首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 687 毫秒
1.
利用MODIS逐日无云积雪产品与AMSR-E雪水当量产品进行融合, 获取了青藏高原500 m分辨率的高精度雪水当量产品, 通过研究青藏高原积雪时空动态变化特征, 分析了积雪覆盖日数、雪水当量以及总雪量的季节及年际变化. 结果表明: 青藏高原地区降雪主要集中在高海拔山区, 而高原腹地降雪较少, 降雪在空间上分布极为不均; 2003-2010年期间, 平均积雪日数呈显著减少趋势, 稳定积雪区面积在逐渐扩大, 常年积雪区面积在不断缩小. 与积雪日数时空变化相比, 雪水当量增加的区域与积雪日数增加的区域基本一致, 但喜马拉雅山脉在积雪日数减少的情况下雪水当量却在逐年增加, 表明该地区温度升高虽然导致部分常年积雪向季节性积雪过渡, 但降雪量却在增加. 总的积雪面积年际变化呈波动下降的趋势, 但趋势不显著, 且减少的比例很少. 最大积雪面积呈现波动上升后下降的趋势, 平均累积积雪总量呈明显的波动下降趋势, 年递减率为1.0×103 m3·a-1.  相似文献   

2.
应用2004—2010年EOS/MODIS遥感积雪监测资料,结合新疆89个气象站雪深、雪密度50年的观测记录,估算新疆冬季雪水当量,并对时空特征进行研究。结果表明:① 2004—2010年新疆年雪水当量最大峰值为368.83亿m3(2009—2010年)、最小峰值为93.91亿m3(2006—2007年),最大峰值是最小峰值的4倍左右,且6年中峰值出现的最早和最晚时间相差5旬。② 新疆雪水资源分布存在4个区域:南疆、东疆、伊犁和博州、北疆东北部,不同区域雪水当量峰值出现时间不同。新疆雪水当量峰值应该是4个区域峰值之和。③ 新疆雪水当量50年来呈现年际间的大幅波动,发展趋势沿着斜率为0.083 2的直线上升,表明雪水资源在逐年增多;波动幅度逐步加大,表明雪水资源偏少的年份有时也会发生。  相似文献   

3.
中国地区地面观测积雪深度和遥感雪深资料的对比分析   总被引:4,自引:1,他引:3  
比较了气象台站观测和卫星遥感(SMMR、 SSM/I、 AMSR-E)的积雪深度两种资料在空间分布、 年际变化及其与中国夏季降水之间关系的异同性.结果表明: 两种资料在积雪稳定区的分布比较一致, 积雪深度的大值区位于东北地区、 新疆北部和青藏高原地区; 对于季节性积雪区且积雪深度不大的区域而言, 二者之间存在着较大的差异, 尤其在江淮流域及长江中下游地区, 台站观测的积雪深度大于遥感得到的积雪深度; 平均而言, 两种资料获得的积雪深度在各地区基本一致.在新疆北部和高原南部, 二种资料的年际变化存在着差异, 在新疆北部, 台站观测大于遥感得到的积雪深度, 而在高原东南部遥感大于台站观测积雪.近30 a来, 两种资料获得的积雪深度在新疆北部和青藏高原的年际变化趋势基本一致, 新疆北部为增加趋势, 青藏高原有减少的趋势.值得注意的是, 在东北地区, 近30 a来两种类型资料的年际变化趋势呈相反变化.两种资料在新疆北部的相关最强; 东北、 青藏高原其次; 而高原东南部最差, 在使用时应加注意.青藏高原地区的两种积雪资料与中国夏季降水的相关"信号"基本一致.青藏高原地区积雪与东北西部地区和长江中下游夏季降水之间的相关最为显著.资料间的差异性并不影响高原地区积雪对中国夏季降水"信号"的应用.  相似文献   

4.
东北冻土区积雪深度时空变化遥感分析   总被引:5,自引:5,他引:0  
积雪作为冰冻圈的重要组成部分,对地面有保温作用,在消融时又吸收热量降低地面温度,影响冻土发育,对气候的变化十分敏感。利用微波遥感数据1979-2014年逐日中国雪深长时间序列数据集,采用GIS空间分析和地学统计方法,分析了东北冻土区积雪深度的时空变化规律及其异常变化。结果表明,东北冻土区多年平均雪深为2.92 cm,年平均雪深最高值出现在岛状多年冻土区,最低值出现在季节冻土区。东北冻土区年平均积雪深度变化以减少为主,占区域面积的39.77%,减少速率为0.07 cm·(10a)-1。东北冻土区年平均积雪深度在1986年发生突变,开始出现减少的趋势,这与气温突变年份较为吻合。受地形和气温变化影响,年平均积雪深度减少的敏感区域主要发生在岛状多年冻土区。气温是影响东北冻土区年平均积雪深度变化最主要的因素,降水量、风速、湿度、日照时数对积雪深度均有影响。季节冻土区积雪深度对气候的敏感性要大于多年冻土区。  相似文献   

5.
雪深、雪水当量是积雪研究中重要参数,其在流域水量平衡和融雪径流预报以及雪灾监测与评价中起着重要作用。Chang等(1987)以辐射传输理论和米氏散射为理论基础,假定积雪密度和颗粒大小为常数,利用实测雪深数据和SMMR的亮温数据,通过统计回归方法,建立了雪深与18 GHz和37 GHz水平极化的亮温梯度之间的关系,发展了SMMR半经验的反演雪深的算法。后在此基础上又发展了针对SSM/I的半经验反演雪深算法。2002年发射的装载于Aqua卫星上的AMSR E是新一代的被动微波辐射计,性能较以往星载被动微波辐射计有较大提高,采用了改进后的SSM/I的半经验算法作为其估算全球雪水当量的反演算法。 将AMSR E的雪水当量产品与气象台站观测的雪水当量进行比较,发现在新疆地区和青藏高原地区雪水当量的RMSE分别达到31.8 mm和21 mm。本研究旨在建立基于AMSR E亮温数据,适用于中国西部地区的雪深和雪水当量反演算法。首先收集整理了2003年新疆地区的雪深、雪水当量数据和AMSR E亮温数据,去除错误样本,利用统计回归的方法,建立了新疆的反演雪深、雪水当量的半经验算法,算法中加入积雪覆盖度参数,较以往的算法有所改进,与气象台站观测数据比较,结果也表明新疆地区建立的经验算法较AMSR E的雪水当量算法有较大改进,RMSE为15.7 mm。但青藏高原地区因海拔高,地形复杂,大部分地区积雪较浅,空间分布不均和冻土存在等诸多因素运用同样的方法建立反演算法,结果不甚理想,以后的研究将重点消除这些干扰因素。  相似文献   

6.
IPCC AR4多模式对中国地区未来40 a雪水当量的预估   总被引:3,自引:2,他引:1  
王芝兰  王澄海 《冰川冻土》2012,34(6):1273-1283
通过评估参加CMIP3计划的22 个GCM在20 世纪气候情景(20C3M)下中国地区雪水当量模拟能力的检验, 挑选出模拟能力较好的模式, 通过多模式集合方法, 对SEARS的模拟结果进行集合, 预估未来40 a雪水当量在中国地区的时空变化特征.结果表明: 在A1B情景下和B1情景下, 中国地区未来40 a雪水当量年际变化均呈减少趋势; 在A1B和B1情景下, 青藏高原地区、 华北平原地区、 长江中游地区及东北北部地区的雪水当量均呈减少趋势, 其中在昆仑山西段帕米尔高原地区减少最为显著, 其次为喜马拉雅山区和巴颜喀拉山东段地区.在中国北部的内蒙古高原地区、 云贵高原等部分地区的雪水当量则有所增加.总体上, A1B情景下比B1情景下雪水当量的减少更为明显. 2021-2050年雪水当量在青藏高原减少显著; 对于季节变化来说, 在秋冬季积雪的累积期, 雪水当量可能增加, 尤其在10-12月, 而在积雪消融的春夏季(2-6月)有所减少.  相似文献   

7.
中国近50a积雪日数与最大积雪深度的时空变化规律   总被引:10,自引:7,他引:3  
王春学  李栋梁 《冰川冻土》2012,34(2):247-256
通过REOF和非参数Mann-Kendall趋势检验法,以1958/1959-2007/2008年度中国557个气象台站的积雪观测资料为基础,对中国积雪日数与最大积雪深度的时空演变规律进行分析.结果表明:东北、新疆北部和青藏高原中东部为中国积雪日数和最大积雪深度的3个大值区;近50a来,春、秋季中国积雪日数和最大积雪深度在整体上呈现缓慢减少的趋势,冬季积雪日数和最大积雪深度呈现增加的趋势.气温是影响积雪产生和维持的重要因素.  相似文献   

8.
利用1978-2005年逐日中国积雪深度数据集,分析了我国积雪空间分布特征和季节时空分布特征,并运用趋势线分析方法和均方根差模拟了积雪深度和积雪日数的变化趋势及异常空间变化特征.结果表明:青藏高原东南、青藏高原西部和南部、新疆北部和东北山区为我国积雪空间分布四大高值区.近28 a来,积雪深度和积雪日数呈增加趋势,20世纪80年代青藏高原明显增加和明显减少趋势并存,90年代整体明显增加,2000-2005年整体基本不变.青藏高原中东部、新疆北部以及东北山区为积雪深度异常变化敏感区,而青藏高原西部则为积雪日数异常变化敏感区.  相似文献   

9.
积雪是重要的淡水资源,对气候变化、生态系统和人类经济社会发展都具有显著影响。第三极和北极地区是北半球积雪的主要分布区,但两区域积雪时空特征存在较大差异。本研究在评估了五种雪水当量产品(GlobSnow V2.1、GlobSnow V3.0、CanSISE、GLDAS-2.0、GLDAS-2.2)精度的基础上,提出利用最大雪水累积量指标对两区域积雪水资源进行评价。结果表明,1981—2010年第三极和北极地区多年平均最大雪水累积总量分别为(46.07±7.44) km3和(1 255.73±81.35) km3,喜马拉雅山脉、喀喇昆仑山脉和念青唐古拉山脉地区是第三极积雪水资源最丰富的区域,北极积雪水资源大值区则主要分布在俄罗斯远东地区东部、西西伯利亚、加拿大马更些山脉和巴芬岛东部。两区域最大雪水累积量总体均呈现减少趋势,但在年际变化和波动性上存在差异。  相似文献   

10.
以天山山区为研究区,利用MODIS 8d最大积雪合成数据MOD10A2,分析天山山区积雪的时间变化和空间变化情况以及不同高程带的积雪覆盖率的变化情况;结合SSM/I亮温数据和站点观测数据建立的雪深反演模型并反演研究区的雪深,根据研究区的地势起伏情况,提取特殊地形进行分析其雪深变化情况,进一步分析整个天山山区的积雪深度的时空特征,并对结果进行验证,并且对不同高程带的积雪深度进行分析.研究结果表明:1)天山山区积雪面积分布的趋势表现为自西向东、自北向南减少,总体是呈波动中减少的趋势,到了2012年天山山区年最大积雪面积为37.69×104 km2.2)积雪覆盖率与高程呈正比,在高山区可达70%以上.积雪深度分布呈自西向东、由北向南减少,深度最大的是在天山北部的博格达峰、河源峰附近,可以达到80 cm以上,最小在哈密地区的托木尔提峰附近积雪深度仅在10 cm左右.积雪深度与海拔呈正相关,最大雪深出现在4500 m以上的高山区.3)对雪深反演结果的精度评价表明,模型在10~30 cm雪深范围内,反演平均误差为-2.47 cm;在雪深<10 cm或>30 cm的局部地区存在较大偏差.  相似文献   

11.
欧亚大陆积雪分布及其类型划分   总被引:2,自引:0,他引:2  
张廷军  钟歆玥 《冰川冻土》2014,36(3):481-490
利用1966-2012年欧亚大陆1152个地面气象台站积雪深度资料,对欧亚大陆积雪深度、累计积雪天数和连续积雪天数的空间分布进行了分析,以连续积雪天数为标准对欧亚大陆季节性积雪类型进行了划分,并与应用累计积雪天数对积雪区类型的划分进行了比较研究. 结果表明:欧亚大陆积雪分布具有显著纬度地带性特征,积雪深度、累计积雪天数和连续积雪天数的大值分布区均位于俄罗斯平原的东北部、科拉半岛、西西伯利亚平原、中西伯利亚高原以及俄罗斯远东北部大部分区域. 与累计积雪天数划分方法相比,利用连续积雪天数对欧亚大陆季节性积雪分区,在前苏联地区积雪类型分区差异并不显著,但蒙古和中国的稳定积雪区明显缩减,青藏高原无稳定积雪区,中国大部分地区为非周期性不稳定积雪区. 两种积雪分区划分方法比较结果显示,连续积雪天数划分方法更能体现积雪累积的连续性和持久性,更符合对稳定积雪和不稳定积雪的划分标准.  相似文献   

12.
基于多源数据的西藏地区积雪变化趋势分析   总被引:3,自引:1,他引:2  
巴桑  杨秀海  拉珍  郑照军  旷达  拉巴 《冰川冻土》2012,34(5):1023-1030
利用1980—2009年气象台站的观测数据、 北半球NOAA周积雪产品和2001—2010年500 m分辨率的EOS/MODIS积雪产品等多源资料, 从不同角度对近30 a来西藏区域积雪变化趋势进行了分析. 结果表明: 不同资料分析均显示, 近30 a来西藏地区积雪不断减少, 尤其以近些年较为明显. 近30 a积雪日数、 最大积雪深度总体上呈现下降趋势, 尤其是进入21世纪以来, 下降趋势非常明显. 从秋冬春季节的积雪变化趋势来看, 冬、 春两季的积雪在减少, 而秋季在增多, 这些变化趋势都与各季节的气温和降水密切相关. NOAA资料显示, 近30 a来西藏地区的积雪覆盖面积正在逐步减少; 季节变化略有不同, 春、 秋两季略呈上升趋势, 冬、 夏两季在减少, 且夏季减少趋势较明显. MODIS资料分析表明, 近10 a来西藏地区的积雪总体呈下降趋势, 尤其是2007年下半年开始下降明显. 秋季的积雪在增加, 冬、 春、 夏三季的积雪趋于减少, 且春季的下降趋势最明显, 其次为冬季, 夏季的减少幅度最小. 不同海拔的积雪都有减少趋势, 最明显的是海拔4 000~5 000 m的积雪, 其次是海拔5 000~6 000 m段. 按地理区域分析, 近10 a来西藏东、 西、 中3个区域的积雪都呈减少趋势, 其中西部的下降趋势最明显, 其次为中部, 东部相对较稳定.  相似文献   

13.
通过2007-2011年纳木错站人工积雪观测资料,对西藏纳木错流域MODIS两种积雪产品(MOD10A1和MOD10A2)进行了精度验证,分析了纳木错流域积雪累积和消融的空间差异,以及流域积雪覆盖率的时空变化;利用纳木错站人工积雪观测资料及自动气象站资料,分析了纳木错流域积雪要素(积雪深度、雪水当量、积雪密度)的时间变化及其与气候参数(气温、降水量、风速等)的关系.结果表明:纳木错流域MOD10A2数据的积雪识别精度(67.1%)高于MOD10A1(42.2%),总识别精度(73.0%)略低于MOD10A1数据(78.4%).纳木错流域积雪累积和消融存在空间差异,积雪在流域南部的念青唐古拉山脉最先累积,之后为流域东部,最后为流域西部;积雪消融的空间变化则相反.由此导致流域积雪日数南部最大、东部次之、西部及西北部最小.纳木错流域各积雪要素的年内变化存在双峰值特征,峰值分别出现在10-11月和1月,积雪在10-11月受降水和气温共同作用,12月至次年3月主要受气温影响.纳木错流域的平均积雪覆盖率为21.9%,受湖泊效应影响区域(主要为东部地区)达到50.6%,而其他区域仅为18.3%.同时,受湖泊效应影响,纳木错平均积雪深度、积雪水当量均显著大于周边地区.  相似文献   

14.
新疆阿勒泰地区是中国季节性积雪水资源最为丰富的地区之一。2016年12月在克兰河中游地区开展了积雪观测,利用直尺和量雪筒测量雪深和雪密度,调查了积雪水资源的分布情况;利用针式温度计测量雪层温度,获取了雪层之间的温度梯度;利用雪特性分析仪和显微镜测量了积雪剖面的雪层密度、液态水含量、介电常数和雪粒径。通过分析研究区积雪水资源的空间分布和积雪特性的垂直分异发现:研究区雪深的分布非常不均匀,北部的雪深总体上大于南部,即使在同一地区,雪深也因风力等原因而分布不均匀;研究区总体上属于"干寒型"积雪,密度较小,且密实化迅速;各雪层属于干雪或者湿度极低的潮雪,绝大多数雪层的液态水含量在0.3%以下;积雪温度总体上从表层到底层逐渐升高,表层温度日变化较大;阴天积雪温度高于晴天,各雪层温度日变化小于晴天,且午后积雪会出现负温度梯度,冷中心出现在积雪次表层;雪粒径较小,雪粒长短轴比的最小值出现在中间层,且符合新雪的粒径特点。  相似文献   

15.
1979-2014年东北地区雪深时空变化与大气环流的关系   总被引:2,自引:2,他引:0  
基于被动微波遥感反演的雪深数据集(1979-2014年),利用Mann-Kendall检验、R/S分析、相关分析和小波分析等方法研究了东北地区雪深时空变化特征及其与大气环流的关系。结果表明:1979-2014年,东北地区年均雪深总体呈减小趋势,减小速率为-0.084 cm·(10a)-1。其中,春季雪深减小速率最大,为-0.19 cm·(10a)-1P<0.05),其次是冬季[-0.17 cm·(10a)-1],而秋季雪深减小速率最小,仅为-0.05 cm·(10a)-1。空间上,平原区(东北平原和三江平原)与少部分高原区(呼伦贝尔高原西南部)年均雪深呈增大趋势,山地(大、小兴安岭和长白山)与高原大部(内蒙古高原)雪深呈减小趋势,而且雪深增大区域的面积和变化速率均小于雪深减小的地区。东北地区年均雪深变化的Hurst指数为0.85,表明雪深未来减小的持续性很强;同时雪深变化具有22 a的主周期。春秋季雪深变化与东亚槽强度及北半球极涡面积呈显著负相关性,而冬季雪深与北半球副高强度关系密切。  相似文献   

16.
三江源地区气象站点稀疏,依靠地面台站数据难以反映地面真实积雪情况。利用卫星遥感数据引入重心模型分析了三江源地区1980—2019年4个积雪参数(积雪日数、积雪深度、积雪初日和积雪终日)的时空动态特征,利用Mann-Kendall检验和Sen斜率估计分析了积雪和气候因子的变化趋势,并探究积雪对气候变化的响应。结果表明:1980—2019年三江源地区呈现积雪日数和积雪深度减少、积雪初日推迟、积雪终日提前的变化趋势,而该区域同期的气温和降水量则呈现上升趋势;4个积雪参数重心均呈现出东移趋势,而同期气温重心则呈现西移趋势,气温重心位置西移速率分别是积雪日数和积雪深度重心位置东移速率的6倍和2倍。这表明该区域4个积雪参数以及气候因子的变化趋势具有较强的空间异质性,西部气温升高速率大于东部,导致西部积雪日数和积雪深度减少速率同样大于东部,从而导致气温重心西移而积雪参数重心东移。澜沧江源区积雪日数减少、积雪深度减少、积雪初日推迟以及积雪终日提前的速率最大,其次是长江源区和黄河源区。进一步的相关性分析表明,三江源地区年平均气温的升高是导致积雪日数和积雪深度减少、积雪初日推迟、积雪终日提前的主要影响因子,积雪日数对气温升高响应最敏感,其次是积雪深度、初日和终日;而年降水量与4个积雪参数的相关性均不显著。研究可为三江源地区水资源和生态环境保护提供基础资料和理论依据。  相似文献   

17.
利用1971—2016年辽宁省61个气象站气温、地表温度、积雪日数和积雪深度资料,分析了积雪的保温作用及其对地气温差的影响。结果表明:更换自动站前后地表温度观测方式的差异导致地气温差显著增大,地气温差的增大程度受所在区域积雪日数、积雪深度的影响显著。在积雪期较长、积雪较厚的地区,积雪引起反照率增大,使得雪面温度降低,导致雪气温差减小,而雪的保温作用使得地气温差显著增大。因此,更换自动站前地(雪)气温差与积雪日数呈显著负相关,而更换自动站后地气温差与积雪日数呈显著正相关。各台站之间地气温差随积雪深度的变化系数差异较大,为0.045~0.858 ℃?cm-1,在年平均积雪日数<40 d、年平均极端积雪深度<10 cm的区域,积雪的保温作用随积雪深度增大而显著增大;在年平均积雪日数>40 d、年平均极端积雪深度>10 cm的区域,10 cm以下的积雪对土壤保温作用随积雪深度增大显著,当积雪深度>10 cm后,其保温作用随积雪深度增大的幅度明显减小。  相似文献   

18.
1981-2010年青藏高原积雪日数时空变化特征分析   总被引:2,自引:0,他引:2  
全球气候变暖大背景下, 作为冰冻圈最为活跃和敏感因子, 青藏高原积雪变化备受国内外关注. 本文利用青藏高原(以下简称高原)1981-2010年地面观测积雪日数资料, 较系统地分析了近30年来高原积雪日数的时空变化特点. 主要结论如下: (1) 近30年内高原平均年积雪日数出现了非常显著的减少趋势, 减少幅度达4.81 d·(10a)-1, 其中冬季减幅最为明显, 为2.36 d·(10a)-1, 其次是春季(2.05 d·(10a)-1), 而夏季最少(0.21 d·(10a)-1); (2) 30年间, 积雪日数较少的年份多数出现在本世纪初10年内, 且2010年属于异常偏少年, 高原积雪日数在1997年左右发生了由多到少的气候突变; (3) 在空间上, 北部柴达木盆地及其附件区域部分气象台站观测的年积雪日数出现了不显著的增加趋势之外, 高原91.5%的气象站年积雪日数呈减少趋势, 且高寒内陆中东部和西南喜马拉雅山脉南麓等高原历年积雪日数高值区域减少最为明显; (4) 由于受到气象台站所在地理位置、地形地貌、地表类型、海拔高度、局地气候以及大气环流等综合影响, 高原平均年积雪日数的空间差异很大, 最多达146 d, 最少的则不足1 d, 平均仅为38 d, 其中高寒内陆中东部是积雪日数最长的区域, 而东南部海拔和纬度较低的干热河谷地区积雪日数最少.  相似文献   

19.
积雪是水文过程的重要环节,基于1979—2017年中国雪深长时间序列数据集、中国区域地面气象要素数据集提供的降水和气温数据,结合DEM数字高程模型等,运用Mann-Kendall检验法、Sen氏坡度法、Pearson相关分析法,分析了雅鲁藏布江流域雪深时空变化分布特征,并对雪深与气象因子(气温、降水)和地形因子(高程、坡度、坡向)的相关性进行了分析。结果表明:1979—2017年雅江流域多年平均雪深为1.95 cm,且以0.02 cm·a-1的速率呈现显著减少趋势;雪深空间分布特征差异性明显,呈现“二高二低”相间分布的特征,高值区为流域西部边缘和东部的山地区域,低值区为中游河谷、流域出口低谷区;气象因子对雪深的变化起决定性作用,其中年平均气温与雪深的相关系数数值为-0.63,二者相关性显著;雪深呈现出随着高程的增加而增加的变化趋势,但最大雪深并非出现在最高海拔处;雪深随坡度的变化呈现“减少—增加—减少”三段式分布规律,且东坡和南坡的雪深厚度高于西坡和北坡的雪深厚度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号