首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
现代地球岩石圈主要由镁铁质上地幔和长英质地壳两个储集层组成,研究大陆地壳的形成和演化对揭示地球早期地质过程和物质循环、厘定板块构造启动时限具有重要意义。冥古宙—始太古代具有更高的地幔潜能温度和地温梯度,岩浆海冷却形成薄的原始地壳;大洋岩石圈表现为韧性,主要构造机制应为停滞盖层模式,有地幔柱参与。太古宙片麻岩中奥长花岗岩—英云闪长岩—花岗闪长岩(TTG)的出现标志着镁铁质原始地壳向长英质陆壳转变的开始。本文总结了地球早期停滞盖层模式到现代板块构造模式下含水玄武岩部分熔融、结晶分异形成大陆地壳的过程,主要包含幔源岩浆停滞盖层(“自下而上”的热管火山岩和“自上而下”的深成侵入岩构造模式)、增厚镁铁质地壳部分熔融、俯冲洋壳、岛弧及洋底高原部分熔融模式;陆壳的破坏和消减主要受陨石撞击、分层沉降、重力不稳导致拆沉控制;板块构造的出现进一步促进了地球内部的热量扩散,俯冲作用加快了洋壳和陆壳之间的物质循环。最后,结合太古宙变质岩、古老克拉通岩石学特征和锆石Hf、O及全岩Nd、Sr、Ar、Ti同位素组成,讨论了陆壳的形成时间和演化过程:3.0 Ga之前形成了现有陆壳体积的60%~70%,厚度约为20~4...  相似文献   

2.
樊海龙  杨高学  郭建明  马雪云  刘翔 《地质论评》2022,68(5):2022102002-2022102002
现代地球岩石圈主要由镁铁质上地幔和长英质地壳两个储集层组成,研究大陆地壳的形成和演化对揭示地球早期地质过程和物质循环、厘定板块构造启动时限具有重要意义。冥古宙—始太古代具有更高的地幔潜能温度和地温梯度,岩浆海冷却形成薄的原始地壳;大洋岩石圈表现为韧性,主要构造机制应为停滞盖层模式,有地幔柱参与。太古宙片麻岩中奥长花岗岩—英云闪长岩—花岗闪长岩(TTG)的出现标志着镁铁质原始地壳向长英质陆壳转变的开始。本文总结了地球早期停滞盖层模式到现代板块构造模式下含水玄武岩部分熔融、结晶分异形成大陆地壳的过程,主要包含幔源岩浆停滞盖层(“自下而上”的热管火山岩和“自上而下”的深成侵入岩构造模式)、增厚镁铁质地壳部分熔融、俯冲洋壳、岛弧及洋底高原部分熔融模式;陆壳的破坏和消减主要受陨石撞击、分层沉降、重力不稳导致拆沉控制;板块构造的出现进一步促进了地球内部的热量扩散,俯冲作用加快了洋壳和陆壳之间的物质循环。最后,结合太古宙变质岩、古老克拉通岩石学特征和锆石Hf、O及全岩Nd、Sr、Ar、Ti同位素组成,讨论了陆壳的形成时间和演化过程: 3.0 Ga之前形成了现有陆壳体积的60%~70%,厚度约为20~40 km;3.0~2.5 Ga,地壳改造速率明显增加,陆壳生长和破坏速率达到动态平衡,表明全球性现代板块构造体制逐渐成为控制大陆形成、裂解和陆壳演化的主要因素。  相似文献   

3.
地球早期大陆地壳的生长方式和壳幔动力学机制一直是国际前寒武纪研究的热点问题。尽管太古宙是大陆地壳生长的主要时期已基本获得共识,但是对于太古宙时期地壳生长的具体方式和壳幔动力学过程仍然存在很大的争议。部分学者提出地幔柱或者与拆沉相关的垂向构造体制,而其他学者主张与俯冲相关的侧向增生模式或者地幔柱-岛弧的联合作用体制。研究表明,太古宙末期科马提岩明显减少、富钾花岗质岩石普遍发育、地壳再循环速度显著增强,反映地壳演化的壳幔动力学机制发生了明显的转变。华北克拉通以发育大规模2.5~2.6Ga构造岩浆活动为特征,是探讨太古宙末期地壳生长方式和壳幔动力学机制转变的关键地区。本文系统总结了近些年来华北克拉通东部陆块西北缘早前寒武纪研究的最新进展,特别是对辽西、冀东、辽北和五台地区的新太古代晚期(约2.5~2.6Ga)表壳岩变质火山岩系进行了系统的岩石成因和壳幔作用探讨。研究表明,上述地区的变质铁镁质岩石可以划分为3个岩石成因系列:MORB型、IAT(岛弧拉斑玄武岩)型和CAB(岛弧钙碱性玄武岩)型,它们的原岩分别起源于洋中脊软流圈地幔以及受到不同程度俯冲流体交代的地幔楔的部分熔融。变质安山质-英安质火山岩分别具有类似高镁安山岩和埃达克岩的地球化学特征,它们的原岩形成过程可能与俯冲板片的部分熔融以及板片熔体与地幔楔的相互作用有关。结合整个东部陆块早前寒武纪的研究进展,我们提出华北克拉通在太古宙末期(约2.5和约2.7Ga)经历了强烈的地壳生长过程,其中新太古代早期(约2.7Ga)地壳生长以地幔柱-岛弧联合作用体制为主,而新太古代末期(约2.5~2.6Ga)以洋内俯冲和弧陆增生作用体制占主导地位。新太古代末期与俯冲增生相关的构造岩浆活动在Tarim克拉通、印度南部、南极洲Vestfold Hills地体以及南澳Gawler克拉通被广泛报道,这可能与类似显生宙板块构造体制的启动以及太古宙末期Kenorland超大陆的汇聚过程有关。  相似文献   

4.
太古宙绿岩带岩石学和地球化学:实例与探讨   总被引:2,自引:0,他引:2       下载免费PDF全文
  壮魏春景陈   《地质科学》2017,(4):1241-1262
绿岩带是太古宙大陆地壳重要的构造单元。 按照岩石组合特征, 绿岩带可划分为 3 个类型:1) 巴伯顿型, 主要由基性-超基性火山岩组成, 含少量酸性火山岩及沉积岩, 中性火山岩很不发育;2) 苏必利尔型, 主要由中性火山岩和中-基性火山岩组成, 含沉积岩; 3) 达尔瓦尔型, 以广泛发育的沉积岩为特征。 其中, 巴伯顿型绿岩带在世界范围内分布较广, 且组成较为复杂, 表现出一系列独特的岩石学和地球化学特征:1) 基性-超基性火山岩在绿岩带层序中占主导地位;2) 发育具有异常高的地幔潜能温度的科马提岩类;3) 存在太古宙亏损型和富集型玄武岩等。 华北克拉通清原地区的表壳岩虽然经历高级变质作用, 但仍 具有清晰的层序, 与巴伯顿型绿岩带岩石组合特征类似, 因此我们倾向于将其厘定为清原绿岩带。 清原绿岩带主体形成于 2.5 Ga, 与广泛分布的新太古代花岗质片麻岩形成时代一致, 并不存在大规模的中太古代地质体。 清原绿岩带的岩石学和地球化学研究表明新太古代晚期原始地幔柱模型可以较为合理的解释清原地区及华北克拉通东部陆块其它新太古代基底岩石的成因, 但太古宙原始地幔柱与显生宙地幔柱在某些方面有所不同。  相似文献   

5.
俯冲带部分熔融   总被引:3,自引:3,他引:0  
张泽明  丁慧霞  董昕  田作林 《岩石学报》2020,36(9):2589-2615
俯冲带是地幔对流环的下沉翼,是地球内部的重要物理与化学系统。俯冲带具有比周围地幔更低的温度,因此,一般认为俯冲板片并不会发生部分熔融,而是脱水导致上覆地幔楔发生部分熔融。但是,也有研究认为,在水化的洋壳俯冲过程中可以发生部分熔融。特别是在下列情况下,俯冲洋壳的部分熔融是俯冲带岩浆作用的重要方式。年轻的大洋岩石圈发生低角度缓慢俯冲时,洋壳物质可以发生饱和水或脱水熔融,基性岩部分熔融形成埃达克岩。太古代的俯冲带很可能具有与年轻大洋岩石圈俯冲带类似的热结构,俯冲的洋壳板片部分熔融可以形成英云闪长岩-奥长花岗岩-花岗闪长岩。平俯冲大洋高原中的基性岩可以发生部分熔融产生埃达克岩。扩张洋中脊俯冲可以导致板片窗边缘的洋壳部分熔融形成埃达克岩。与俯冲洋壳相比,俯冲的大陆地壳具有很低的水含量,较难发生部分熔融,但在超高压变质陆壳岩石的折返过程中可以经历广泛的脱水熔融。超高压变质岩在地幔深部熔融形成的熔体与地幔相互作用是碰撞造山带富钾岩浆岩的可能成因机制。碰撞造山带的加厚下地壳可经历长期的高温与高压变质和脱水熔融,形成S型花岗岩和埃达克质岩石。  相似文献   

6.
陈龙  郑永飞 《地球科学》2019,44(12):4144-4151
大陆弧安山岩的形成是大洋板片向大陆边缘之下俯冲的结果,但是在具体形成机制上存在很大争议.针对这个问题,对长江中下游地区中生代安山质火山岩及其伴生的玄武质和英安质火山岩进行了系统的岩石地球化学研究,结果对大陆弧安山质火成岩的成因提出了新的机制.分析表明,这些岩石形成于早白垩世,它们不仅表现出典型的岛弧型微量元素分布特征,而且具有高度富集的Sr-Nd-Hf同位素和高的放射成因Pb以及高的氧同位素组成.通过全岩和矿物地球化学成分变化检查发现,地壳混染和岩浆混合作用对其成分的富集特征贡献有限,而其岩浆源区含有丰富的俯冲地壳衍生物质才是其成分富集的根本原因.虽然这些火山岩的喷发年龄为中生代,但是其岩浆源区形成于新元古代早期的华夏洋壳俯冲对扬子克拉通边缘之下地幔楔的交代作用.大陆弧安山岩地幔源区中含有大量俯冲洋壳沉积物部分熔融产生的含水熔体,显著区别于大洋弧玄武岩的地幔源区,其中只含有少量俯冲洋壳来源的富水溶液和含水熔体.正是这些含水熔体交代上覆地幔楔橄榄岩,形成了不同程度富集的超镁铁质-镁铁质地幔源区.在早白垩纪时期,古太平洋俯冲过程的远弧后拉张导致中国东部岩石圈发生部分熔融,其中超镁铁质地幔源区熔融形成玄武质火山岩,镁铁质地幔源区则熔融形成安山质火山岩.因此,大陆弧安山岩成因与大洋弧玄武岩一样,可分为源区形成和源区熔融两个阶段,其中第一阶段对应于俯冲带壳幔相互作用.   相似文献   

7.
前寒武纪地球动力学(Ⅶ):早期大陆地壳的形成与演化   总被引:1,自引:0,他引:1  
冥古宙到太古宙大陆地壳主要由花岗质片麻岩区和绿岩带构造单元组成。大量的研究表明,以花岗质岩石出现为标志的大陆地壳最早的碎屑锆石记录为约4.4Ga,最早的英云闪长质-花岗闪长质片麻岩形成于约4.03Ga,最早的绿岩带层序形成于约3.8Ga。冥古宙到始—古太古代时期的花岗质片麻岩区主要由英云闪长质-奥长花岗质-花岗闪长质片麻岩组成(TTG片麻岩),中—新太古代,尤其是新太古代晚期TTG片麻岩仍然为花岗质片麻岩区的主要岩石组成,但是花岗质片麻岩的成分出现了明显的多样化趋势,最明显的标志就是出现了大量的花岗闪长岩-二长花岗岩-碱长花岗岩组合。绿岩带的组成较为复杂,早期科马提岩、拉斑玄武岩等铁镁质火山岩占主导地位,组合有BIF等沉积层序,尤其是科马提岩的出现标志着高温地幔岩浆作用占主导作用。而晚期绿岩带科马提岩占的比重已经明显较少,大量出现拉斑玄武质-钙碱性玄武质到英安质火山岩和副变质沉积层序,局部出现类玻安岩、埃达克岩的变质火山岩记录。地球动力学体制研究表明,冥古宙到古太古代以地幔柱构造体制占主导地位,从始太古代到古太古代(3.0Ga)地幔柱活动和地幔对流使岩石圈不断加厚。在地幔对流沉降部位,由于地幔对流的拖曳使其铁镁质地壳逆冲堆垛并不断增厚,其深部发生麻粒岩相-榴辉岩相变质、部分熔融形成初始的大陆地壳花岗质岩石,并孕育了早期高温状态的板块热俯冲。中太古代晚期和新太古代初期形成了以榴辉岩为标志的类现代板片俯冲的构造体制,新太古代末期尽管地幔柱构造体制在局部仍起重要作用,但是类现代板片俯冲构造体制已经成为这一时期主导的动力学体制。  相似文献   

8.
为准确识别太古宙与元古宙之间在岩石成分上的变化,必须对比相似岩性组合的岩石,以限制构造环境的影响。大多数绿岩组合(以火山岩为主的海相上壳岩)中的玄武岩和安山岩,具有与现代弧体系中对应部分类似的俯冲带的地球化学组分。有岛弧地球化学亲合性的玄武岩在太古宙绿岩中占支配地位,而有钙碱性亲合性的玄武岩在元古宙绿岩中最丰富。前寒武纪各年代中,具有 MORB 或大洋板块内地球化学特征的玄武岩稀少。与晚太古代绿岩玄武岩(2500-3500 Ma)相比,现存的早太古代绿岩玄武岩(≥3500Ma)反映较少亏损的地幔源。与所有太古宙地幔源相比,元古宙绿岩玄武岩是源于相对富集的地幔源,这一特征可能是因为随着晚太古代大陆迅速的生长,大陆沉积物进入地幔中产生再循环作用而造成的.前寒武纪安山岩在地球化学方面相似于现代岛弧安山岩,唯太古宙安山岩亏损 HREE 及 Y。此与太古宙安山岩形成于下降的镁铁质地壳的部分熔融(有角闪石/石榴石留在残余物中)是一致的,而元古宙(和更年青的)安山岩是由玄武岩的分离结晶所产生的。  相似文献   

9.
袁四化  潘桂棠  任飞 《地球科学》2020,45(8):2826-2845
在中国区域大地构造研究中,对洋岛-海山/洋底高原的识别尚未引起足够重视.为深入研究中国大陆洋板块构造,系统回顾了洋岛-海山/洋底高原的基本概念、基本特征和增生造山过程.洋岛-海山/洋底高原是在海底扩张、大洋壳演化过程中由于地幔热点/柱作用形成的有异常厚度洋壳的区域,是大洋岩石圈的重要组成部分.洋岛-海山/洋底高原在垂向上具有典型的二元结构,下部以镁铁质、超镁铁质岩石为主,上部以碳酸盐岩建造为主.现今大洋盆地中大面积分布着正在演化中和正在俯冲的洋岛-海山,根据比较大地构造学原理,古洋岛-海山的存在指示古大洋盆地的存在,是研究造山带的重要载体.认为地史时期大洋盆地中有相当数量的洋岛、海山,在俯冲增生碰撞造山过程中保留下来的古洋岛-海山残块以构造岩片(块)形式夹持在俯冲增生杂岩中,随大洋盆地关闭;其作为缝合带的重要组成部分,是识别对接带的重要判别依据之一.   相似文献   

10.
额尔古纳地块基底地质构造   总被引:15,自引:0,他引:15  
额尔古纳地块是额尔古纳-马门-加格达奇拼合地块中的典型代表.研究表明,其基底由前中元古代绿岩及与之伴生的花岗质杂岩组成,它们具有地壳早期演化的地质构造特征.绿岩带为典型的变质基性-酸性火山岩及部分变质沉积岩系构成的火山-沉积建造,火山岩以拉斑玄武岩为主,向上过渡为钙碱性火山岩系列,表现为双峰态型特点.花岗岩类为TTG岩系及石英二长岩-花岗岩组合.花岗岩-绿岩地体内各岩石类型的岩石地球化学特征与国外太古宙及我国华北陆台花岗岩-绿岩带内同类岩石极为相似.双峰态型火山岩及绿岩建造组合,以及类似于TH2、FII型的变质基性火山岩和长英质火山岩特征,结合高铝型英云闪长岩-奥长花岗岩组合,指示了研究区绿岩带的形成环境类似于大陆边缘弧后裂谷型火山-沉积盆地.  相似文献   

11.
Oceanic arcs are commonly cited as primary building blocks of continents, yet modern oceanic arcs are mostly subducted. Also, lithosphere buoyancy considerations show that oceanic arcs (even those with a felsic component) should readily subduct. With the exception of the Arabian–Nubian orogen, terranes in post-Archean accretionary orogens comprise < 10% of accreted oceanic arcs, whereas continental arcs compose 40–80% of these orogens. Nd and Hf isotopic data suggest that accretionary orogens include 40–65% juvenile crustal components, with most of these (> 50%) produced in continental arcs.Felsic igneous rocks in oceanic arcs are depleted in incompatible elements compared to average continental crust and to felsic igneous rocks from continental arcs. They have lower Th/Yb, Nb/Yb, Sr/Y and La/Yb ratios, reflecting shallow mantle sources in which garnet did not exist in the restite during melting. The bottom line of these geochemical differences is that post-Archean continental crust does not begin life in oceanic arcs. On the other hand, the remarkable similarity of incompatible element distributions in granitoids and felsic volcanics from continental arcs is consistent with continental crust being produced in continental arcs.During the Archean, however, oceanic arcs may have been thicker due to higher degrees of melting in the mantle, and oceanic lithosphere would be more buoyant. These arcs may have accreted to each other and to oceanic plateaus, a process that eventually led to the production of Archean continental crust. After the Archean, oceanic crust was thinner due to cooling of the mantle and less melt production at ocean ridges, hence, oceanic lithosphere is more subductable. Widespread propagation of plate tectonics in the late Archean may have led not only to rapid production of continental crust, but to a change in the primary site of production of continental crust, from accreted oceanic arcs and oceanic plateaus in the Archean to primarily continental arcs thereafter.  相似文献   

12.
埃达克质岩石是高Na、Al和Sr、低Y和HREE以及Nb、Ta亏损的钠质花岗质岩石,奥长花岗岩-英云闪长岩-花岗闪长岩(TTG)是早期(太古宙)大陆壳主要组分,成分与埃达克质岩石相似,这些成分独特的岩石总体上认为是俯冲洋壳、下地壳和拆沉的下地壳中变质玄武岩部分熔融的产物。文中综述我们近年来在变质玄武岩体系相平衡和矿物-熔体微量元素分配实验研究成果:相平衡实验和熔体微量元素特征研究表明,变质玄武岩部分熔融过程中金红石是导致TTG/埃达克岩浆Nb、Ta亏损的必要残留矿物,从而否定了前人“TTG由无金红石的角闪岩熔融产生”的观点;证实金红石仅仅在压力1.5GPa以上才能稳定存在,从而限定TTG/埃达克岩熔体必定产生在大约50km以上,表明TTG/埃达克岩是在相对较深的含金红石榴辉岩相条件下熔融产生的。矿物(石榴子石、角闪石,单斜辉石和金红石)-熔体微量元素分配系数测定和部分熔融模拟结果进一步限定俯冲洋壳和下地壳起源的TTG/埃达克岩浆由含金红石角闪榴辉岩熔融产生,而拆沉下地壳起源的埃达克岩浆的产生要求软流圈地幔高温,由无水或含有少量含水矿物的榴辉岩熔融产生。  相似文献   

13.
Northwestern Costa Rica is built upon an oceanic plateau that has developed chemical and geophysical characteristics of the upper continental crust. A major factor in converting the oceanic plateau to continental crust is the production, evolution, and emplacement of silicic magmas. In Costa Rica, the Caribbean Large Igneous Province (CLIP) forms the overriding plate in the subduction of the Cocos Plate—a process that has occurred for at least the last 25 my. Igneous rocks in Costa Rica older than about 8 Ma have chemical compositions typical of ocean island basalts and intra-oceanic arcs. In contrast, younger igneous deposits contain abundant silicic rocks, which are significantly enriched in SiO2, alkalis, and light rare-earth elements and are geochemically similar to the average upper continental crust. Geophysical evidence (high Vp seismic velocities) also indicates a relatively thick (~40 km), addition of evolved igneous rocks to the CLIP. The silicic deposits of NW Costa Rica occur in two major compositional groups: a high-Ti and a low-Ti group with no overlap between the two. The major and trace element characteristics of these groups are consistent with these magmas being derived from liquids that were extracted from crystal mushes—either produced by crystallization or by partial melting of plutons near their solidi. In relative terms, the high-Ti silicic liquids were extracted from a hot, dry crystal mush with low oxygen fugacity, where plagioclase and pyroxene were the dominant phases crystallizing, along with lesser amounts of hornblende. In contrast, the low-Ti silicic liquids were extracted from a cool, wet crystal mush with high oxygen fugacity, where plagioclase and amphibole were the dominant phases crystallizing. The hot-dry-reducing magmas dominate the older sequence, but the youngest sequence contains only magmas from the cold-wet-oxidized group. Silicic volcanic deposits from other oceanic arcs (e.g., Izu-Bonin, Marianas) have chemical characteristics distinctly different from continental crust, whereas the NW Costa Rican silicic deposits have chemical characteristics nearly identical to the upper continental crust. The transition in NW Costa Rica from mafic oceanic arc and intra-oceanic magma to felsic, upper continental crust-type magma is governed by a combination of several important factors that may be absent in other arc settings: (1) thermal maturation of the thick Caribbean plateau, (2) regional or local crustal extension, and (3) establishment of an upper crustal reservoir.  相似文献   

14.
岛弧火山岩主要为俯冲带的俯冲板片脱水形成的富大离子亲石元素流体交代地幔楔,并使其发生部分熔融,产生岛弧岩浆作用而形成的,岩石组合通常为玄武岩—安山岩—英安岩—流纹岩及相应侵入岩组合。它以Al2O3、K2O高,低Ti O2,且K2ONa2O为特征,相对富集LILE,亏损HFSE,特别是Ti、Nb、Ta等。本文主要从岛弧岩浆作用的起因着手,分析流体和熔体对地幔楔的交代作用,以及岛弧岩浆作用过程,进而分析岛弧火山岩的地球化学特征。  相似文献   

15.
Results of simple model calculations that integrate cumulate compositions from the Kohistan arc terrain are presented in order to develop a consistent petrogenetic model to explain the Kohistan island arc granitoids. The model allows a quantitative approximation of the possible relative roles of fractional crystallization and assimilation to explain the silica-rich upper crust composition of oceanic arcs. Depending in detail on the parental magma composition hydrous moderate-to-high pressure fractional crystallization in the lower crust/upper mantle is an adequate upper continental crust forming mechanism in terms of volume and compositions. Accordingly, assimilation and partial melting in the lower crust is not per se a necessary process to explain island arc granitoids. However, deriving few percent of melts using low degree of dehydration melting is a crucial process to produce volumetrically important amounts of upper continental crust from silica-poorer parental magmas. Even though the model can explain the silica-rich upper crustal composition of the Kohistan, the fractionation model does not predict the accepted composition of the bulk continental crust. This finding supports the idea that additional crustal refining mechanism (e.g., delamination of lower crustal rocks) and/or non-cogenetic magmatic process were critical to create the bulk continental crust composition.  相似文献   

16.
The volcanic stage of the 2.7-Ga Abitibi greenstone belt, Canada, is dominated by bimodal arc magma series and komatiite-basalt sequences. The latter represents an aerially extensive oceanic plateau erupted from an anomalously hot super-plume. Komatiites define a linear array of Nb/Th vs. Nb/U, extending from Nb/Th=8-20, and Nb/U=26-58, whereas basalts plot on a separate, but overlapping, field extending to higher Th/U but lower Nb/Th values. Inter-element ratios of Th, U, Nb, and LREE of komatiites and basalts plot with Phanerozoic and modern ocean plateau basalts. Th, U, Nb, and LREE are fractionated in subduction zones into low Nb/Th, Nb/U, and Nb/LREE arc crust, and complementary high Nb/Th, Nb/U, and Nb/LREE residual slab. Accordingly, the Archean komatiite-basalt association may be explained by a plume that likely originated from the core-mantle boundary with komatiites erupted from a hot axis containing recycled oceanic crust, and basalts erupted from the plume annulus that entrained upper mantle containing recycled oceanic and continental crust. High Nb/Th and Nb/U of plume-related volcanic sequences documented in Abitibi, Yilgarn, and Baltic Archean greenstone belts suggest that the extraction and recycling of continental crust may have occurred early in the Archean.  相似文献   

17.
For the last two decades, Iceland and other oceanic plateaux have been considered as potential analogues for the formation of the early Earth's continental crust. This study examines the compositions of silicic rocks from modern oceanic plateaux, revealing their differences to Archaean continental rock types (trondhjemite–tonalite–granodiorite or TTG) and thereby emphasising the contrasted mechanisms and/or sources for their respective origins. In most oceanic plateaux, felsic magmas are thought to be formed by fractional crystallization of basalts. In Iceland, the interaction between mantle plume and the Mid‐Atlantic ridge results in an abnormally high geothermal gradient and melting of the hydrated metabasaltic crust. However, despite the current `Archaean‐like' high geothermal gradients, melting takes place at a shallow depth and is unable to reproduce the TTG trace element signature. Consequently, oceanic plateaux are not suitable environments for the genesis of the Archaean continental crust. However, their subduction could account for the episodic crustal growth which has occurred throughout the Earth's history.  相似文献   

18.
Among the Phanerozoic granitoids of East Asia, the most prevailing Cenozoic–Mesozoic rocks are reviewed with respect to gabbro/granite ratio, bulk composition of granitoids, redox state, and O- and Sr-isotopic ratios. Quaternary volcanic rocks, ranging from basalt to rhyolite, but typically felsic andesite in terms of bulk composition in island arcs, are oxidized type, possibly due to oxidants from subducting oceanic crust into the source regions. Miocene plutonic rocks in the back-arc of Japan could be a root zone for such volcanism but are more felsic in composition. Cenozoic–Mesozoic plutonic zones are classified by (1) the redox state (magnetite/ilmenite series), and (2) average bulk composition (granodiorite/granite). The granodioritic magnetite series occur with fairly abundant gabbro and diorite in the back-arc of island arcs (Greentuff Belt) and intercontinental rapture zones (Yangtze Block). These rocks are mostly juvenile in terms of the 87Sr/86SrI and δ18O values.The granitic magnetite series with some gabbroids occur in rapture zones along the continental coast (Gyeongsang Basin, Fujian Coast) and the back-arc of island arc (Sanin Belt). They were generated mostly in felsic continental crust, with the help of heat and magmas from upper mantle. The generated granitic magmas had little interaction with C- and S-bearing reducing materials, due probably to extensional tectonic settings. The δ18O value gives narrow ranges but the 87Sr/86SrI ratio varies greatly depending upon the age and composition of the continental crust. Granitic ilmenite-series are characterized by high δ18O values, implying much contribution of sediments. The 87Sr/86SrI ratios are low in island arcs but very high in continental interior settings. Amount of mafic magmas from the upper mantle seems a key to control the composition of granitoid series in island arc settings, while original composition of the protolith may be the key to control granitoid composition in continental interiors.  相似文献   

19.
What Happened in the Trans-North China Orogen in the Period 2560-1850 Ma?   总被引:5,自引:0,他引:5  
The Trans-North China Orogen (TNCO) was a Paleoproterozic continent-continent collisional belt along which the Eastern and Western Blocks amalgamated to form a coherent North China Craton (NCC). Recent geological, structural, geochemical and isotopic data show that the orogen was a continental margin or Japan-type arc along the western margin of the Eastern Block, which was separated from the Western Block by an old ocean, with eastward-directed subduction of the oceanic lithosphere beneath the western margin of the Eastern Block. At 2550-2520 Ma, the deep subduction caused partial melting of the medium-lower crust, producing copious granitoid magma that was intruded into the upper levels of the crust to form granitoid plutons in the low- to medium-grade granite-greeustone terranes. At 2530-2520 Ma, subduction of the oceanic lithosphere caused partial melting of the mantle wedge, which led to underplating of mafic magma in the lower crust and widespread mafic and minor felsic volcanism in the arc, forming part of the greenstone assemblages. Extension driven by widespread mafic to felsic volcanism led to the development of back-arc and/or intra-arc basins in the orogen. At 2520-2475 Ma, the subduction caused further partial melting of the lower crust to form large amounts of tonalitic-trondhjemitic-granodioritic (TTG) magmatism. At this time following further extension of back-arc basins, episodic granitoid magmatism occurred, resulting in the emplacement of 2360 Ma, -2250 Ma 2110-21760 Ma and -2050 Ma granites in the orogen. Contemporary volcano-sedimentary rocks developed in the back-arc or intra-are basins. At 2150-1920 Ma, the orogen underwent several extensional events, possibly due to subduction of an oceanic ridge, leading to emplacement of mafic dykes that were subsequently metamorphosed to amphibolites and medium- to high-pressure mafic granulites. At 1880-1820 Ma, the ocean between the Eastern and Western Blocks was completely consumed by subduction, and the dosing of the ocean led to the continent-arc-continent collision, which caused large-scale thrusting and isoclinal folds and transported some of the rocks into the lower crustal levels or upper mantle to form granulites or eclogites. Peak metamorphism was followed by exhumation/uplift, resulting in widespread development of asymmetric folds and symplectic textures in the rocks.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号