首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Influence of Atmospheric Particulate Matter on Ozone in Nanjing,China:Observational Study and Mechanistic Analysis
Authors:Yawei QU  Tijian WANG  Yanfeng CAI  Shekou WANG  Pulong CHEN  Shu LI  Mengmeng LI  Cheng YUAN  Jing WANG  Shaocai XU
Abstract:Particulate matter with diameters of 2.5 μm or smaller (PM2.5) and ozone (O3) are major pollutants in the urban atmosphere. PM2.5 can affect O3 by altering the photolysis rate and heterogeneous reactions. However, these two processes and their relative importance remain uncertain. In this paper, with Nanjing in China as the target city, we investigate the characteristics and mechanism of interactions between particles and O3 based on ground observations and numerical modeling. In 2008, the average concentrations of PM2.5 and O3 at Caochangmen station are 64.6 47.4 μg m-3 and 24.6 22.8 ppb, respectively, while at Pukou station they are 94.1 63.4 μg m-3 and 16.9 14.9 ppb. The correlation coefficient between PM2.5 and O3 is -0.46. In order to understand the reaction between PM2.5 and O3, we construct a box model, in which an aerosol optical property model, ultraviolet radiation model, gas phase chemistry model, and heterogeneous chemistry model, are coupled. The model is employed to investigate the relative contribution of the aforementioned two processes, which vary under different particle concentrations, scattering capability and VOCs/NO x ratios (VOCs: volatile organic compounds; NO x: nitric oxide and nitrogen dioxide). Generally, photolysis rate effect can cause a greater O3 reduction when the particle concentrations are higher, while heterogeneous reactions dominate O3 reduction with low-level particle concentrations. Moreover, in typical VOC-sensitive regions, O3 can even be increased by heterogeneous reactions. In Nanjing, both processes lead to O3 reduction, and photolysis rate effect is dominant. Our study underscores the importance of photolysis rate effect and heterogeneous reactions for O3, and such interaction processes should be fully considered in future atmospheric chemistry modeling.
Keywords:PM  ozone  photolysis  heterogeneous reaction  Nanjing  urban atmosphere
本文献已被 CNKI 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号