首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Summary Convective to planetary scale processes govern the motion and structure of tropical storms. A model with a high resolution and a large domain is required for accurate prediction of a storm's track and intensity. A series of integrations are performed using a primitive equation model and an initial state that defines a tropical storm that later developed into a hurricane in the real atmosphere. Increasing the horizontal resolution or domain of the model improves the forecast track. However only the increase in the horizontal resolution produces a better hurricane structure.Banded structure in the vertical motion field, asymmetries in the low tropospheric winds similar to those observed and upper tropospheric cyclonic outflow develop in high horizontal resolution experiments. It is shown that horizontal advection and pressure gradient terms produce wind tendencies in the low troposphere that displace the vortex in the observed direction. A high pressure area surrounding the central low pressure area appears in the upper troposphere. Around this high pressure area large pressure gradients develop that induce outflow winds in the distal storm area.  相似文献   

2.
复杂地形下雷暴增强过程的个例研究   总被引:12,自引:2,他引:10  
陈双  王迎春  张文龙  陈明轩 《气象》2011,37(7):802-813
本文基于多普勒雷达变分同化分析系统(VDRAS)反演的对流层低层热力和动力场,并结合多种稠密观测资料,对北京地区2009年7月22日一次弱天气尺度强迫下雷暴在山区和平原增强的机理进行了较深入的分析。研究结果表明:雷暴过程受大尺度天气系统影响不明显,对流前期地面弱冷锋,是此次雷暴新生的触发机制,高层冷平流、低层偏南暖湿气流的稳定维持和对流不稳定能量的聚集是本次雷暴增强的必要条件。雷暴从河北北部移进北京西北山区后,在下山和到达平原地区时,经历了两次明显的发展增强阶段。雷暴第一阶段下山增强,地形强迫起着主要作用,具体表现在三个方面:(1)地形斜坡使得雷暴冷池出流下山加速与稳定维持的偏南气流形成了强的辐合区;(2)地形抬升使得偏南暖湿入流强烈地上升,从而加剧了对流的发展;(3)地形抬高了冷池出流高度,使得出流与近地面偏南气流构成随高度顺转的低层垂直风切变,低层暖空气之上有冷平流叠加,使得雷暴前方的动力和热力不稳定增强。雷暴第二阶段在平原地区再次增强的主要原因是:组织完好的雷暴到达平原地区后,其冷池与低层暖舌在城区(朝阳地区)的对峙,产生了强的扰动温度梯度;强的冷池出流与势力相当的偏南暖湿气流相互作用产生了强的辐合上升气流,并与下沉气流在较长时间内共存;冷池出流形成的负涡度与低层切变产生的正涡度达到近似平衡状态。运用RKW理论,三者导致雷暴前方低层的辐合抬升最强,最有利于雷暴的维持发展。  相似文献   

3.
In this study,the effect of vertical wind shear(VWS)on the intensification of tropical cyclone(TC)is investigated via the numerical simulations.Results indicate that weak shear tends to facilitate the development of TC while strong shear appears to inhibit the intensification of TC.As the VWS is imposed on the TC,the vortex of the cyclone tends to tilt vertically and significantly in the upper troposphere.Consequently,the upward motion is considerably enhanced in the downshear side of the storm center and correspondingly,the low-to mid-level potential temperature decreases under the effect of adiabatic cooling,which leads to the increase of the low-to mid-level static instability and relative humidity and then facilitates the burst of convection.In the case of weak shear,the vertical tilting of the vortex is weak and the increase of ascent,static instability and relative humidity occur in the area close to the TC center.Therefore,active convection happens in the TC center region and facilitates the enhancement of vorticity in the inner core region and then the intensification of TC.In contrast,due to strong VWS,the increase of the ascent,static instability and relative humidity induced by the vertical tilting mainly appear in the outer region of TC in the case with stronger shear,and the convection in the inner-core area of TC is rather weak and convective activity mainly happens in the outer-region of the TC.Therefore,the development of a warm core is inhibited and then the intensification of TC is delayed.Different from previous numerical results obtained by imposing VWS suddenly to a strong TC,the simulation performed in this work shows that,even when the VWS is as strong as 12 m s-1,the tropical storm can still experience rapid intensification and finally develop into a strong tropical cyclone after a relatively long period of adjustment.It is found that the convection plays an important role in the adjusting period.On one hand,the convection leads to the horizontal convergence of the low-level vorticity flux and therefore leads to the enhancement of the low-level vorticity in the inner-core area of the cyclone.On the other hand,the active ascent accompanying the convection tends to transport the low-level vorticity to the middle levels.The enhanced vorticity in the lower to middle troposphere strengths the interaction between the low-and mid-level cyclonical circulation and the upper-level circulation deviated from the storm center under the effect of VWS.As a result,the vertical tilting of the vortex is considerably decreased,and then the cyclone starts to develop rapidly.  相似文献   

4.
Summary A community mesoscale model is used to simulate and understand processes that led to the formation and intensification of the near-equatorial typhoon Vamei that formed in the South China Sea in December, 2001. The simulated typhoon resembles the observed in that it had a short lifetime and a small size, formed near the equator (south of 2° N), and reached category-one intensity. The formation involved the interactions between the scales of the background cyclonic circulation (the Borneo Vortex of order ∼100 km) and of mesoscale convective vortices (MCVs, in the order ∼10 km). Before tropical cyclone formation MCVs formed along a convergent, horizontal shear vorticity line on the eastern edge of an exceptionally strong monsoonal northerly wind surge. The typhoon genesis is marked by three rapid intensification periods, which are associated with the rapid growth of potential vorticity (PV). A vorticity budget analysis reveals that the increases in low-level vorticity during the rapid intensification periods are attributed to enhanced horizontal vorticity fluxes into the storm core. The increase of the horizontal vorticity flux is associated with the merging of areas of high PV associated with MCVs into the storm core as they are advected by background cyclonic flows. The increases in PV at upper levels are associated with the evaporation of upper level stratiform precipitation and increases of vertical potential temperature gradient below the maximum stratiform cloud layer. It appears that two key sources of PV at upper and lower levels are crucial for the build up of high PV and a deepening of a cyclonic layer throughout the troposphere.  相似文献   

5.
Summary During the period from end of November to early December 2001, a sequence of extremely intense synoptic developments occurred over the area from the Atlantic to Mediterranean. These included the formation of hurricane Olga, an intensification of the Icelandic Low, strengthening of the subtropical westerly jet stream (STJ) over North Africa, formation of the Red Sea Trough (RST) and Cyprus Low cyclones, which resulted in torrential rains in Israel on December 4–5. The evolution of the synoptic processes over a large area from the Atlantic to Western Europe and the Mediterranean region during November 25–December 2 is investigated here with the help of dynamic tropopause patterns calculated based on reanalysis data. It is shown that the chain of extreme weather events was triggered by the acceleration of a coherent tropopause disturbance (CTD) over the Labrador Sea. Two branches of the process may be distinguished, southern and northern. The southern one was associated with the transformation of a tropical storm into hurricane Olga, strengthening of the STJ and eventually the formation of the RST cyclone. The RST contributed to the intensification of the transport of moist air masses from equatorial Africa to the Mediterranean region. The northern branch was determined by an eastward drift of the CTD, moist air mass transport from the area of the hurricane to the North Atlantic and the European-Mediterranean region, strengthening of the Icelandic Low and formation of an upper troposphere potential vorticity-streamer system over western Scandinavia. Displacement of the streamer to the Mediterranean region and its interaction with the RST system played a major role in the development of the powerful Cyprus Low cyclone over the northeastern Mediterranean region.  相似文献   

6.
In order to investigate the different thermodynamic mechanisms between rapid intensifying (RI) and rapid weakening (RW) tropical cyclones (TCs), the thermodynamic structures of two sets of composite TCs are analyzed based on the complete-form vertical vorticity tendency equation and the NCEP/NCAR reanalysis data. Each composite is composed of five TCs, whose intensities change rapidly over the coastal waters of China. The results show that the maximum apparent heating source Q 1 exists in both the upper and lower troposphere near the RI TC center, and Q 1 gets stronger at the lower level during the TC intensification period. But for the RW TC, the maximum Q 1 exists at the middle level near the TC center, and Q 1 gets weaker while the TC weakens. The maximum apparent moisture sink Q 2 lies in the mid troposphere. Q 2 becomes stronger and its peak-value height rises while TC intensifies, and vice versa. The increase of diabatic heating with height near the TC center in the mid-upper troposphere and the increase of vertical inhomogeneous heating near the TC center in the lower troposphere are both favorable to the TCs’ rapid intensification; otherwise, the intensity of the TC decreases rapidly.  相似文献   

7.
于玉斌  姚秀萍 《气象学报》2011,25(4):467-477
In order to investigate the different thermodynamic mechanisms between rapid intensifying (RI) and rapid weakening (RW) tropical cyclones (TCs),the thermodynamic structures of two sets of composite TCs are analyzed based on the complete-form vertical vorticity tendency equation and the NCEP/NCAR reanalysis data.Each composite is composed of five TCs,whose intensities change rapidly over the coastal waters of China.The results show that the maximum apparent heating source Q1 exists in both the upper and lower troposphere near the RI TC center,and Q1 gets stronger at the lower level during the TC intensification period.But for the RW TC,the maximum Q1 exists at the middle level near the TC center,and Q1 gets weaker while the TC weakens.The maximum apparent moisture sink Q2 lies in the mid troposphere.Q2 becomes stronger and its peak-value height rises while TC intensifies,and vice versa.The increase of diabatic heating with height near the TC center in the mid-upper troposphere and the increase of vertical inhomogeneous heating near the TC center in the lower troposphere are both favorable to the TCs' rapid intensification; otherwise,the intensity of the TC decreases rapidly.  相似文献   

8.
台风的增强过程与气旋性涡度的急剧发展相伴。使用滑动平均的空间滤波方法对WRF模式的模拟结果进行尺度分离, 进而诊断分析台风SANBA突然增强过程中垂直涡度及环流的发展演变特征。结果表明, 台风突然增强的过程中, 眼壁区上升速度增大, 暖心结构增强, 同时垂直涡度迅速增强。当SANBA从热带风暴发展为强热带风暴时, 对流层低层辐散辐合及垂直速度分布的不均匀对台风涡旋结构的增强强度相当, 在台风内部以增强区域为主同时与减弱区域交错分布; 当SANBA发展增强为强台风时, 对流层低层的散度项与倾斜项在台风中心附近均表现为强的正中心, 台风低层径向入流的增强导致低层辐合加强对台风的增强起到主要作用。台风中心区域平均环流强度随台风的不断增强而不断增大, 且从900 hPa高度不断向高层发展, 其中环流方程中的EED/EET项的发展变化可以表征台风发展初期散度项和倾斜项的主要变化。   相似文献   

9.
This study estimated the largely unstudied downward transport and modification of tropospheric ozone associated with tropical moist convection using a coupled meteorology-chemistry model. High-resolution cloud resolving model simulations were conducted for deep moist convection events over West Africa during August 2006 to estimate vertical transport of ozone due to convection. Model simulations realistically reproduced the characteristics of deep convection as revealed by the estimated spatial distribution of temperature, moisture, cloud reflectivity, and vertical profiles of temperature and moisture. Also, results indicated that vertical transport reduced ozone by 50% (50 parts per billion by volume, ppbv) in the upper atmosphere (12–15 km) and enhanced ozone by 39% (10 ppbv) in the lower atmosphere (<2 km). Field observations confirmed model results and indicated that surface ozone levels abruptly increased by 10–30 ppbv in the area impacted by convection due to transport by downdrafts from the upper troposphere. Once in the lower troposphere, the lifetime of ozone decreased due to enhanced dry deposition and chemical sinks. Ozone removal via dry deposition increased by 100% compared to non-convective conditions. The redistribution of tropospheric ozone substantially changed hydroxyl radical formation in the continental tropical boundary layer. Therefore, an important conclusion of this study is that the redistribution of tropospheric ozone, due to deep convection in non-polluted tropical regions, can simultaneously reduce the atmospheric loading of ozone and substantially impact the oxidation capacity of the lower atmosphere via the enhanced formation of hydroxyl radicals.  相似文献   

10.
In this study,the predictability and physical processes leading to the rapid frontal cyclogenesis,that took place in the east coast of the U.S.during 3-4 October 1987,are examined using a nestedgrid.mesoscale model with a fine-mesh grid size of 25km.It is shown that the model reproduces reasonably well the cyclogenesis in a coastal baroclinic zone.its subsequent deepening and movement as well as the pertinent precipitation.It is found that the frontal cyclogenesis occurs in a favorable large-scale environment with pronounced thermal advection in the lower troposphere and marked potential vorticity(PV) concentration aloft associated with the tropopause depression.The transport of warm and moist air from the marine boundary layer by the low-level in-shore flow provides the necessary energy source for the observed heavy precipitation and a variety of weather phenomena reported in the cold sector.Several 24-h sensitivity simulations are performed to examine the relative importance of diabatic heating,adiabatic dynamics and various initial conditions in the frontal cyclogenesis.It is found that latent heat release,even though quite intense,accounts for only 25% of the cyclone's total deepening in this case:the weak impact seems due to the occurrence of latent heating in the cold sector and the upward lifting of the dynamical tropopause by diabatic updrafts.Vorticity budgets show that the lowlevel thermal advection dominates the incipient stage,whereas the vorticity advection determines the rapid deepening rate at the mature stage.The results reveal that the predictability of the present storm is closely related to the vertical coupling between the surface cyclone and the upper-level PV core,which is in turn determined by initial offshore perturbations in the lower troposphere.  相似文献   

11.
An accurate form of the moist potential vorticity(MPV) equation was deduced from a complete set of primitive equations.It was shown that motion in a saturated atmosphere without diabatic heating and friction conserves moist potential vorticity.This property was then used to investigate the development of vertical vorticity in moist baroclinic processes.Results show that in the framework of moist isentropic coordinate,vorticity development can result from reduction of convective stability,or convergence,or latent heat release at isentropic surfaces.However,the application of the usual analysis of moist isentropic potential vorticity is limited due to the declination of moist isentropic surfaces.and a theory of development based on z-coordinate and p-coordinate was then proposed.According to this theory,whether the atmosphere is moist-symmetrically stable or unstable,on convective stable or unstable,the reduction of convective stability,the increase of the vertical shear of horizontal wind or moist baroclinity may result in the increase of vertical vorticity,so long as the moist isentropic surface is slantwise.The larger the declination of the moist isentropic surface,the more vigorous the development of vertical vorticity.In a region with a monsoon front to the north and the warm and moist air to the south,or by the north of the front,the moist isentropes are very steep.The is the region most favorable for development of vorticities and formation of torrential rain.For a case of persistent torrential rain occurring in the middle and lower reaches of the Changjiang and Huaihe Rivers in June 11-15,1991,moist potential vorticity analysis,especially the isobaric analysis of its vertical and horizontal components,i.e.MPV1 and MPV2,respectively,is effective for identifying synoptic systems not only in middle and high latitudes,but also in low latitudes and in the lower troposphere.It can serve as a powerful tool for the diagnosis and prediction of torrential rain.  相似文献   

12.
陈明轩  肖现  高峰 《大气科学》2017,41(5):897-917
针对2014年7月16日发生在京津冀地区包含三次风暴过程的强对流"事件",通过雷达、探空和自动站等观测资料分析,以及基于雷达资料快速刷新四维变分同化(RR4DVar)和三维数值云模式的高分辨率模拟,研究了在京津冀复杂地形条件下导致对流风暴局地新生及快速增强的对流尺度热力和动力机制,重点分析了出流边界在对流风暴局地新生及快速增强过程中的动力效应。探空观测和模拟结果均显示,16日当天从上午到傍晚,京津冀地区存在有利于对流风暴发生、发展的中尺度环境条件,包括明显的热力不稳定、强的偏南低空急流和低层垂直风切变等。在本次强对流"事件"中,首先是东移的近地面切变线在中午12:00(北京时,下同)左右触发了天津地区多单体对流风暴的局地新生和快速加强,并产生了明显的向西北移动的出流边界。随后,在京津冀西北部山区形成的一个产生向南出流的风暴单体于下午18:00左右抵达北京西北部山边,由于地形强迫,沿山坡加速下滑的风暴出流与沿山坡上行的低层偏南暖湿气流相互作用,增强了山坡附近的低层辐合和垂直上升,同时在向南和向西北移动的出流边界"碰撞"形成的动力不稳定配合下,使得风暴单体在下山过程中迅速发展为强超级单体风暴。两条出流边界在风暴附近的"碰撞"及其和低层偏南暖湿气流的相互作用,具有复杂地形条件下导致风暴新生和加强的"三重点"关键区特征。在22:00左右,由超级单体风暴形成的出流边界抵达京津冀南部平原地区,与偏南低空急流和低层偏东风湿空气产生的辐合区相互作用,形成新的类似于"三重点"的关键区,导致在辐合区内沿出流边界出现暖湿空气的强烈上升。在出流边界的动力不稳定触发下,沿出流边界附近不断有对流单体新生和增强,最终在23:00左右形成了一条近似东西走向的线状多单体风暴系统。  相似文献   

13.
The mechanism for the maintenance of Tropical Cyclone Bill (1988) after landfall is investigated through a numerical simulation. The role of the large-scale environmental flow is examined using a scale separation technique, which isolates the tropical cyclone from the environmental flow. The results show that Bill was embedded in a deep easterly-southeasterly environmental flow to the north-northeast of a large-scale depression and to the southwest of the western Pacific subtropical high. The depression had a quasi-barotropic structure in the mid-lower troposphere and propagated northwestward with a speed similar to the northwestward movement of Bill. The moisture budgets associated with both the large-scale and the tropical cyclone scale motions indicate that persistent low-level easterly-southeasterly flow transported moisture into the inner core of the tropical cyclone. The low-level circulation of the tropical cyclone transported moisture into the eyewall to support eyewall convection, providing sufficient latent heating to counteract energy loss due to surface friction and causing the storm to weaken relatively slowly after landfall. Warming and a westward extension of the upper-level easterly flow led to westward propagation of the environmental flow in the mid-lower troposphere. As a result, Bill was persistently embedded in an environment of deep easterly flow with high humidity, weak vertical wind shear, convergence in the lower troposphere, and divergence in the upper troposphere. These conditions are favorable for both significant intensification prior to landfall and maintenance of the tropical cyclone after landfall.  相似文献   

14.
利用多普勒天气雷达资料及反演风场和常规观测资料,对2014年11月2日发生在北黄海(山东半岛北部海上)一次罕见海龙卷风暴的中尺度特征进行了分析。结果表明:冷空气、暖湿海面热力边界、山东半岛北部近海岸西北风与偏西风的辐合线是海龙卷风暴发生的天气背景。海龙卷风暴发生时雷达回波PPI最大分贝反射率因子为60 dBZ,高度为2.0 km,最高风暴顶为4.5 km,最大垂直累积液态水含量VIL为21 kg·m-2。利用雷达反演风场进行中尺度特征分析,结果表明:在海龙卷风暴发生发展过程中,低层风辐合对应4.0 km高度上是风辐散,海上有较强的偏南暖湿气流输送到雷暴区。中尺度动力特征:最大正涡度和散度辐合在1.0 km以下,低层正涡度和散度辐合、高层散度辐散是雷暴发生初期动力特征;低层没有正涡度和散度辐合、高层为正涡度和散度辐合是雷暴开始发展的动力特征;低层和高层为大的正涡度和散度辐合是雷暴成熟阶段的动力特征。高空冷空气叠加上低空强的偏南气流,造成局地涡度加大和低层辐合加强,使低层暖湿气流倾斜上升。海龙卷与辐合区的冷空气和暖湿气流有关。  相似文献   

15.
Recurvature dynamics of a typhoon   总被引:1,自引:0,他引:1  
Summary In this paper we present some recent work on typhoon prediction with a high resolution global model. The emphasis of this paper is on typhoon recurvature. Here we include examples of successful typhoon recurvature track forecasts made from a very high resolution global spectral model. The main objective of this study however is to go beyond the forecasts, i.e. to interrogate the history tapes and to diagnose residue-free budgets of the divergence and vorticity. The premise of this paper is that the recurvature of the typhoons depends on both the usual advection of vorticity by the layer mean winds and the advection of divergence in the outflow layers of the storm.The region immediately outside the heavy rain area of the storm experiences large values of divergent outflows which contribute a significant advection of divergence. Through the Dine's compensation this region must, in consort, experience an enhancement of low level convergence and of deep convection, thus contributing to the storm motion. We distinguish two facets of storm motion and recurvature, one based on the conventional steering that invokes the advection of vorticity by a vertical integrated flow, the other is the generation mechanism proposed here. During recurvature the storm appears to move in a direction which is influenced by the rotational and the divergent flow dynamics. Increased vertical resolution in the outflow layer is shown to resolve stronger amplitudes in the outflow layer divergence and thus to contribute to improved forecasts of recurvature. A number of processes seem to simultaneously evolve, these include the strong advection of divergence part of the wind, enhancement of cumulus convection over this region, an enhancement of lower tropospheric convergence, generation of vorticity of the lower troposphere and the attendant recurvature.With 16 Figures  相似文献   

16.
Summary A series of numerical experiments on an f plane are conducted using the fifth-generation Pennsylvania State University-National Center for Atmospheric Research Mesoscale Model, version 3 (MM5) to investigate how environmental vertical wind shear affects the motion, structure, and intensity of a tropical cyclone. The results show that a tropical cyclone has a motion component perpendicular to the vertical shear vector, first to the right of the shear and then to the left. An initially axisymmetric, upright tropical cyclone vortex develops a downshear tilt and wavenumber-one asymmetry when embedded in environmental vertical wind shear. In both small-moderate shears, a storm weakens slightly compared to that in a quiescent environment. The circulation centers between 300 hPa and the surface varies from 20 km to over 80 km. The secondary circulation becomes quite asymmetric about the surface cyclone center. As a result, convection on the upshear-right quadrant diminishes, limiting the upward heat transport in the eyewall and thus lowering the warm core and leading to a weakening of the storm. In strong vertical shear (above 12 m s−1), the vertical tilt exceeds 160 km in 48 h of simulation and the secondary circulation on the upshear side is completely destroyed with low-level outflow. The axisymmetric component of eyewall convection weakens remarkably and becomes much less penetrative. As a result, the warm core becomes weak and appears at lower levels and the storm weakens rapidly accordingly. This up-down weakening mechanism discussed in this study is different from those previously discussed. It emphasizes the penetrative role of eyewall convection in transporting heat from the ocean to the mid-upper troposphere, maintaining the warm core structure of the tropical cyclone. The vertical shear is found negative to eyewall penetrative convection.  相似文献   

17.
本文对1985年8月下旬北部湾热带低压发展为台风的演变过程作了诊断分析。发现在台风的生成和加强的过程中,涡旋动能出现显著的加强和向下转移,最大涡度层和无辐散层明显下降.与此同时,暖心结构也逐步形成。这一过程与低层西南季风的增强北进,卷入台风环流中的过程密切相关。涡旋动能收支的计算表明,低压由于处在强的水平切变和垂直切变基流中,风场和温度场的不对称和暖心结构的形成,使台风获得正压和斜压不稳定能量,加之以积云对流为代表的次网格过程向涡旋运动输送能量,从而使低压发展为台风。台风的衰亡是由于登陆后低层偏冷气流的入侵和下部暖心结构的破坏,使台风只有纬向平均气流取得能量,不足以补偿摩擦耗散和位能通量的辐散,因而减弱为低压的。   相似文献   

18.
Summary Intensity forecasts of a hurricane are shown to be quite sensitive to the initial meso-convective scale precipitation distributions. These are included within the data assimilation using a physical initialization that was developed at Florida State University. We show a case study of a hurricane forecast where the inclusion of the observed precipitation did provide reasonable intensity forecasts. Further experimentation with the inclusion or exclusion of individual meso-convective rainfall elements, around and over the storm, shows that the intensity forecasts were quite sensitive to these initial rainfall distributions. The exclusion of initial rain in the inner rain area of a hurricane leads to a much reduced intensity forecast, whereas that impact is less if the rainfall of an outer rain band was initially excluded.Intensity forecasts of hurricanes may be sensitive to a number of factors such as sea surface temperature anomalies, presence or absence of concentric eye walls, potential vorticity interactions in the upper troposphere and other environmental factors.This paper is a sequel to a recent study, Krishnamurti et al., 1997, on the prediction of hurricane OPAL of 1995 that was a category III storm over the Gulf of Mexico. In that study we showed successful forecasts of the storm intensity from the inclusion of observed rainfall distributions within physical initialization. In that paper we examined the issues of diabatic potential vorticity and the angular momentum in order to diagnose the storm intensity. All of the terms of the complete Ertel potential vorticity equation were evaluated and it was concluded that the diabatic contributions to the potential vorticity were quite important for the diagnosis of the storm's intensity. The present paper addresses some sensitivity issues related to the individual mesoconvective precipitating elements.With 4 Figures  相似文献   

19.
2001年8月23日华北强风暴动力机制的数值研究   总被引:5,自引:1,他引:4  
龚佃利  吴增茂  傅刚 《气象学报》2005,63(4):504-515
利用非静力平衡模式(MM5 V3.5)对2001年8月23日发生在华北地区的一次强对流风暴过程进行了数值模拟,在取得合理模拟结果的基础上,着重分析了风暴发生的热力条件、太行山地形动力作用和风暴中尺度结构特征,并依据倾斜涡度发展理论,分析了强风暴的发展机制。结果表明:本次风暴是在以西北气流为主导的环流背景下产生的,低层增温,中高层降温和整层增湿是造成层结不稳定的重要原因。上游地区对流引发的干冷下沉气流沿太行山背风面下滑形成的下坡风是触发强风暴发生的直接动力机制。湿位涡分析表明,风暴发生区具有明显的等熵面倾斜,对流层中低层pm1<0区域,同时pm2>0,满足倾斜涡度发展的条件,对强风暴的发展具有一定指示性。风暴发展早期,其垂直方向次级环流可能与新雷暴的产生和雷暴的跳跃式传播有关。太行山地形引起的边界层风场的变化,包括下坡气流和边界层中尺度辐合线对风暴的触发、组织和移动发挥着重要作用。  相似文献   

20.
The external source/sink of potential vorticity (PV) is the original driving force for the atmospheric circulation. The relationship between surface PV generation and surface PV density forcing is discussed in detail in this paper. Moreover, a case study of the extreme winter freezing rain/snow storm over South China in January 2008 is performed, and the surface PV density forcing over the eastern flank of the Tibetan Plateau (TP) has been found to significantly affect the precipitation over South China in this case. The TP generated PV propagated eastward in the middle troposphere. The associated zonal advection of positive absolute vorticity resulted in the increasing of cyclo-nic relative vorticity in the downstream region of the TP. Ascending air and convergence in the lower troposphere developed, which gave rise to the development of the southerly wind. This favored the increasing of negative meridio-nal absolute vorticity advection in the lower troposphere, which provided a large-scale circulation background conducive to ascending motion such that the absolute vorticity advection increased with height. Consequently, the ascending air further strengthened the southerly wind and the vertical gradient of absolute vorticity advection between the lower and middle troposphere in turn. Under such a situation, the enhanced ascending, together with the moist air transported by the southerly wind, formed the extreme winter precipitation in January 2008 over South China.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号