首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

This paper is an expansion of the lectures presented by the authors at the Canadian Middle Atmosphere Model (CMAM) summer school, 25–29 August 1997. It attempts to fulfill several goals as did the curriculum for the summer school. Firstly, it has a large tutorial component allowing newcomers a rapid introduction to the field, secondly it surveys the field of stratospheric chemistry, and thirdly it attempts to bring the reader to the forefront of some of the problem areas in stratospheric chemistry. As such, it includes much background information such as the magnitude of rate coefficients, photolysis rates and their calculation and time constants. The intended audience is individuals about to commence study or research in the field of atmospheric chemistry or established atmospheric scientists in other areas wishing to expand their knowledge of this topic.

The basic chemistry of the ozone layer is described with an emphasis on the catalytic cycles and the equilibria between “reservoir” and “active” species. To this end, a compendium of the important aspects of heterogeneous chemistry is also provided. The application of box (0‐dimensional) and more elaborate (1‐, 2‐ and 3‐dimensional) models to compare and validate with measurements is discussed. Also, factors affecting the present and future trends in ozone concentration, both at mid‐latitudes and in the polar region, are presented.  相似文献   

2.
We call attention to the likely importance of the potential reaction OH+ClOHCl+O2. It may only be a minor channel for the reaction of OH with ClO, which is often ignored in models, but if it occurs it considerably increases the rate of recovery of HCl after an air parcel has encountered a polar stratospheric cloud (PSC). The net effect of this reaction on the ozone concentration depends on the relative HCl concentration and whether the air parcel is in a PSC. When an air parcel is in a PSC and the HCl concentration is less than the sum of the HOCl and ClONO2 concentrations, heterogeneous ClO x production is rate limited by the production of HCl. Under these conditions the reaction allows HCl to be reprocessed more rapidly by the heterogeneous reactions of HCl with HOCl and ClONO2. This allows high ClO x concentration to be maintained for longer, and at a slightly higher level, than would otherwise be possible which in turn leads to more ozone depletion. When there are PSCs but HCl is in excess, or outside of the PSC regions (i.e. during the recovery phase), the reaction will always reduce the ClO/HCl ratio and hence slightly reduce the ozone loss.  相似文献   

3.
The variability of Antarctic total column ozone in 1980–2018 is considered. The study analyzes trends in Antarctic total column ozone during the study period as well as the physical and chemical processes affecting the seasonal variability of total column ozone. The main attention is paid to the influence of dynamical processes on the stability of the Antarctic polar vortex, to the formation of polar stratospheric clouds, and to the influence of gas-phase and heterogeneous processes on the surface of polar stratospheric clouds and sulfate aerosol. The method of research is the analysis of the results of ground and satellite observations and numerical modeling of physical and chemical processes over the Antarctic using a global chemistry transport model with the dynamical parameters specified from reanalysis data.  相似文献   

4.
The heterogeneous removal of N2O5 by sulphuric acid aerosols as been invoked to explain the decline of mid-latitude ozone in the last decade. We have used a photochemical model to study measurements of odd-nitrogen made by Spacelab 3. The gas-phase photochemical model overestimates the amount of N2O5 present. The loss of N2O5 by aerosols does reduce N2O5, but is likely to be slower than assumed in WMO (1992). The sunset measurements at 25.5 km cannot be explained by heterogeneous loss of N2O5 and is more likely to be due to a faster photolysis than assumed. New absorption cross-sections of HNO3 reduce the photolysis of HNO3 so that the model with gas-phase chemistry only gives better agreement at 19 km, than a model including heterogeneous chemistry.  相似文献   

5.
The interactively coupled chemistry-climate model ECHAM4.L39(DLR)/CHEM is employed in sensitivity calculations to investigate feedback mechanisms of dynamic, chemical, and radiative processes. Two multi-year model simulations are carried out, which represent recent atmospheric conditions. It is shown that the model is able to reproduce observed features and trends with respect to dynamics and chemistry of the troposphere and lower stratosphere. In polar regions it is demonstrated that an increased persistence of the winter vortices is mainly due to enhanced greenhouse gas mixing ratios and to reduced ozone concentration in the lower stratosphere. An additional sensitivity simulation is investigated, concerning a possible future development of the chemical composition of the atmosphere and climate. The model results in the Southern Hemisphere indicate that the adopted further increase of greenhouse gas mixing ratios leads to an intensified radiative cooling in the lower stratosphere. Therefore, Antarctic ozone depletion slightly increases due to a larger PSC activity, although stratospheric chlorine is reduced. Interestingly, the behavior in the Northern Hemisphere is different. During winter, an enhanced activity of planetary waves yields a more disturbed stratospheric vortex. This "dynamical heating" compensates the additional radiative cooling due to enhanced greenhouse gas concentrations in the polar region. In connection with reduced stratospheric chlorine loading, the ozone layer clearly recovers.  相似文献   

6.
Photolysis rates in the troposphere are greatly affected by the presenceof cloud and aerosol layers. Yet, the spatial variability of theselayers along with the difficulty of multiple-scattering calculationsfor large particles makes their inclusion in 3-D chemical transportmodels computationally very expensive.This study presents a flexible and accurate photolysis scheme, Fast-J,which calculates photolysis rates in the presence of an arbitrary mix ofcloud and aerosol layers. The algorithm is sufficiently fast to allow thescheme to be incorporated into 3-D global chemical transport models andhave photolysis rates updated hourly. It enables tropospheric chemistrysimulations to include directly the physical properties of the scatteringand absorbing particles in the column, including the full, untruncatedscattering phase function and the total, uncorrected optical depth.The Fast-J scheme is compared with earlier methods that have been usedin 3-D models to parameterize the effects of clouds on photolysis rates.The impact of Fast-J on tropospheric ozone chemistry is demonstratedwith the UCI tropospheric CTM.  相似文献   

7.
In late December 2012 a blocking anticyclone followed by the event of minor stratospheric warming, set in the troposphere over West Siberia and, after that, over the European part of Russia. As a result of the deformation of a polar stratospheric vortex, the temperature in the lower stratosphere over Obninsk dropped below the threshold of the formation of polar stratospheric clouds. The lidar measurements of temperature, ozone values, and aerosol characteristics in the middle atmosphere were carried out at the lidar station during this atmospheric event. In three cases, polar stratospheric clouds (PSCs) referred to NAT Ia type according to the sounding results, were registered at the height of about 20 km. No considerable decrease in the ozone concentration in the area of PSC formation was revealed in these measurements.  相似文献   

8.
The total ozone reduction in the Arctic during the winters of 1993/94 and 1994/95 has been evaluated using the ground-based total ozone measurements of five SAOZ spectrometers distributed in the Arctic and from number density profiles of a balloon-borne version of the instrument. The ozone change resulting from transport has been removed using a 3D Chemistry Transport Model (CTM) run without chemistry. A cumulative total ozone depletion at the end of winter in March of 18% ± 4% in 1994 and of 32% ± 4% in 1995 was observed within the polar vortex, and of 15% ± 4% in both years outside the vortex. This evaluation is not sensitive to the vertical transport in the model. The periods, locations and altitudes at which ozone loss occurred were tightly connected to temperatures lower than NAT condensation temperature. The maximum loss was observed at 50 hPa in 1994 and lower, 60-80 hPa, in 1995. Half of the depletion in 1994 and three quarters in 1995 occurred during the early winter, showing that a late final warming is not a prerequisite for large ozone destruction in the northern hemisphere. The timing, the geographical location and the altitude of the ozone losses are well captured by the 3D CTM photochemical model using current chemistry, but its amplitude at low sun during the early winter, is underestimated. The model simulations also capture the early season reductions observed outside the vortex. This suggests that the losses occurred in situ in the early winter, when low temperatures are frequent, and not later in March, when ozone is most reduced inside the vortex, which would be the case if leakage from the vortex was the cause of the depletion.  相似文献   

9.
A one-dimensional coupled climate and chemistry model has been developed to estimate past and possible future changes in atmospheric temperatures and chemical composition due to human activities. The model takes into account heat flux into the oceans and uses a new tropospheric temperature lapse rate formulation. As found in other studies, we estimate that the combined greenhouse effect of CH4, O3, CF2Cl2, CFCl3 and N2O in the future will be about as large as that of CO2. Our model calculates an increase in average global surface temperatures by about 0.6°C since the start of the industrial era and predicts for A.D. 2050 a twice as large additional rise. Substantial depletions of ozone in the upper stratosphere by between 25% and 55% are calculated, depending on scenario. Accompanying temperature changes are between 15°C and 25°C. Bromine compounds are found to be important, if no rigid international regulations on CFC emissions are effective. Our model may, however, concivably underestimate possible effects of CFCl3, CF2Cl2, C2F3Cl3 and other CFC and organic bromine emissions on lower stratospheric ozone, because it can not simulate the rapid breakdown of ozone which is now being observed worldwide. An uncertainty study regarding the photochemistry of stratospheric ozone, especially in the region below about 25 km, is included. We propose a reaction, involving excited molecular oxygen formation from ozone photolysis, as a possible solution to the problem of ozone concentrations calculated to be too low above 45 km. We also estimate that tropospheric ozone concentrations have grown strongly in the northern hemisphere since pre-industrial times and that further large increases may take place, especially if global emissions of NOx from fossil fuel and biomass burning were to continue to increase. Growing NOx emissions from aircraft may play an important role in ozone concentrations in the upper troposphere and low stratosphere.  相似文献   

10.
Abstract

In a sensitivity study, the influence of an observed stratospheric zonal ozone anomaly on the atmospheric circulation was investigated using the Fifth Generation European Centre Hamburg Model (ECHAM5) which is a general circulation model. The model was run from 1960 to 1999 (40 years) with a mean seasonal cycle of zonally symmetric ozone. In order to isolate the induced dynamical influence of the observed zonally asymmetric part of the three-dimensional stratospheric ozone, a second run was performed for the boreal extratropics using prescribed monthly means from the 40-year reanalysis dataset from the European Centre for Medium-range Weather Forecasts (ERA-40). The main findings are the interdecadal westward shift of the polar vortex at about 65°N and a significant increase in the number of stratospheric sudden warmings during the 1980–99 period. Under the action of zonally asymmetric ozone a decrease in the Arctic Oscillation was identified between the mid-1980s and the mid-1990s. The lag correlation between the mean Arctic Oscillation at the surface and the daily stratospheric northern annular mode increased in mid-winter. Furthermore, we examined the influence of the stratospheric zonal ozone anomaly on Rossby wave breaking in the upper troposphere and found a significant westward shift of poleward Rossby wave breaking events over western Europe in the winter. By this we show that the stratospheric zonal ozone anomaly has a strong influence on the tropospheric circulation as a result of enhanced dynamical coupling processes.  相似文献   

11.
Numerical schemes for the calculation of photolysis rates are usually employed in simulations of stratospheric chemistry. Here, we present an improvement of the treatment of the diffuse actinic flux in a widely used stratospheric photolysis scheme (Lary and Pyle, 1991). We discuss both the consequences of this improvement and the correction of an error present in earlier applications of this scheme on the calculation of stratospheric photolysis frequencies. The strongest impact of both changes to the scheme is for small solar zenith angles. The effect of the improved treatment of the diffuse flux is most pronounced in the lower stratosphere and in the troposphere. Overall, the change in the calculated photolysis frequencies in the region of interest in the stratosphere is below about 20%, although larger deviations are found for H2O, O2, NO, N2O, and HCl.  相似文献   

12.
Ozone evolution and diabatic descent in the Arctic polar vortex in winter 1995/1996 was studied with a newly developed diabatic trajectory–chemistry model (DTCM). To study the chemical and dynamic evolution of the species in the polar vortex, 400 diabatic trajectories were calculated in the vortex core and edge region by using three-dimensional (3-D) wind data provided by the European Centre for Medium-Range Weather Forecasts (ECMWF). The averaged diabatic descending motion and ozone behavior were obtained for particles started from the core and from the edge region of the vortex. The difference in ozone-loss rates as well as the difference in descending rates between the vortex core and the vortex-edge region was not statistically significant. The average cumulative ozone loss of 65 ± 16% in the vortex core obtained from the model calculations was consistent with the estimates obtained with a different method (Match experiment). The model results for the vortex core were compared with those obtained using trajectories with the vertical winds calculated on the basis of radiative cooling rates as used by the SLIMCAT 3-D chemical transport model. Although the trajectories based on cooling rates exhibited lower descending rates than those based on 3-D analyzed wind data, the ozone behavior was similar for both types of trajectory. Ozonesonde data from two stations (Ny-Alesund in the vortex core and Yakutsk in the vortex edge) were compared with the model results. For Lagrangian estimation of the ozone loss at these stations, the descending rates obtained by the diabatic trajectory calculations were used. Good agreements were obtained between the model results and observations for both the vortex core and edge region. These results suggest that strong ozone depletion occurred not only in the core, but also in the edge region of the vortex, and that air masses from the mid-latitudes did not appreciably affect the degree of ozone depletion in this winter–spring period. The sensitivity of the model to different descending rates and to the presence of large nitric acid trihydrate (NAT) particles was also examined.  相似文献   

13.
NUMERICAL SIMULATION OF THE FORMATION MECHANISM OF THE ANTARCTIC OZONE HOLE   总被引:1,自引:0,他引:1  
The global zonally averaged atmospheric chemistry model is developed in this paper.Theformation mechanism of the Antarctic ozone hole is numerically simulated using the model to checkthe viewpoints on the formation mechanism.The results show that:(1)The Antarctic ozone hole is a special phenomenon resulting from the heterogeneousreactions on the surface of the polar stratospheric cloud particles,under the special conditions oftemperature and circulation in Antarctic spring.The heterogeneous reactions reduce the NO_2concentration,resulting in the decrease of ozone production rate.The ozone content decreaseswhen its production is less than its destruction.This is the direct cause for the formation of theAntarctic ozone hole.(2)The impact of the polar vortex on the transport of trace species is not the determinativefactor in the formation of the Antarctic ozone hole.but makes the intensity of the ozone holechanged.(3)The solar cycles have negligible influence on the intensity of the Antarctic ozone holethrough photochemical reactions.  相似文献   

14.
Particulate matter with diameters of 2.5 μm or smaller(PM_(2.5)) and ozone(O_3) are major pollutants in the urban atmosphere. PM_(2.5) can affect O_3 by altering the photolysis rate and heterogeneous reactions. However, these two processes and their relative importance remain uncertain. In this paper, with Nanjing in China as the target city, we investigate the characteristics and mechanism of interactions between particles and O_3 based on ground observations and numerical modeling.In 2008, the average concentrations of PM_(2.5) and O_3 at Caochangmen station are 64.6 ± 47.4 μg m~(-3) and 24.6 ± 22.8 ppb,respectively, while at Pukou station they are 94.1 ± 63.4 μg m~(-3) and 16.9 ± 14.9 ppb. The correlation coefficient between PM_(2.5) and O_3 is -0.46. In order to understand the reaction between PM_(2.5) and O_3, we construct a box model, in which an aerosol optical property model, ultraviolet radiation model, gas phase chemistry model, and heterogeneous chemistry model,are coupled. The model is employed to investigate the relative contribution of the aforementioned two processes, which vary under different particle concentrations, scattering capability and VOCs/NOxratios(VOCs: volatile organic compounds;NOx: nitric oxide and nitrogen dioxide). Generally, photolysis rate effect can cause a greater O_3 reduction when the particle concentrations are higher, while heterogeneous reactions dominate O_3 reduction with low-level particle concentrations.Moreover, in typical VOC-sensitive regions, O_3 can even be increased by heterogeneous reactions. In Nanjing, both processes lead to O_3 reduction, and photolysis rate effect is dominant. Our study underscores the importance of photolysis rate effect and heterogeneous reactions for O_3, and such interaction processes should be fully considered in future atmospheric chemistry modeling.  相似文献   

15.
The paper discusses the potential effects on the ozone layer of gases released by the engines of proposed high altitude supersonic aircraft. The major problem arises from the emissions of nitrogen oxides which have the potential to destroy significant quantities of ozone in the stratosphere. The magnitude of the perturbation is highly dependent on the cruise altitude of the aircraft. Furthermore, the depletion of ozone is substantially reduced when heterogeneous conversion of nitrogen oxides into nitric acid on sulfate aerosol particles is taken into account in the calculation. The sensitivity of the aerosol load on stratospheric ozone is investigated. First, the model indicates that the aerosol load induced by the SO2 released by aircraft is increased by about 10–20% above the background aerosols at mid-high latitude of the Northern Hemisphere at 15 km for the NASA emission scenario A (the NASA emission scenarios are explained in Tables I to III). This increase in aerosol has small effects on stratospheric ozone. Second, when the aerosol load is increased following a volcanic eruption similar to the eruption of El Chichon (Mexico, April 1982), the ozone column in spring increases by as much as 9% in response to the injection of NO x from the aircraft with the NASA emission scenario A. Finally, the modeled suggests that significant ozone depletion could result from the formation of additional polar stratospheric clouds produced by the injection of H2O and HNO3 by the aircraft engines.  相似文献   

16.
Measurements of atmospheric composition have been made over a remote rainforest landscape. A box model has previously been demonstrated to model the observed daytime chemistry well. However the box model is unable to explain the nocturnal measurements of relatively high [NO] and [O3], but relatively low observed [NO2]. It is shown that a one-dimensional (1-D) column model with simple O3-NOx chemistry and a simple representation of vertical transport is able to explain the observed nocturnal concentrations and predict the likely vertical profiles of these species in the nocturnal boundary layer (NBL). Concentrations of tracers carried over from the end of the night can affect the atmospheric chemistry of the following day. To ascertain the anomaly introduced by using the box model to represent the NBL, vertically-averaged NBL concentrations at the end of the night are compared between the 1-D model and the box model. It is found that, under low to medium [NOx] conditions (NOx?<?1 ppbv), a simple parametrisation can be used to modify the box model deposition velocity of ozone, in order to achieve good agreement between the box and 1-D models for these end-of-night concentrations of NOx and O3. This parametrisation would could also be used in global climate-chemistry models with limited vertical resolution near the surface. Box-model results for the following day differ substantially if this effective nocturnal deposition velocity for ozone is implemented; for instance, there is a 9% increase in the following days peak ozone concentration. However under medium to high [NOx] conditions (NOx > 1 ppbv), the effect on the chemistry due to the vertical distribution of the species means no box model can adequately represent chemistry in the NBL without modifying reaction rate coefficients.  相似文献   

17.
A new multi-trajectory highly vectorizable Gear chemical-transport model is discussed and tested against measurements from 25 sites in Europe for a two-week summer period. The simulations are compared with measurement data and with results of a Quasi-Steady-State Approximation (QSSA) based Lagrangian model using the EMEP mechanism.The model is developed from the Lagrangian EMEP model. The Regional Atmospheric Chemistry Mechanism (RACM) is used as the models chemical mechanism. To solve the stiff chemical rate equations, a sparse-matrix highly vectorizable Gear algorithm is used. The meteorological data used to run the model are obtained from the HIgh Resolution Limited Area Model (HIRLAM).The vectorized Gear based model improves the accuracy of the numerical solution for the chemistry compared with the QSSA based model. The differences between the two models are explained by alternative approaches of the chemical modules employed in the model: a Gear algorithm versus a QSSA solver, photolysis rate parameters in RACM are calculated from a radiation transfer code versus parameterized photolysis rate parameters used in the Lagrangian EMEP model, the RACM versus the EMEP atmospheric chemical mechanisms and two methods of aggregating the emissions of Volatile Organic Compounds (VOC). Photolysis rate parameters calculated from radiation codes (which are more accurate than simple parameterizations) and the Gear algorithm (which is a benchmark solver compared with the QSSA solver) are recommended for atmospheric chemistry modeling because of the high sensitivity of ozone concentrations to the chemical reaction scheme and to the photolysis rates (Stockwell and Goliff, 2004).  相似文献   

18.
A recent review of ozone observations and model predictions designed to determine the credibility of current stratospheric models, arrived at the following conclusions. Aside from prompt variations at altitudes above 30 km, observed variations in stratospheric ozone cannot be explained by the process of catalytic destruction; i.e. past variations in the ozone layer have been controlled by processes not included in current models. Past episodic stratospheric injections of oxides of nitrogen and chlorine have not induced changes in total ozone identifiable in the observational data. Species concentrations from different models differ greatly; by up to two orders of magnitude in some features. Even models with highly unlikely chemical reaction rates compute species concentration profiles currently considered to be in reasonable agreement with available observations. Observations of stratospheric species, particularly nitrous oxide and nitric acid, suggest that the natural stratospheric source of odd nitrogen has been underestimated by most models by 2- to 5-fold. These apparent disparities between observations and theory suggest flaws or omissions in our understanding of stratospheric ozone and a need for caution in accepting the predictions of current stratospheric models.A slightly amended but unupdated version of an invited paper presented at the Environmental Health Sciences Symposium: SST Pollution and Skin Cancer at the 50th Anniversary Congress of the Pan American Medical Association, Hollywood, Florida, October 25–29, 1976. Editor's Note: This paper, while containing an unsual number of personal opinions - which are, commendably, stated as such - does focus on an important controversy. Thus, it is published in the interest of stimulating further debate on the subject.  相似文献   

19.
Summary All total ozone observations ever made in the Northern polar region, including some from the 1930's, have been corrected and the basic climatology presented. The long-term ozone changes were considered in relation to the stratospheric temperatures. For each deviation from the monthly normal of the 100 hPa temperature by 1°C, there was found to be a corresponding 5–6 m atm-cm change in the monthly ozone deviation. A distinction between the ozone regimes over the Scandinavian, Canadian and East Siberian sectors of the polar region was noted. The strong appearance of the QBO (Quasi Biennial Oscillation) in the interannual ozone fluctuations was obvious. It is demonstrated that for the past three decades the total ozone experienced a few periods with positive and a few periods with negative deviations. In view of this, trends in ozone must obviously be based on greater than 10 years of data. During 1964–86, the weighted trend over the polar stations was (–0.9±0.4)% per decade. There have been, however, three periods (1958–64, 1968–76 and 1979–86), coinciding with the declining phase of the 11 year sunspot cycle, during which the ozone at all polar stations has been declining by about 0.5% per year (or less if the QBO component is filtered out). Some of the differences with Antarctic ozone are mentioned and the dominant role of the stratospheric circulation for the ozone variations is discussed. In general the Arctic ozone observations show no evidence of a major ozone decline similar to that over Antarctica.With 9 Figures  相似文献   

20.
An improved stratospheric representation has been included in simulations with the Hadley Centre HadGEM1 coupled ocean atmosphere model with natural and anthropogenic forcings for the period 1979–2003. An improved stratospheric ozone dataset is employed that includes natural variations in ozone as well as the usual anthropogenic trends. In addition, in a second set of simulations the quasi biennial oscillation (QBO) of stratospheric equatorial zonal wind is also imposed using a relaxation towards ERA-40 zonal wind values. The resulting impact on tropospheric variability and trends is described. We show that the modelled cooling rate at the tropopause is enhanced by the improved ozone dataset and this improvement is even more marked when the QBO is also included. The same applies to warming trends in the upper tropical troposphere which are slightly reduced. Our stratospheric improvements produce a significant increase of internal variability but no change in the positive trend of annual mean global mean near-surface temperature. Warming rates are increased significantly over a large portion of the Arctic Ocean. The improved stratospheric representation, especially the QBO relaxation, causes a substantial reduction in near-surface temperature and precipitation response to the El Chichón eruption, especially in the tropical region. The winter increase in the phase of the northern annular mode observed in the aftermath of the two major recent volcanic eruptions is partly captured, especially after the El Chichón eruption. The positive trend in the southern annular mode (SAM) is increased and becomes statistically significant which demonstrates that the observed increase in the SAM is largely subject to internal variability in the stratosphere. The possible inclusion in simulations for future assessments of full ozone chemistry and a gravity wave scheme to internally generate a QBO is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号