首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It is well known that the application of the “bright spot’ technique has been more successful in marine prospecting than in land prospecting. This is due partly to the problem of distortion of the seismic signal caused by the geophone-ground coupling, especially when carrying out high resolution, shallow seismic surveys in swampy terrain. The effect of geophone-ground coupling on the response of a single geophone to the incident compressional waves has been treated by several authors. However, they have always neglected the influence of mutual interaction between an array of geophones on the response of each geophone forming the array. We show that mutual interaction, which results from the re-radiation of the incident compressional waves by the geophones forming the array, can have considerable effect on the response of each geophone. The effect of the geophone-ground coupling on the response of a seismic channel is considered in the absence and presence of mutual interaction between a group of geophones for the case when the shear wave velocity of the soil varies by a factor of three.  相似文献   

2.
陆上高分辨率地震勘探检波器性能及应用效果分析(英文)   总被引:1,自引:1,他引:0  
地震检波器的性能是高分辨率地震数据采集中的一个重要因素,对资料的品质影响很大。为此,作者在不同类型地区对目前在高分辨率地震勘探中常用的动圈式检波器、涡流检波器和数字检波器的性能进行了对比试验。通过野外工作的实际,总结了动圈式检波器、涡流检波器和数字检波器在不同表层地质条件地区的应用效果,提出了适合该类地区高分辨率地震检波器的性能指标,指出合理选择检波器类型和检波器的联接方式,能提高地震资料的信噪比和分辨率。  相似文献   

3.
The estimation of the quality factor Q plays a fundamental role in enhancing seismic resolution via absorption compensation in the near-surface layer. We present a new geometry that can be used to acquire field data by combining surface and cross-hole surveys to decrease the effect of geophone coupling on Q estimation. In this study, we drilled number of receiver holes around the source hole, each hole has different depth and each geophone is placed geophones into the bottom of each receiver hole to avoid the effect of geophone coupling with the borehole wall on Q estimation in conventional cross-hole seismic surveys. We also propose a novel tomographic inversion of the Q factor without the effect of the source signature, and examine its stability and reliability using synthetic data. We estimate the Q factors of the near-surface layer in two different frequency bands using field data acquired in the Dagang Oilfield. The results show that seismic absorption in the near-surface layer is much greater than that in the subsurface strata. Thus, it is of critical practical importance to enhance the seismic solution by compensating for near-surface absorption. In addition, we derive different Q factors from two frequency bands, which can be treated, to some extent, as evidence of a frequency-dependent Q.  相似文献   

4.
灰岩裸露区检波器三自由度耦合系统理论的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
中国南方海相碳酸盐岩沉积盆地的分布幅员辽阔,地下油气等资源极为丰富,但是由于大面积坚硬灰岩的出露,给检波器完好耦合带来了很大困难,从而降低了地震采集资料的品质,严重制约了该地区未来的油气勘探.目前野外检波器耦合试验缺乏较为合适的理论指导,带有较大的盲目性.为此,本文考虑到检波器与灰岩耦合时增加了耦合介质(石膏、泥饼等)的实际情况,提出了检波器-灰岩三自由度耦合系统的理论,研究了耦合介质、尾锥和阻尼等耦合因素对检波器-灰岩耦合系统传输函数的影响规律.发现检波器-灰岩耦合系统是具有三个谐振频率的谐振系统,通过增加耦合介质的弹性模量、减小耦合介质的底面积和高度、选用介质密度较小的尾锥、减小尾锥的高度、增加尾锥的底面积等,可以提高耦合谐振频率.通过适当增加耦合系统的阻尼,可以减小耦合系统的窄频带“带通滤波”的影响.最后,通过振动台实验初步验证了检波器-灰岩三自由度耦合系统理论模型.  相似文献   

5.
We introduce a method to detect and compensate for inconsistent coupling conditions that arise during onshore seismic data acquisitions. The reflected seismic signals, the surface waves, or the ambient-noise records can be used for the evaluation of the different coupling conditions of closely spaced geophones. We derive frequency-dependent correction operators using a parametric approach based upon a simple model of the interaction between geophone and soil. The redundancy of the measurements available permits verification of the assumptions made on the input signals in order to derive the method and to assess the validity of the model used. The method requires point-receiver data in which the signals recorded by the individual geophones are digitized. We have verified the accuracy of the method by applying it to multicomponent ambient-noise records acquired during a field experiment in which the coupling conditions were controlled and modified during different phases of the experiment. We also applied the method to field data, which were acquired without the coupling conditions being controlled, and found that only a few geophones showed an anomalous behaviour. It was also found that the length of the noise records routinely acquired during commercial surveys is too short to provide enough statistics for the application of our method.  相似文献   

6.
在地震勘探中,P波和S波入射到一固体液体分界面处时,在该分界处的水平检波器和垂直检波器将接受到相位的响应垂直的响应。垂直检波器的响应与在自由界面处的垂直检波器 响应大概相同,而水平检波器对P波的响应相对于对S波的 来说要强。  相似文献   

7.
本文分析了海陆两栖地带地震勘探中同时使 用的速度检波器和加速度检波器存在的差异及其对 地震信号的影响;在此基础上,设计研制出了陆用 压电检波器,并对其性能特点进行了分析;通过试 验资料分析,消除了海陆两种不同机理的检波器资 料的相位差的问题,陆用压电检波器和水中压电检 波器记录信号的频带和能量达到一致,提高了地震 资料的分辨率;实现了海陆地区可以同时采用相同 机理的检波器进行地震信号的接收,解决了滩海地 区速度检波器和加速度检波器长期混用的问题。  相似文献   

8.
By summing geophone and hydrophone data with opposite polarity responses to water layer reverberation, the ocean bottom cable dual-sensor acquisition technique can effectively eliminate reverberation, broaden the frequency bandwidth, and improve both the resolution and fidelity of the seismic data. It is thus widely used in industry. However, it is difficult to ensure good coupling of the geophones with the seabed because of the impact of ocean flow, seafloor topography, and field operations; therefore, geophone data are seriously affected by the transfer function of the geophone-seabed coupling system. As a result, geophone data frequently have low signal-to-noise ratios (S/N), which causes large differences in amplitude, frequency, and phases between geophone and hydrophone data that severely affect dual-sensor summation. In contrast, the hydrophone detects changes in brine pressure and has no coupling issues with the seabed; thus, hydrophone data always have good S/N. First, in this paper, the mathematical expression of the transfer function between geophone and seabed is presented. Second, the transfer function of the geophone-seabed is estimated using hydrophone data as reference traces, and finally, the coupling correction based on the estimated transfer function is implemented. Using this processing, the amplitude and phase differences between geophone and hydrophone data are removed, and the S/N of the geophone data are improved. Synthetic and real data examples then show that our method is feasible and practical.  相似文献   

9.
In this paper, we review the differences between velocity geophones (VG) and acceleration geophones (AG) and their effect on seismic signals acquired in onshore-offshore transition areas. We present a new generation of Land Piezoelectric Geophone (LPG) and analyze its performance. Our field experiments demonstrate that our new LPG can be used to substitute for VGs in order to eliminate phase, frequency and energy differences between different geophone systems commonlv used in transition areas.  相似文献   

10.
We analyse the geophone orientation and coupling in a data set from the North Sea. Based on the polarization of the water-break on the sea-floor, we have derived processing algorithms for determining the receiver orientation for gimballed and non-gimballed geophone systems. For a gimballed system, the problem reduces to a simple horizontal rotation. However, for a non-gimballed system, where all three geophone axes may vary due to varying acquisition conditions such as dipping sea-floor, twisting of recording cable, etc., the three orientation angles cannot be found directly from the recorded displacement vectors. Using the data redundancy within a common-receiver gather, a robust two-stage method is derived for the non-gimballed system in which all three orientations can initially be unknown. Testing on the North Sea data set acquired with a gimballed system shows that the three-component geophones in the data set are orientated satisfactorily within an error of 5°. However, there are some undesirable cross-couplings between the vertical and horizontal geophones, which results in leakage of shear-wave energy from the horizontal components to the vertical components.  相似文献   

11.
Previously ignored characteristics of the seismic recording instrument are presently experienced as limitations as more sophisticated interpretive methods using wider frequency ranges are developed to extract stratigraphic information from seismic land data for hydrocarbon and mineral exploration. Most of these limitations arise from inadequate characteristics of the first element of the seismic instrument: the geophone. A geophone does not faithfully follow the motion of the earth for higher frequencies due to poor geophone-earth coupling. This filtering effect brings about time shifts that are dependent on the frequency and the soil type. A geophone can also produce spurious outputs, brought about by the motion of the suspended part of the geophone, with a magnitude comparable to that of the desired output. The suspension is made very compliant to obtain the required sensitivity. A compliant suspension, however, gives a large sag. The geophone can therefore only be used in one position, tolerating little tilt. A compliant suspension also widens the traveling range of the movable part. Minor sensitivity changes with travel are then noticeable as nonlinearity, since the surface wave is large with respect to the reflected wave. A compliant suspension is usually realized in the form of thin, spirally shaped spring-spiders. Such suspensions exhibit transverse or rotational resonances that are in or close to the seismic frequency band. Excited by ground roll, they can produce considerable undesirable output. The novel geophone we describe is a light-weight (17 g) acceleration-sensitive transducer which gives good ground coupling and partial correction for the increasing damping in the earth with increasing frequencies. It employs internal hybrid electronics for a magnetodynamic velocity-nulling feedback system. Velocity nulling makes the movable part of the geophone virtually rigid with respect to the housing. This makes the geophone characteristics independent of the suspension. The springs used are stiff in a transverse and rotational direction so that the suspension resonances are well outside the useful frequency band. This suspension also allows the geophone to be used in any orientation while being only sensitive to the vibration component along the main axis. The feedback system makes the sensitivity flat within 1 dB from 2 Hz to 500 Hz, with a phase tolerance smaller than 5°. The geophone is robust, has no moving internal wires, employs a current output [sensitivity 1 mA/(m s?2)] and internal gain so that the signal-to-cable-noise ratio is improved. This type of output allows parallel connection without any interaction between the geophones.  相似文献   

12.
光栅Bragg地震检波器的传感特性研究(英文)   总被引:4,自引:1,他引:3  
针对目前石油地震勘探的瓶颈—检波器性能差的问题,设计了一种新型光纤Bragg光栅(FBG)地震检波器,阐述了其工作原理,并从理论上给出了检波器的响应函数等参数。由于FBG的传感优势,这种新型地震检波器动态范围可达94dB,灵敏度高,重量轻,造价低,是理想的新一代地震勘探信号采集单元。  相似文献   

13.
A geophysical campaign to characterize the subsurface of a contaminated site down to a depth of several tens of meters was carried out under the HYGEIA-CEE project. On this site, seismic techniques were combined to image the geological structures; i.e. seismic reflection, P-wave tomography and spectral analysis of surface waves. Because these techniques consider different wave components in the processing, they can be expected to provide complementary information concerning the site lithology. The special feature of this experiment is the fact that the same seismic acquisition device, consisting of a mobile central unit, a drop-weight seismic source, and a sensor line of gimbal mounted geophones, was used for each of the techniques. Two perpendicular seismic lines were set up in the field for testing two geophone spacings. Three processing procedures, one each for the seismic reflection, P-wave tomography and spectral analysis of surface waves, were developed for producing seismic images from the P-wave reflectivity, the first P-wave arrivals and the dispersion of Rayleigh waves, respectively. The images show good complementarity in terms of investigation depth. The results are also in good agreement with available borehole data: the sandy layers seem to be related to low velocities, since the high velocities are better explained by the presence of clayey and gravelly intervals. The contribution and the limits of this seismic multi-approach method is discussed.  相似文献   

14.
Seismic acquisition can be costly and inefficient when using spiked geophones. In most cases, such as the desert, the most practical solution is the use of flat bases, where geophone‐ground coupling is based on an optimal choice of the mass and area of contact between the receiver and the ground. This optimization is necessary since areas covered by sand are loose sediments and poor coupling occurs. Other cases include ground coupling in stiff pavements, for instance urban areas and ocean‐bottom nodes. We consider three different approaches to analyse coupling and model the geophone with a flat base (plate) resting on an elastic half‐space. Two existing models, based on the full‐wave theory, which we refer to as the Wolf and Hoover‐O'Brien models, predict a different behaviour with respect to the novel method introduced in this work. This method is based on the transmission coefficient of upgoing waves impinging in the geophone‐ground contact, where the ground is described as an anelastic half‐space. The boundary conditions at the contact have already been used to model fractures and are shown here to provide the equation of the damped oscillator. This fracture‐contact model depends on the stiffness characteristic of the contact between the geophone base plate and the ground. The transmission coefficient from the ground to the plate increases for increasing weight and decreasing base plate area. The new model predicts that the resonant frequency is independent of the geophone weight and plate radius, while the recorded energy increases with increasing weight and decreasing base plate area (as shown from our own experiments and measurements by Krohn) which is contrary to the theories developed by Wolf and Hoover‐O'Brien. The transient response is obtained by an inverse Fourier transform. Optimal geophone‐ground coupling and energy transmission are required, the first concept meaning that the geophone is following the motion of the ground and the second one that the signal is detectable. As a final example, we simulate seismic acquisition based on the novel theory, showing the differences between optimal and poor ground‐to‐geophone energy transmission.  相似文献   

15.
For seismic observations in mines or wells, instead of three-component geophones, four-component ones with sensors located along the tetrahedral axes are sometimes used. When a geophone is placed in a hard-to-reach area for a long time, the requirements on its reliability increase, so it is necessary to monitor its operation. From this viewpoint, a four-component geophone has certain advantages over the conventional three-component geophone, the three ones being suppression of instrument noise for the recalculation of a four-component record into a three-component one, saving of the polarization analysis data in case one geophone component fails, and sensitivity control of individual geophone components. To suppress instrument noise in records from a four-component geophone, the following processing should be performed: first, calculation of the covariance matrix of recording components, second calculation of the eigenvalues and eigenvectors of the covariance matrix, and third, the parameter used to assess the ratio of instrument noise to the useful signal is calculated. After that, the operator projecting a four-component displacement vector onto a three-dimensional subspace is constructed. Application of this operator to data suppresses interference or noise (which do not correspond to motion in three-dimensional space). The output of the processing is data partially cleaned of instrument noise. In this paper, using model examples, we analyze the features of processing data from four-component geophones. The possibility of suppressing instrument noise and controlling the sensitivities of individual geophone components is demonstrated, and the effect on polarization analysis results is shown.  相似文献   

16.
单球式海底地震仪(以下简称OBS)由于其成本低、操作简便的优点在天然地震研究、人工地震探测中获得了广泛应用.本文首先分析多型进口和国产OBS在台湾海峡西部采集的地震数据,发现同一台OBS上的垂直向速度检波器(Z分量)的信噪比常显著低于压力检波器(H分量),由于这两种检波器记录的都是海底的垂向振动信号,推测速度检波器的低信噪比更多的与仪器特性有关.然后从信号传递和噪声水平两方面分析影响速度检波器信噪比的因素:为检测速度检波器与OBS壳体的耦合效果,对某型宽频带OBS和陆上地震仪进行了同址同步观测试验,发现OBS的整机灵敏度有较大的差异;为分析速度检波器的水底噪声特征,以H分量记录作为基准,对比分析了同一台仪器不同站位的Z分量噪声水平,发现速度检波器在浅海区受到较大的次生干扰.本文指出OBS的内部耦合和水流次生干扰是至今尚未引起大家重视而又严重影响资料品质和多波探测成效的两个关键问题,这一研究结果对于改进OBS结构设计和制造工艺,以及OBS数据多分量处理方法研究有重要的参考意义.  相似文献   

17.
地震检波器受到地面横向运动激励时的输入输出关系定义为检波器的横向灵敏度特性.本文对检波器线圈受到横向激励时产生的轴向振动进行了分析.可以看到,当悬挂线圈的弹簧片悬丝发生动力失稳时,检波器的横向灵敏度突然增大;在线圈横向振幅很小的情况下,失稳频率接近悬丝的横向固有频率.利用谱分析技术可以准确地从检波器噪声中检测出检波器的横向灵敏度和失稳频率,即检波器假频.  相似文献   

18.
A modular borehole monitoring concept has been implemented to provide a suite of well‐based monitoring tools that can be deployed cost effectively in a flexible and robust package. The initial modular borehole monitoring system was deployed as part of a CO2 injection test operated by the Southeast Regional Carbon Sequestration Partnership near Citronelle, Alabama. The Citronelle modular monitoring system transmits electrical power and signals, fibre‐optic light pulses, and fluids between the surface and a reservoir. Additionally, a separate multi‐conductor tubing‐encapsulated line was used for borehole geophones, including a specialized clamp for casing clamping with tubing deployment. The deployment of geophones and fibre‐optic cables allowed comparison testing of distributed acoustic sensing. We designed a large source effort (>64 sweeps per source point) to test fibre‐optic vertical seismic profile and acquired data in 2013. The native measurement in the specific distributed acoustic sensing unit used (an iDAS from Silixa Ltd) is described as a localized strain rate. Following a processing flow of adaptive noise reduction and rebalancing the signal to dimensionless strain, improvement from repeated stacking of the source was observed. Conversion of the rebalanced strain signal to equivalent velocity units, via a scaling by local apparent velocity, allows quantitative comparison of distributed acoustic sensing and geophone data in units of velocity. We see a very good match of uncorrelated time series in both amplitude and phase, demonstrating that velocity‐converted distributed acoustic sensing data can be analyzed equivalent to vertical geophones. We show that distributed acoustic sensing data, when averaged over an interval comparable to typical geophone spacing, can obtain signal‐to‐noise ratios of 18 dB to 24 dB below clamped geophones, a result that is variable with noise spectral amplitude because the noise characteristics are not identical. With vertical seismic profile processing, we demonstrate the effectiveness of downgoing deconvolution from the large spatial sampling of distributed acoustic sensing data, along with improved upgoing reflection quality. We conclude that the extra source effort currently needed for tubing‐deployed distributed acoustic sensing vertical seismic profile, as part of a modular monitoring system, is well compensated by the extra spatial sampling and lower deployment cost as compared with conventional borehole geophones.  相似文献   

19.
针对微地震裂缝解释的复杂性,从震源矢量场的重建开始研究,在研究VTI介质速度模型各向异性条件下的走时和透射系数的变化特征基础上,形成了各向异性条件下的群、相速度及透射系数的计算方法.针对多级检波器水平分量朝向的多向性特点,提出了多级检波器水平分量的偏振分析方法,得到了完整的水平特征矢量,克服了单级检波器水平分量偏振分析构建特征矢量信息不全的问题,形成了高精度微地震事件定位方法,实现各向异性VTI介质速度模型的高斯束微地震格林函数正演模拟.利用格林函数模拟场、观测记录场,从构建完整场研究入手,重建震源矢量场.根据重建的震源矢量场,提出了裂缝解释的全新的系列方法,包括单条裂缝、裂缝网络的解释方法.通过实际资料的测试分析,验证了研究技术的实用性.  相似文献   

20.
地震检波器惯性体的运动方程可以写成: (1) n0为检波器在无阻尼时的固有圆频率,h为检波器的阻尼常数,y为地面的位移。如用动圈检波器,其输出电压E的方程可写成: (2) S=Bl,称为检波器的电磁放大系数,B为所用磁钢空气隙中的磁感量,l为线圈的有效长度。自公式(1)及(2)可以见到:如果知道了检波器的常数h,n0和S,检波器的特性便完全确定;然后我们就可以推算检波器惯性体的运动,或是线圈的输出电压与地面运动  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号