首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 156 毫秒
1.
新疆北部地区积雪深度变化特征及未来50a的预估   总被引:7,自引:4,他引:3  
分析比较参加CMIP3计划的全球气候模式,在20C3M下各模式1961-1999年平均积雪深度和观测资料比较的基础上,检验了模式对积雪深度的模拟能力.在此基础上,选用INM-CM3.0和CGCM-T47_1模式对北疆地区未来50 a的积雪变化进行了预估.由于受GCM的空间分辨率和新疆北部地区地形、盆地沙漠下垫面、水汽来源和干旱气候环境的影响,CMIP3模式的GCM在新疆北部地区的模拟能力有限.通过相关系数和均方差误差的双重检验,选取了在新疆地区模拟能力较好的INM-CM3.0和CGCM-T47_1模式的模拟结果对新疆地区未来的积雪变化进行了预测.结果表明,在A1B、B1情景下,2002-2050年,总体上新疆北部地区的积雪深度均呈减少趋势;A2情景下,INM-CM3.0、CGCM-T47-1模式在准葛尔盆地地区积雪变化的模拟结果存在差异,但未来40 a新疆地区除天山附近外,积雪深度变化呈减少趋势.  相似文献   

2.
利用MODIS逐日无云积雪产品与AMSR-E雪水当量产品进行融合, 获取了青藏高原500 m分辨率的高精度雪水当量产品, 通过研究青藏高原积雪时空动态变化特征, 分析了积雪覆盖日数、雪水当量以及总雪量的季节及年际变化. 结果表明: 青藏高原地区降雪主要集中在高海拔山区, 而高原腹地降雪较少, 降雪在空间上分布极为不均; 2003-2010年期间, 平均积雪日数呈显著减少趋势, 稳定积雪区面积在逐渐扩大, 常年积雪区面积在不断缩小. 与积雪日数时空变化相比, 雪水当量增加的区域与积雪日数增加的区域基本一致, 但喜马拉雅山脉在积雪日数减少的情况下雪水当量却在逐年增加, 表明该地区温度升高虽然导致部分常年积雪向季节性积雪过渡, 但降雪量却在增加. 总的积雪面积年际变化呈波动下降的趋势, 但趋势不显著, 且减少的比例很少. 最大积雪面积呈现波动上升后下降的趋势, 平均累积积雪总量呈明显的波动下降趋势, 年递减率为1.0×103 m3·a-1.  相似文献   

3.
1957-2009年中国台站观测的关键积雪参数时空变化特征   总被引:7,自引:2,他引:5  
利用1957-2009年中国地面气象台站观测积雪资料分析表明, 中国年平均雪深、雪水当量、积雪密度分别为0.49 cm、0.7 mm、0.14 g·cm-3. 平均来说, 三者在青藏高原地区都是最小的, 在西北地区均较大; 空间上, 中国年平均雪深和雪水当量大值区位于东北和新疆北部, 以及青藏高原西南部的小部分区域; 中国大部分地区年平均积雪密度在0.14 g·cm-3以下, 3大稳定积雪区积雪密度略高. 1957-2009年, 中国及各区域年平均雪深和雪水当量均表现为波动增加趋势, 但不显著; 空间上雪深的显著正趋势主要位于内蒙古东部、东北北部、新疆西北部和青藏高原东北部; 雪水当量与雪深类似, 但正趋势范围不如前者广, 负趋势范围则较大.  相似文献   

4.
CMIP3模式对未来50a欧亚大陆雪水当量的预估   总被引:5,自引:1,他引:4  
马丽娟  罗勇  秦大河 《冰川冻土》2011,33(4):707-720
为研究预估未来50a欧亚大陆雪水当量,基于遥感数据,用误差百分率、空间相关和误差标准差等统计方法,评估了14个CMIP3模式在20C3M的雪水当量产品,诊断各模式对欧亚大陆雪水当量的模拟能力,在此基础上对模拟效果较好的10个模式产品进行多模式集合,分析了A2和B1情景下2002—2060年欧亚大陆雪水当量的变化.结果表...  相似文献   

5.
IPCC AR4多模式对中国地区干旱变化的模拟及预估   总被引:2,自引:1,他引:1  
使用中国地区温度、降水格点观测数据以及多模式集合平均数据,计算了帕尔默干旱指数(Palmer Drought Severity Index),评估了全球气候模式对中国地区1961—2000年干旱变化特征的模拟能力,预估了SRES A1B情景下在2011—2050年干旱的可能变化.结果表明:对于衡量干旱变化特征的干旱频率、持续时间、干旱面积等几个指标,整个中国地区区域平均的模拟值与观测值较为符合;模式能够模拟再现西北地区的干旱变化特征,模拟的干旱程度在华北地区偏弱、长江以南地区偏强.2011—2050年SRES A1B情景下,中国地区表现为持续的干旱化趋势;总体干旱面积和干旱频率持续增加,其中极度干旱的持续增加占主要作用.从EOF分析结果看,未来40a中国地区以整体干旱分布型为主.  相似文献   

6.
基于CMIP6气候模式的新疆积雪深度时空格局研究   总被引:1,自引:0,他引:1  
张庆杰  陶辉  苏布达  窦挺峰  姜彤 《冰川冻土》2021,43(5):1435-1445
积雪深度的变化对地表水热平衡起着至关重要的作用。选用了国际耦合模式比较计划第六阶段(CMIP6)中目前情景比较齐全的五个全球气候模式,通过对比新疆地区1979—2014年积雪深度长时间序列数据集,评估了气候模式在新疆地区模拟积雪深度的模拟能力,接着预估了未来不同SSPs-RCPs情景下新疆地区在2021—2040年(近期)、2041—2060年(中期)、2081—2100年(末期)相对于基准期(1995—2014年)的积雪深度变化。气温和降水对积雪深度变化有着重要的影响,因此还分析了新疆地区到21世纪末期气温和降水的变化趋势。结果表明:订正后的气候模式模拟的积雪深度数据与观测数据的相关系数均达到0.8以上,其中1月至3月与观测数据的结果更为吻合。气候模式基本上能够反映积雪深度年内变化的基本特征,气候模式模拟的积雪深度空间分布和观测数据具有相似的特征。气温和降水在未来不同情景下均会波动上升,其中气温的增幅相对比较明显,达0.43 ℃·(10a)-1,而降水的增幅为0.63 mm·(10a)-1,新疆未来的气候总体上呈现出变暖变湿的趋势。新疆地区的平均积雪深度在未来不同时期相对基准期均呈增加的趋势。SSP1-1.9情景下,21世纪近期、中期和末期北部大部分地区的积雪深度将会有所增加;SSP1-2.6情景下,北部阿尔泰山地区的积雪深度在21世纪近期有所减小,但中期和末期将会有所增加;SSP2-4.5情景下,21世纪不同时期东部地区的积雪深度将会有所增加,北部和中部大部分地区在不同时期积雪深度将会变小;SSP3-7.0情景下,21世纪不同时期北部和西南地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP4-3.4和SSP4-6.0情景下,21世纪不同时期西南昆仑山地区的积雪深度将会普遍变小,东部地区的积雪深度将普遍增加;SSP5-8.5情景下,北部阿尔泰山地区和东部地区的积雪深度将普遍增加。  相似文献   

7.
未来50a中国地区冻土面积分布变化   总被引:16,自引:10,他引:6  
在检验CMIP3模式比较计划中模式在中国地区的温度模拟效果的基础上,选取模拟效果相对较好的HadCM3、EACHE5模拟结果,采用Kudryavtsev方法,应用数字化土壤和植被资料,借助Arc-GIS,对未来50 a中国地区在A2情景下的冻土空间变化趋势进行了模拟计算. 结果表明,在A2情景下,未来50 a中国地区的冻土呈现出退缩趋势,在2050年,多年冻土在青藏高原地区的巴颜喀拉山-唐古拉山之间、冈底斯山地区出现退化,中国的冻土面积较2006年减少约10.7%.  相似文献   

8.
40余年来中国地区季节性积雪的空间分布及年际变化特征   总被引:19,自引:8,他引:11  
王澄海  王芝兰  崔洋 《冰川冻土》2009,31(2):301-310
利用全国700余个气象站的地面积雪观测资料,分析了中国地区季节性积雪年际的时空变化特征.结果表明:新疆北部,东北-内蒙古地区和青藏高原西南和南部地区为我国季节性积雪的3个高值区,也是积雪年际变化变化大的地区,也即为中国积雪年际异常变化的敏感区.综合积雪深度和积雪日数的变化趋势,可大致分为3种变化类型:1)增加和减小同步,主要在新疆天山以北、青藏高原东部地区、内蒙古高原中东部到大兴安岭以西的地区,减少区人体在内蒙古西部、黄土高原和长江中下游地区;2)积雪深度增加但积雪日数减少,主要在东北平原东部的部分地区,长江上游的部分地区;3)积雪深度减小而积雪口数增加,主要位于青藏高原中部的部分地区.中国地区积雪总体上呈现出平缓的增长趋势,积雪深度和积雪日数的年代际变化趋势在20世纪60年代呈现为稍有增加;70年代有所下降;80年代又增加;90年代又有略有增加的趋势.  相似文献   

9.
全球变暖对中国区域积雪变化影响的数值模拟   总被引:9,自引:7,他引:2  
对20km高水平分辨率区域气候模式(RegCM3)所模拟的全球变暖背景下,中国区域未来积雪变化进行了分析.检验了模式对当代(1961-1990年)积雪日数、积雪量、积雪开始和结束时间的模拟,结果表明:与观测相比,模式对这些变量均有较好的模拟能力,但模拟的积雪日数和积雪量偏多,积雪开始时间偏早,结束日期偏晚.21世纪末(2071-2100年)在IPCC SRES A2温室气体排放情景下,中国大部分地区积雪日数和积雪量将减少;积雪开始时间推后,结束时间提前,但在各个地区表现也有所不同,并在个别地区出现相反的变化.将中国区域分为东北、西北、青藏高原3个分区,结果显示:各分区平均积雪量均为减少,积雪开始时间推后,而积雪结束时间则都将提前,其中,青藏高原地区的变化最为显著.  相似文献   

10.
利用1978-2005年逐日中国积雪深度数据集,分析了我国积雪空间分布特征和季节时空分布特征,并运用趋势线分析方法和均方根差模拟了积雪深度和积雪日数的变化趋势及异常空间变化特征.结果表明:青藏高原东南、青藏高原西部和南部、新疆北部和东北山区为我国积雪空间分布四大高值区.近28 a来,积雪深度和积雪日数呈增加趋势,20世纪80年代青藏高原明显增加和明显减少趋势并存,90年代整体明显增加,2000-2005年整体基本不变.青藏高原中东部、新疆北部以及东北山区为积雪深度异常变化敏感区,而青藏高原西部则为积雪日数异常变化敏感区.  相似文献   

11.
中国西部积雪日数类型划分及与卫星遥感结果的比较   总被引:12,自引:6,他引:6  
何丽烨  李栋梁 《冰川冻土》2011,33(2):237-245
根据中国105°E以西地区232个地面气象台站1951-2004年积雪日数观测资料和1980-2004年SMMR、SSM/I逐日雪深资料,划分中国西部积雪类型并分析其年代际变化,并对两种资料的结果进行了比较.结果表明:北疆、天山和青藏高原东部地区年平均积雪日数大于60 d,为稳定积雪区;南疆盆地中心、四川盆地和云南省南...  相似文献   

12.
青藏高原冬春季积雪异常与西南地区夏季降水的关系   总被引:4,自引:1,他引:3  
选取1961-2007年青藏高原冬、春季积雪日数资料和西南地区夏季降水资料,对高原积雪和降水作奇异值分解(SVD)分析.结果表明:冬春季高原积雪对西南地区夏季旱涝有重要的影响.冬、春季高原积雪的不同分布将造成后期西南地区夏季降水分布出现差异.西南地区夏季降水对冬季高原积雪异常最敏感的区域主要是四川东北部、重庆、西藏中西部,对春季积雪异常最敏感的区域主要位于四川东部、重庆、贵州东北部,以及西藏中东部.与降水敏感区相对应的冬季高原积雪分布的关键区是西藏中西部和青海中南部至四川西北部地区,春季则转变为西藏西部和青海部分地区.总的来说,冬季高原积雪的异常变化比春季对西南地区夏季降水的影响更为明显.因此,前期青藏高原积雪是西南地区夏季降水预测中的一个重要信号,对夏季西南地区降水有一定的指示和预测意义;冬季高原积雪日数尤其具有预报指示意义,可作为一个重要的预测指标.  相似文献   

13.
1993—2002年中国积雪水资源时空分布与变化特征   总被引:36,自引:15,他引:21  
车涛  李新 《冰川冻土》2005,27(1):64-67
利用1993—2002年SSM/I被动微波逐日积雪深度反演结果,研究了我国积雪水资源的分布与变化.结果表明:积雪储量近10a来没有明显的减少或增加趋势,但是存在年际间的波动;我国冬季积雪储量主要分布在东北、北疆、青藏高原东部和其边缘地区,以及华北地区;东北、北疆和青藏高原地区为我国的稳定积雪地区;青藏高原地区积雪储量小于东北地区,但年积雪日数大于东北地区.近10a最大积雪水资源量平均约为102.79km3,其中最大年份为1999/2000年度,约为131.34km3.  相似文献   

14.
青藏高原初春积雪的多尺度变化与北大西洋海温的关系   总被引:3,自引:3,他引:0  
陈志恒  张杰  徐玮平 《冰川冻土》2018,40(4):655-665
青藏高原冬、春季积雪变化影响东亚甚至全球春、夏季的环流及气候异常。利用中国西部环境与生态科学数据中心提供的中国雪深长时间序列数据集,美国大气海洋局提供的全球逐月扩展重建海表温度,以及欧洲中期天气预报中心提供的逐月再分析数据,对青藏高原初春(3、4月)积雪的多尺度变化与北大西洋海表温度的关系进行了研究。结果表明,初春青藏高原雪深异常与初春北大西洋关键区海温异常有显著的负相关关系。当初春关键区海温正(负)异常时,初春高原中部偏北腹地地区、东南部地区积雪深度减少(增加);初春北大西洋关键区海温异常通过激发下游青藏高原上空大气波列以及波作用通量异常来影响高原局地区域的温度和垂直运动,从而影响降雪的产生和积雪的累积。该结果为青藏高原初春积雪的多尺度变化及其影响提供了依据。  相似文献   

15.
青藏高原中东部积雪深度时空变化特征及其成因分析   总被引:6,自引:5,他引:1  
基于逐日积雪深度(雪深)、逐月气温和逐月降水量地面观测资料,利用数理统计方法分析了青藏高原中东部地区1961-2014年雪深时空变化特征及其成因,结果表明:青藏高原雪深空间分布不均,存在喜马拉雅山脉南坡(高原西南部)、念青唐古拉山-唐古拉山-巴颜喀拉山-阿尼玛卿山(高原中部)和祁连山脉(高原东北部)三处雪深高值区,冬季最大,其次是春秋季,夏季仅在纬度或海拔较高处才有雪深记录;从长期来看雪深以减少为主,尤其是夏秋季。在青藏高原普遍"增温增湿"背景下,雪深表现为先增后减的变化特征;雪深随海拔升高而增加,但最大雪深并非出现在最高海拔处;在不同季节雪深的气象要素成因上,冬季由降水主导,其余季节由气温主导。1961-1998年冬春季雪深增加与降水增多有关,而1998-2014年气温的上升以及降水的减少共同导致了雪深的减少,夏秋季雪深持续减少与同期气温持续升高有关。  相似文献   

16.
被动微波遥感估算雪水当量研究进展与展望   总被引:5,自引:0,他引:5  
车涛  李新 《地球科学进展》2004,19(2):204-210
被动微波遥感可以透过云层,全天候地提供地表一定深度的信息。星载被动微波遥感传感器的时间分辨率很高,在冰冻圈动态研究中有着重要的地位。在最近的二三十年中,大量被动微波遥感的应用都是在美国、加拿大、欧洲等地,而我国在这方面的研究相对较少。首先介绍了被动微波遥感数据在监测积雪方面的国内外研究进展,对现存的雪水当量(SWE)估算算法(和模型)的适用性进行讨论。然后,详细讨论了我国西部的青藏高原地区雪水当量的估算,阐明了利用SSM/I数据估算青藏高原地区雪水当量的复杂性,并指出了其复杂性产生的原因,提出了解决问题的方法,为该地区积雪动态的进一步研究提供了理论依据。  相似文献   

17.
雷向杰  李亚丽  李茜  王娟  陈卫东 《冰川冻土》2016,38(5):1201-1210
利用太白气象站1962-2014年地面积雪观测资料,太白、眉县气象站1980-2014年高山积雪观测记录和1988-2010年卫星遥感资料,分析了秦岭主峰太白山西部中山区、西部中高山区和中部中高山区积雪初、终日期、积雪日数和积雪深度等的变化特征,以及西部中山区积雪变化的成因.结果表明:1962-2014年太白山西部中山区积雪初日推迟,终日提前,初终间日数减少,积雪日数显著减少,积雪深度呈现波动变浅的趋势;1980-2014年西部中高山区积雪日数同样呈现波动减少趋势,西部中山区和中高山区年积雪日数减少率分别为3.2 d·(10a)-1和8.9 d·(10a)-1.1980-2014年中部中高山区积雪初、终日期和积雪日数变化趋势不明显.卫星遥感监测资料分析结果显示太白山地区积雪面积呈现波动减少趋势.1962-2014年西部中山区气温升高,降水减少,积雪参数与气候要素相关分析结果表明气温和累积雪深等参数变化关系密切,气温升高是太白山积雪减少的主要原因.1980-2014年太白山地区7月积雪日数很少,关中八景之一的“太白积雪六月(公历7月)天”已很少见到.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号