkaline sequences, if present, do not contain basaltic andesites and are chemically unrelated to the underlying basalts.  相似文献   

7.
Most large Archean greenstone belts ( 2.7 Ga), comprise thick (12–15 km) mafic to felsic metavolcanics sequences which exhibit consistent but discontinuous geochemical patterns resulting from mantle-crust processes. In a typical Archean metavolcanic sequence, thick (5–8 km) uniform tholeiitic basalt is followed by geochemically evolved rock units (4–7 km thick) containing intermediate and felsic calc-alkaline rocks. This major geochemical discontinuity is marked by a change from LIL-element depleted basalts which show unfractionated REE abundance patterns, to overlying andesites with higher LIL-element contents, fractionated REE patterns and relatively depleted HREE. A less well marked discontinuity separates andesitic rocks from still later more felsic dacite-rhyolite extrusive assemblages and their intrusive equivalents, and is identified by a further increase in LIL element content and REE fractionation. The major geochemical discontinuity apparently separates rocks derived by partial melting of mantle (either directly or through shallow fractionation processes) from those which originated either by partial melting of mantle material modified by crustal interactions or by partial melting of crustal material.We suggest that accumulation of a great thickness of mantle derived volcanic rocks can lead to sagging and interaction of the lower parts of the volcanic piles with upper mantle material. The resulting modified mantle acts as a source for some of the geochemically evolved rocks observed in volcanic successions. Subsequent direct melting of the volcanic pile produces the felsic magmas observed in the upper parts of Archean volcanic successions. This process, termed sag-subduction, is the inferred tectonic process operating in the comparatively thin, hot Archean crustal regime. By this process, large masses of ultimately mantle-derived material were added to the crust.  相似文献   

8.
额尔古纳地块基底地质构造   总被引:15,自引:0,他引:15  
额尔古纳地块是额尔古纳-马门-加格达奇拼合地块中的典型代表.研究表明,其基底由前中元古代绿岩及与之伴生的花岗质杂岩组成,它们具有地壳早期演化的地质构造特征.绿岩带为典型的变质基性-酸性火山岩及部分变质沉积岩系构成的火山-沉积建造,火山岩以拉斑玄武岩为主,向上过渡为钙碱性火山岩系列,表现为双峰态型特点.花岗岩类为TTG岩系及石英二长岩-花岗岩组合.花岗岩-绿岩地体内各岩石类型的岩石地球化学特征与国外太古宙及我国华北陆台花岗岩-绿岩带内同类岩石极为相似.双峰态型火山岩及绿岩建造组合,以及类似于TH2、FII型的变质基性火山岩和长英质火山岩特征,结合高铝型英云闪长岩-奥长花岗岩组合,指示了研究区绿岩带的形成环境类似于大陆边缘弧后裂谷型火山-沉积盆地.  相似文献   

9.
《Ore Geology Reviews》2008,33(3-4):471-499
The Rio das Velhas greenstone belt is located in the Quadrilátero Ferrífero region, in the southern extremity of the São Francisco Craton, central-southern part of the State of Minas Gerais, SE Brazil. The metavolcano–sedimentary rocks of the Rio das Velhas Supergroup in this region are subdivided into the Nova Lima and Maquiné Groups. The former occurs at the base of the sequence, and contains the major Au deposits of the region. New geochronological data, along with a review of geochemical data for volcanic and sedimentary rocks, suggest at least two generations of greenstone belts, dated at 2900 and 2780 Ma. Seven lithofacies associations are identified, from bottom to top, encompassing (1) mafic–ultramafic volcanic; (2) volcano–chemical–sedimentary; (3) clastic–chemical–sedimentary, (4) volcaniclastic association with four lithofacies: monomictic and polymictic breccias, conglomerate–graywacke, graywacke–sandstone, graywacke–argillite; (5) resedimented association, including three sequences of graywacke–argillite, in the north and eastern, at greenschist facies and in the south, at amphibolite metamorphic facies; (6) coastal association with four lithofacies: sandstone with medium- to large-scale cross-bedding, sandstone with ripple marks, sandstone with herringbone cross-bedding, sandstone–siltstone; (7) non-marine association with the lithofacies: conglomerate–sandstone, coarse-grained sandstone, fine- to medium-grained sandstone. Four generations of structures are recognized: the first and second are Archean and compressional, driven from NNE to SSW; the third is extensional and attributed to the Paleoproterozoic Transamazonian Orogenic Cycle; and the fourth is compressional, driven from E to W, is related to the Neoproterozoic Brasiliano Orogenic Cycle. Gold deposits in the Rio das Velhas greenstone belt are structurally controlled and occur associated with hydrothermal alterations along Archean thrust shear zones of the second generation of structures.Sedimentation occurred during four episodes. Cycle 1 is interpreted to have occurred between 2800 and 2780 Ma, based on the ages of the mafic and felsic volcanism, and comprises predominantly chemical sedimentary rocks intercalated with mafic–ultramafic volcanic flows. It includes the volcano–chemical–sedimentary lithofacies association and part of the mafic–ultramafic volcanic association. The cycle is related to the initial extensional stage of the greenstone belt formation, with the deposition of sediments contemporaneous with volcanic flows that formed the submarine mafic plains. Cycle 2 encompasses the clastic–chemical–sedimentary association and distal turbidites of the resedimented association, in the eastern sector of the Quadrilátero Ferrífero. It was deposited in the initial stages of the felsic volcanism. Cycle 2 includes the coastal and resedimented associations in the southern sector, in advanced stages of subduction. In this southern sedimentary cycle it is also possible to recognize a stable shelf environment. Following the felsic volcanism, Cycle 3 comprises sedimentary rocks of the volcaniclastic and resedimented lithofacies associations, largely in the northern sector of the area. The characteristics of both associations indicate a submarine fan environment transitional to non-marine successions related to felsic volcanic edifices and related to the formation of island arcs. Cycle 4 is made up of clastic sedimentary rocks belonging to the non-marine lithofacies association. They are interpreted as braided plain and alluvial fan deposits in a retroarc foreland basin with the supply of debris from the previous cycles.  相似文献   

10.
The compositions of the tonalite–trondhjemite–granodiorite (TTG) assemblage and volcanic rocks of the Archaean greenstone belts from different domains of the Karelian province of the Baltic Shield are compared. Neoarchean medium felsic volcanic rocks and TTG of the Central Karelian domain drastically differ from analogous Mesoarchean rocks of the neighboring Vodlozero and West Karelian domains in higher Rb, Sr, P, La, and Ce contents and, correspondingly, values of Sr/Y, La/Yb, and La/Sm, and also in a different REE content distribution owing to different rock sources of these domains. This fact is confirmed by differences in the composition and the nature of the REE distribution in the basic and ultrabasic volcanic rocks making up the greenstone belts of these domains. It is established that the average compositions of Mesoarchean TTG rocks and volcanic rocks of the Karelian province differ markedly from those of plagiogranitoids and volcanic rocks of the recent geotectonic environments in high Mg (mg#) and Sr contents. Neoarchean volcanic rocks of Karelia differ from recent island-arc volcanic rocks, but are similar in composition to recent volcanic rocks of the continental arcs. On the basis of the cumulative evidence, the Karelian province of the Baltic Shield was subject to dramatic changes in the crust formation conditions at the beginning of the Neoarchean at the turn of about 2.75–2.78 Ga. These changes led to formation of volcano-sedimentary and plutonic rock complexes, different in composition from Mesoarchean rocks, and specific complexes of intrusive sanukitoids and granites. Changes and variations in the rock composition were related to the mixing of plume sources with continental crust and/or lithospheric mantle material, likely as a result of the combined effect of plumes and plate tectonics. This process resulted in formation of a younger large fragment of the Archean crust such as the Central Karelian domain which factually connected more ancient fragments of the crust and likely contributed to development of the Neoarchean Kenorland Supercontinent.  相似文献   

11.
绿岩套和蛇绿岩套的区分标志   总被引:1,自引:0,他引:1       下载免费PDF全文
综合绿岩、蛇绿岩的有关概念、地质环境、岩石学、地球化学特征,论述蛇绿岩和绿岩之间的异同。 目前由于太古宙和显生宙地质构造研究的进展,使人们对绿岩套和蛇绿岩套的特征及其相互之间的异同性、联系性和形成环境越来越感兴趣。同时,在不同地区的地质构造研究中,对上述两种岩套在概念上和成因上存在混淆。本文将讨论这一问题。  相似文献   

12.
Whole-rock chemistry and precise U – Pb zircon chronology have been used to determine the provenance of Archean greenschist-facies siliciclastic sedimentary rocks of the Diemals Formation in the Marda – Diemals area of the central Yilgarn Craton, Western Australia. Field evidence shows that these siliciclastic rocks are, at least in part, derived from uplift and erosion of underlying greenstones, and this is borne out by the similar La/Sc, Cr/Th and REE chemistry of Diemals Formation siltstones and some sandstones to mafic volcanic rocks of the underlying greenstones. The higher Cr/V and lower Y/Ni of some siltstones is consistent with input from ultramafic and mafic rocks. Diemals Formation sandstones and siltstones cannot be separated in terms of ratios such as Zr/La, and siliciclastic rock chemistry reflects provenance rather than the effects of transport and depositional processes, such as sorting. Chemistry does not support input to Diemals Formation sedimentary rocks from the Marda volcanic complex despite both units being close to each other, and having overlapping maximum depositional and crystallisation ages, respectively. Instead, it is likely that detritus for the two units was deposited in adjacent, physically discrete basins. Some Diemals Formation sandstones are geochemically similar to felsic rocks intruding the underlying greenstone succession, with higher La/Sc and lower Cr/Th, and LREE-enriched patterns with negative Eu anomalies. Support for a genetic relationship is shown by the overlap in the maximum depositional age of these sandstones with the crystallisation age of the geochemically identical Pigeon Rocks Monzogranite. Combined whole-rock chemistry and precise U – Pb zircon chronology indicates that Diemals Formation sedimentary rocks were in large part derived from the underlying mafic volcanic rocks, with progressive unroofing of this succession leading to erosion of felsic intrusive rocks, now represented by sandstones found at various levels in the Diemals Formation.  相似文献   

13.
西昆仑东段苏巴什蛇绿构造混杂岩带南侧卡拉勒塔什群以大面积分布的酸性和中基性火山岩为特征,本次对卡拉勒塔什群弧火山岩代表性的岩石组合进行了LA-ICP-MS锆石U-Pb年龄、地球化学及锆石Lu-Hf同位素研究。研究结果表明,LA-ICP-MS锆石U-Pb测年获得酸性晶屑凝灰岩、蚀变玄武岩206Pb/238U加权平均年龄为(284.2±1.6) Ma和(262.6±2.0) Ma,表明研究区卡拉勒塔什群火山岩形成于早—中二叠世。卡拉勒塔什群火山岩具有富铝、钠、铁,富集大离子亲石元素K、Rb、Ba和亏损高场强元素Sr、Ta、Nb、Ti的地球化学特征。其中,基性火山岩属钙碱性-拉斑玄武岩系列,岩石稀土元素配分模式接近大洋拉斑玄武岩,Nd/Th和La/Nb比值为8.91~13.76和0.39~2.28,Lu-Hf同位素εHf(t)值为-0.15~4.95,表现为地幔物质来源,但加入了地壳组分。酸性火山岩属于钙碱性系列,相对亏损P和Zr元素,Nd/Th和La/Nb比值为1.92~4.10和2.52~3.39,Lu-Hf同位素εHf(t)值分别为0.94~3.78和8.26~12.45,二阶段模式年龄分别为1.07~1.25 Ga、0.51~0.78 Ga,表明酸性火山岩物质来源为古老地壳和新生地壳物质重熔后的混合物。卡拉勒塔什群总体地球化学特征表现为岛弧环境。卡拉勒塔什群岛弧火山岩与北侧苏巴什蛇绿构造混杂岩带在形成时代、空间分布以及基性岩地球化学特征均表现成对关系,与苏巴什蛇绿构造混杂岩带内发育的硫磺达坂砂岩组深水复理石建造共同构成造山带沟-弧-盆体系,表明苏巴什洋盆由南向北的俯冲极性,说明苏巴什蛇绿构造混杂岩形成于岛弧偏向于海沟的弧前盆地构造背景。  相似文献   

14.
Analysis of 3.3 Ga tonalite–trondhjemite–granodiorite (TTG) series granitoids and greenstone belt assemblages from the Bundelkhand craton in central India reveal that it is a typical Archaean craton. At least two greenstone complexes can be recognized in the Bundelkhand craton, namely the (i) Central Bundelkhand (Babina, Mauranipur belts) and (ii) Southern Bundelkhand (Girar, Madaura belts). The Central Bundelkhand greenstone complex contains three tectonostratigraphic assemblages: (1) metamorphosed basic or metabasic, high-Mg rocks; (2) banded iron formations (BIFs); and (3) felsic volcanics. The first two assemblages are regarded as representing an earlier sequence, which is in tectonic contact with the felsic volcanics. However, the contact between the BIFs and mafic volcanics is also evidently tectonic. Metabasic high-Mg rocks are represented by amphibolites and tremolite-actinolite schists in the Babina greenstone belt and are comparable in composition to tholeiitic basalts-basaltic andesites and komatiites. They are very similar to the metabasic high-Mg rocks of the Mauranipur greenstone belt. Felsic volcanics occur as fine-grained schists with phenocrysts of quartz, albite, and microcline. Felsic volcanics are classified as calc-alkaline dacites, less commonly rhyolites. The chondrite-normalized rare earth element distribution pattern is poorly fractionated (LaN/LuN = 11–16) with a small negative Eu anomaly (Eu/Eu* = 0.68–0.85), being characteristic of volcanics formed in a subduction setting. On Rb – Y + Nb, Nb – Y, Rb – Ta + Yb and Ta – Yb discrimination diagrams, the compositions of the volcanics are also consistent with those of felsic rocks formed in subduction settings. SHRIMP-dating of zircon from the felsic volcanics of the Babina belt of the Central Bundelkhand greenstone complex, performed for the first time, has shown that they were erupted in Neoarchaean time (2542 ± 17 Ma). The early sequence of the Babina belt is correlatable with the rocks of the Mauranipur belt, whose age is tentatively estimated as Mesoarchaean. The Central Bundelkhand greenstone complex consists of two (Meso- and Neoarchaean) sequences, which were formed in subduction settings.  相似文献   

15.
杨豹  毕守业 《吉林地质》1993,12(3):24-31
吉林省南部晚太古宙绿岩带位于龙岗古陆核南部边缘,它包括板石沟、四方山和旺文川绿岩带,其岩石主要为变质镁铁质火山岩和变质长英质火山岩,反映出具双峰式火山岩的特征。另外,本区绿岩带岩石的岩石化学和地球化学特征与龙岗古陆核北部边缘的夹皮沟绿岩带具有明显的差异,表明两者成岩环境不同。本区绿岩带斜长角闪岩属板内玄武岩,其成岩环境与大陆裂谷环境相似。  相似文献   

16.
The late Archaean Shimoga schist belt in the Western Dharwar Craton, with its huge dimensions and varied lithological associations of different age groups, is an ideal terrane to study Archean crustal evolution. The rock types in this belt are divided into Bababudhan Group and Chitradurga Group. The Bababudhan Group is dominated by mafic volcanic rocks followed by shallow marine sedimentary rocks while the Chitradurga Group is dominated by greywackes, pillowed basalts, and deep marine sedimentary rocks with occasional felsic volcanics. The Nb/Th and Nb/La ratios of the studied metabasalts of the Bababudhan Group indicate crustal contamination. They were extruded onto the vast Peninsular Gneisses through the rifting of the basement gneiss. The Nb/Yb ratios of high-magnesium basalts and tholeiitic basalts of Chitradurga Group suggest the enrichment of their source magma. Based on the flat primitive mantle-normalized multi-element plot with negative Nb anomalies and Th/Ta-La/Yb ratios, the high-magnesium basalts and tholeiitic basalts are considered to have erupted in an oceanic plateau setting with minor crustal contamination. The high-magnesium basalts and tholeiitic basalts formed two different pulses of same magma type, in which the first pulse of magma gave rise to high-magnesium basalts which were derived from deep mantle sources and underwent minor crustal contamination en route to the surface, while the second pulse of magma gave rise to tholeiitic basalts formed at similar depths to that of high-magnesium basalts and escaped crustal contamination. The associated lithological units found with the studied metavolcanic rock types of Bababudan and Chitradurga Groups of Dharwar Supergroup of rocks in Shimoga schist belt of Western Dharwar Craton confirm the mixed-mode basin development with a transition from shallow marine to deep marine settings.  相似文献   

17.
大陆的起源     
太阳系固体星球都有类似的核-幔-壳结构,但唯独人类居住的地球具有长英质组成的大陆壳.太古宙大陆克拉通主要由英云闪长岩(Tonalite)-奥长花岗岩(Trondhjemite)-花岗闪长岩(Granodiorite)为主的TTG深成侵入体变质而成的正片麻岩和由基性-超基性酸性火山岩及少量沉积岩变质的表壳岩(绿岩)组成....  相似文献   

18.
针对太古宙有无类现代的板块构造这一问题,首先探讨了太古宙的陆核以及绿岩带的形成,认为,在弧后盆地出现之前,太古宙地壳增生与演化的主要样式更可能是非板块的。依据华北五台绿岩带和遵化绿岩带的共同特点:(1)绿岩带都位于不同年龄的两个古陆核的结合部位;(2)绿岩带底部通常都有相当厚的陆源碎屑岩,在不整合面之下可见更老基底,向上可以与火山岩连续沉积;(3)绿岩带通常形成独立完整的复向斜盆地,提出了在古陆核结合部位由断陷盆地进一步发展为太古宙绿岩带的构造模式。认为该模式存在3个主要的发展阶段,即太古宙早期古陆核形成和对接、在古陆核对接处形成断陷盆地以及在地幔柱活动影响下断陷盆地发展成为绿岩带。而这一模式作为太古宙弧后盆地开始发育之前的前板块时期大陆壳增生的主要样式仍有待更多实例的确证。  相似文献   

19.
The middle to late Archaean rocks of Kola and Karelia in the eastern Baltic shield consist of the Infracomplex overlain by the Saamian complex, and the Lopian greenstone belts. The Infracomplex which forms the basement is a polymigmatite, parts of which are at least 3100 Ma old. The Saamian in the central Belomorian region comprises granite gneiss, amphibolite, garnet-kyanite gneiss and high alumina gneisses which belong to the Keret, Hetolombina and Chupa suites. The Lopian greenstone belts ranging in age from 3000 to 2700 Ma are composed of peridotitic, pyroxenitic and basaltic komatiites, tholeiitic basalts, andesites, dacites and rhyolites, together with tuffs, graywackes and iron formations. Whereas there is a dominance of volcanic over sedimentary rocks in the greenstone belts of the Baltic shield, a significant proportion of detrital and chemogenic sedimentary rocks characterizes the Dharwar succession of approximately the same time span in the southern Indian shield. Association of mature and immature detrital sedimentary rocks with bimodal volcanic assemblages points to a back-arc setting for the Dharwar belts. This contrasts with the association of immature sediments with calc-alkaline volcanic rocks in the greenstone belts of the eastern Baltic shield, suggesting an island arc environment there.  相似文献   

20.
太古宙绿岩带岩石学和地球化学:实例与探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
  壮魏春景陈   《地质科学》2017,(4):1241-1262
绿岩带是太古宙大陆地壳重要的构造单元。 按照岩石组合特征, 绿岩带可划分为 3 个类型:1) 巴伯顿型, 主要由基性-超基性火山岩组成, 含少量酸性火山岩及沉积岩, 中性火山岩很不发育;2) 苏必利尔型, 主要由中性火山岩和中-基性火山岩组成, 含沉积岩; 3) 达尔瓦尔型, 以广泛发育的沉积岩为特征。 其中, 巴伯顿型绿岩带在世界范围内分布较广, 且组成较为复杂, 表现出一系列独特的岩石学和地球化学特征:1) 基性-超基性火山岩在绿岩带层序中占主导地位;2) 发育具有异常高的地幔潜能温度的科马提岩类;3) 存在太古宙亏损型和富集型玄武岩等。 华北克拉通清原地区的表壳岩虽然经历高级变质作用, 但仍 具有清晰的层序, 与巴伯顿型绿岩带岩石组合特征类似, 因此我们倾向于将其厘定为清原绿岩带。 清原绿岩带主体形成于 2.5 Ga, 与广泛分布的新太古代花岗质片麻岩形成时代一致, 并不存在大规模的中太古代地质体。 清原绿岩带的岩石学和地球化学研究表明新太古代晚期原始地幔柱模型可以较为合理的解释清原地区及华北克拉通东部陆块其它新太古代基底岩石的成因, 但太古宙原始地幔柱与显生宙地幔柱在某些方面有所不同。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号